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You	Don't	Know	JS	(book	series)
This	is	a	series	of	books	diving	deep	into	the	core	mechanisms	of	the	JavaScript	language.
The	first	edition	of	the	series	is	now	complete.

Introduction
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Preface
I'm	sure	you	noticed,	but	"JS"	in	the	book	series	title	is	not	an	abbreviation	for	words	used	to
curse	about	JavaScript,	though	cursing	at	the	language's	quirks	is	something	we	can
probably	all	identify	with!

From	the	earliest	days	of	the	web,	JavaScript	has	been	a	foundational	technology	that	drives
interactive	experience	around	the	content	we	consume.	While	flickering	mouse	trails	and
annoying	pop-up	prompts	may	be	where	JavaScript	started,	nearly	2	decades	later,	the
technology	and	capability	of	JavaScript	has	grown	many	orders	of	magnitude,	and	few	doubt
its	importance	at	the	heart	of	the	world's	most	widely	available	software	platform:	the	web.

But	as	a	language,	it	has	perpetually	been	a	target	for	a	great	deal	of	criticism,	owing	partly
to	its	heritage	but	even	more	to	its	design	philosophy.	Even	the	name	evokes,	as	Brendan
Eich	once	put	it,	"dumb	kid	brother"	status	next	to	its	more	mature	older	brother	"Java".	But
the	name	is	merely	an	accident	of	politics	and	marketing.	The	two	languages	are	vastly
different	in	many	important	ways.	"JavaScript"	is	as	related	to	"Java"	as	"Carnival"	is	to
"Car".

Because	JavaScript	borrows	concepts	and	syntax	idioms	from	several	languages,	including
proud	C-style	procedural	roots	as	well	as	subtle,	less	obvious	Scheme/Lisp-style	functional
roots,	it	is	exceedingly	approachable	to	a	broad	audience	of	developers,	even	those	with	just
little	to	no	programming	experience.	The	"Hello	World"	of	JavaScript	is	so	simple	that	the
language	is	inviting	and	easy	to	get	comfortable	with	in	early	exposure.

While	JavaScript	is	perhaps	one	of	the	easiest	languages	to	get	up	and	running	with,	its
eccentricities	make	solid	mastery	of	the	language	a	vastly	less	common	occurrence	than	in
many	other	languages.	Where	it	takes	a	pretty	in-depth	knowledge	of	a	language	like	C	or
C++	to	write	a	full-scale	program,	full-scale	production	JavaScript	can,	and	often	does,
barely	scratch	the	surface	of	what	the	language	can	do.

Sophisticated	concepts	which	are	deeply	rooted	into	the	language	tend	instead	to	surface
themselves	in_seemingly_simplistic	ways,	such	as	passing	around	functions	as	callbacks,
which	encourages	the	JavaScript	developer	to	just	use	the	language	as-is	and	not	worry	too
much	about	what's	going	on	under	the	hood.

It	is	simultaneously	a	simple,	easy-to-use	language	that	has	broad	appeal,	and	a	complex
and	nuanced	collection	of	language	mechanics	which	without	careful	study	will	elude_true
understanding_even	for	the	most	seasoned	of	JavaScript	developers.

Preface
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Therein	lies	the	paradox	of	JavaScript,	the	Achilles'	Heel	of	the	language,	the	challenge	we
are	presently	addressing.	Because	JavaScript_can_be	used	without	understanding,	the
understanding	of	the	language	is	often	never	attained.

Mission
If	at	every	point	that	you	encounter	a	surprise	or	frustration	in	JavaScript,	your	response	is	to
add	it	to	the	blacklist,	as	some	are	accustomed	to	doing,	you	soon	will	be	relegated	to	a
hollow	shell	of	the	richness	of	JavaScript.

While	this	subset	has	been	famously	dubbed	"The	Good	Parts",	I	would	implore	you,	dear
reader,	to	instead	consider	it	the	"The	Easy	Parts",	"The	Safe	Parts",	or	even	"The
Incomplete	Parts".

This_You	Don't	Know	JavaScript_book	series	offers	a	contrary	challenge:	learn	and	deeply
understand_all_of	JavaScript,	even	and	especially	"The	Tough	Parts".

Here,	we	address	head	on	the	tendency	of	JS	developers	to	learn	"just	enough"	to	get	by,
without	ever	forcing	themselves	to	learn	exactly	how	and	why	the	language	behaves	the	way
it	does.	Furthermore,	we	eschew	the	common	advice	to_retreat_when	the	road	gets	rough.

I	am	not	content,	nor	should	you	be,	at	stopping	once	somethingjust	works,	and	not	really
knowingwhy.	I	gently	challenge	you	to	journey	down	that	bumpy	"road	less	traveled"	and
embrace	all	that	JavaScript	is	and	can	do.	With	that	knowledge,	no	technique,	no
framework,	no	popular	buzzword	acronym	of	the	week,	will	be	beyond	your	understanding.

These	books	each	take	on	specific	core	parts	of	the	language	which	are	most	commonly
misunderstood	or	under-understood,	and	dive	very	deep	and	exhaustively	into	them.	You
should	come	away	from	reading	with	a	firm	confidence	in	your	understanding,	not	just	of	the
theoretical,	but	the	practical	"what	you	need	to	know"	bits.

The	JavaScript	you	knowright	now_is	probably_parts_handed	down	to	you	by	others	who've
been	burned	by	incomplete	understanding._That_JavaScript	is	but	a	shadow	of	the	true
language.	You	don't_really_know	JavaScript,_yet,	but	if	you	dig	into	this	series,	youwill.
Read	on,	my	friends.	JavaScript	awaits	you.

Summary
JavaScript	is	awesome.	It's	easy	to	learn	partially,	and	much	harder	to	learn	completely	(or
evensufficiently).	When	developers	encounter	confusion,	they	usually	blame	the	language
instead	of	their	lack	of	understanding.	These	books	aim	to	fix	that,	inspiring	a	strong
appreciation	for	the	language	you	can	now,	andshould,	deeplyknow.

Preface
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Note:	Many	of	the	examples	in	this	book	assume	modern	(and	future-reaching)	JavaScript
engine	environments,	such	as	ES6.	Some	code	may	not	work	as	described	if	run	in	older
(pre-ES6)	engines.

Preface
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Foreword
What	was	the	last	new	thing	you	learned?

Perhaps	it	was	a	foreign	language,	like	Italian	or	German.	Or	maybe	it	was	a	graphics	editor,
like	Photoshop.	Or	a	cooking	technique	or	woodworking	or	an	exercise	routine.	I	want	you	to
remember	that	feeling	when	you	finally	got	it:	the	lightbulb	moment.	When	things	went	from
blurry	to	crystal	clear,	as	you	mastered	the	table	saw	or	understood	the	difference	between
masculine	and	feminine	nouns	in	French.	How	did	it	feel?	Pretty	amazing,	right?

Now	I	want	you	to	travel	back	a	little	bit	further	in	your	memory	to	right	before	you	learned
your	new	skill.	How	did_that_feel?	Probably	slightly	intimidating	and	maybe	a	little	bit
frustrating,	right?	At	one	point,	we	all	did	not	know	the	things	that	we	know	now	and	that’s
totally	OK;	we	all	start	somewhere.	Learning	new	material	is	an	exciting	adventure,
especially	if	you	are	looking	to	learn	the	subject	efficiently.

I	teach	a	lot	of	beginner	coding	classes.	The	students	who	take	my	classes	have	often	tried
teaching	themselves	subjects	like	HTML	or	JavaScript	by	reading	blog	posts	or	copying	and
pasting	code,	but	they	haven’t	been	able	to	truly	master	the	material	that	will	allow	them	to
code	their	desired	outcome.	And	because	they	don’t	truly	grasp	the	ins	and	outs	of	certain
coding	topics,	they	can’t	write	powerful	code	or	debug	their	own	work,	as	they	don’t	really
understand	what	is	happening.

I	always	believe	in	teaching	my	classes	the	proper	way,	meaning	I	teach	web	standards,
semantic	markup,	well-commented	code,	and	other	best	practices.	I	cover	the	subject	in	a
thorough	manner	to	explain	the	hows	and	whys,	without	just	tossing	out	code	to	copy	and
paste.	When	you	strive	to	comprehend	your	code,	you	create	better	work	and	become	better
at	what	you	do.	The	code	isn’t	just	yourjob_anymore,	it’s	your_craft.	This	is	why	I	loveUp	&
Going.	Kyle	takes	us	on	a	deep	dive	through	syntax	and	terminology	to	give	a	great
introduction	to	JavaScript	without	cutting	corners.	This	book	doesn’t	skim	over	the	surface,
but	really	allows	us	to	genuinely	understand	the	concepts	we	will	be	writing.

Because	it’s	not	enough	to	be	able	to	duplicate	jQuery	snippets	into	your	website,	the	same
way	it’s	not	enough	to	learn	how	to	open,	close,	and	save	a	document	in	Photoshop.	Sure,
once	I	learn	a	few	basics	about	the	program	I	could	create	and	share	a	design	I	made.	But
without	legitimately	knowing	the	tools	and	what	is	behind	them,	how	can	I	define	a	grid,	or
craft	a	legible	type	system,	or	optimize	graphics	for	web	use.	The	same	goes	for	JavaScript.
Without	knowing	how	loops	work,	or	how	to	define	variables,	or	what	scope	is,	we	won’t	be
writing	the	best	code	we	can.	We	don’t	want	to	settle	for	anything	less	--	this	is,	after	all,	our
craft.

Foreword
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The	more	you	are	exposed	to	JavaScript,	the	clearer	it	becomes.	Words	like	closures,
objects,	and	methods	might	seem	out	of	reach	to	you	now,	but	this	book	will	help	those
terms	come	into	clarity.	I	want	you	to	keep	those	two	feelings	of	before	and	after	you	learn
something	in	mind	as	you	begin	this	book.	It	might	seem	daunting,	but	you’ve	picked	up	this
book	because	you	are	starting	an	awesome	journey	to	hone	your	knowledge._Up	&
Going_is	the	start	of	our	path	to	understanding	programming.	Enjoy	the	lightbulb	moments!

Jenn	Lukas
jennlukas.com,@jennlukas
Front-end	consultant

Foreword

8

http://jennlukas.com/
https://twitter.com/jennlukas


up	&	going

9



Chapter	1:	Into	Programming
Welcome	to	the	You	Don't	Know	JS	(YDKJS)	series.

Up	&	Going	is	an	introduction	to	several	basic	concepts	of	programming	--	of	course	we	lean
toward	JavaScript	(often	abbreviated	JS)	specifically	--	and	how	to	approach	and	understand
the	rest	of	the	titles	in	this	series.	Especially	if	you're	just	getting	into	programming	and/or
JavaScript,	this	book	will	briefly	explore	what	you	need	to	get	up	and	going.

This	book	starts	off	explaining	the	basic	principles	of	programming	at	a	very	high	level.	It's
mostly	intended	if	you	are	starting	YDKJS	with	little	to	no	prior	programming	experience,	and
are	looking	to	these	books	to	help	get	you	started	along	a	path	to	understanding
programming	through	the	lens	of	JavaScript.

Chapter	1	should	be	approached	as	a	quick	overview	of	the	things	you'll	want	to	learn	more
about	and	practice	to	get	into	programming.	There	are	also	many	other	fantastic
programming	introduction	resources	that	can	help	you	dig	into	these	topics	further,	and	I
encourage	you	to	learn	from	them	in	addition	to	this	chapter.

Once	you	feel	comfortable	with	general	programming	basics,	Chapter	2	will	help	guide	you
to	a	familiarity	with	JavaScript's	flavor	of	programming.	Chapter	2	introduces	what
JavaScript	is	about,	but	again,	it's	not	a	comprehensive	guide	--	that's	what	the	rest	of	the
YDKJS	books	are	for!

If	you're	already	fairly	comfortable	with	JavaScript,	first	check	out	Chapter	3	as	a	brief
glimpse	of	what	to	expect	from	YDKJS,	then	jump	right	in!

Code
Let's	start	from	the	beginning.

A	program,	often	referred	to	as	source	code	or	just	code,	is	a	set	of	special	instructions	to
tell	the	computer	what	tasks	to	perform.	Usually	code	is	saved	in	a	text	file,	although	with
JavaScript	you	can	also	type	code	directly	into	a	developer	console	in	a	browser,	which	we'll
cover	shortly.

The	rules	for	valid	format	and	combinations	of	instructions	is	called	a	computer	language,
sometimes	referred	to	as	its	syntax,	much	the	same	as	English	tells	you	how	to	spell	words
and	how	to	create	valid	sentences	using	words	and	punctuation.

Statements

Into	Programming

10



In	a	computer	language,	a	group	of	words,	numbers,	and	operators	that	performs	a	specific
task	is	a	statement.	In	JavaScript,	a	statement	might	look	as	follows:

a	=	b	*	2;

The	characters		a		and		b		are	called	variables	(see	"Variables"),	which	are	like	simple
boxes	you	can	store	any	of	your	stuff	in.	In	programs,	variables	hold	values	(like	the	number
	42	)	to	be	used	by	the	program.	Think	of	them	as	symbolic	placeholders	for	the	values
themselves.

By	contrast,	the		2		is	just	a	value	itself,	called	a	literal	value,	because	it	stands	alone
without	being	stored	in	a	variable.

The		=		and		*		characters	are	operators	(see	"Operators")	--	they	perform	actions	with	the
values	and	variables	such	as	assignment	and	mathematic	multiplication.

Most	statements	in	JavaScript	conclude	with	a	semicolon	(	;	)	at	the	end.

The	statement		a	=	b	*	2;		tells	the	computer,	roughly,	to	get	the	current	value	stored	in	the
variable		b	,	multiply	that	value	by		2	,	then	store	the	result	back	into	another	variable	we
call		a	.

Programs	are	just	collections	of	many	such	statements,	which	together	describe	all	the	steps
that	it	takes	to	perform	your	program's	purpose.

Expressions

Statements	are	made	up	of	one	or	more	expressions.	An	expression	is	any	reference	to	a
variable	or	value,	or	a	set	of	variable(s)	and	value(s)	combined	with	operators.

For	example:

a	=	b	*	2;

This	statement	has	four	expressions	in	it:

	2		is	a	literal	value	expression
	b		is	a	variable	expression,	which	means	to	retrieve	its	current	value
	b	*	2		is	an	arithmetic	expression,	which	means	to	do	the	multiplication
	a	=	b	*	2		is	an	assignment	expression,	which	means	to	assign	the	result	of	the		b	*
2		expression	to	the	variable		a		(more	on	assignments	later)

A	general	expression	that	stands	alone	is	also	called	an	expression	statement,	such	as	the
following:

Into	Programming
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b	*	2;

This	flavor	of	expression	statement	is	not	very	common	or	useful,	as	generally	it	wouldn't
have	any	effect	on	the	running	of	the	program	--	it	would	retrieve	the	value	of		b		and
multiply	it	by		2	,	but	then	wouldn't	do	anything	with	that	result.

A	more	common	expression	statement	is	a	call	expression	statement	(see	"Functions"),	as
the	entire	statement	is	the	function	call	expression	itself:

alert(	a	);

Executing	a	Program

How	do	those	collections	of	programming	statements	tell	the	computer	what	to	do?	The
program	needs	to	be	executed,	also	referred	to	as	running	the	program.

Statements	like		a	=	b	*	2		are	helpful	for	developers	when	reading	and	writing,	but	are	not
actually	in	a	form	the	computer	can	directly	understand.	So	a	special	utility	on	the	computer
(either	an	interpreter	or	a	compiler)	is	used	to	translate	the	code	you	write	into	commands	a
computer	can	understand.

For	some	computer	languages,	this	translation	of	commands	is	typically	done	from	top	to
bottom,	line	by	line,	every	time	the	program	is	run,	which	is	usually	called	interpreting	the
code.

For	other	languages,	the	translation	is	done	ahead	of	time,	called	compiling	the	code,	so
when	the	program	runs	later,	what's	running	is	actually	the	already	compiled	computer
instructions	ready	to	go.

It's	typically	asserted	that	JavaScript	is	interpreted,	because	your	JavaScript	source	code	is
processed	each	time	it's	run.	But	that's	not	entirely	accurate.	The	JavaScript	engine	actually
compiles	the	program	on	the	fly	and	then	immediately	runs	the	compiled	code.

Note:	For	more	information	on	JavaScript	compiling,	see	the	first	two	chapters	of	the	Scope
&	Closures	title	of	this	series.

Try	It	Yourself
This	chapter	is	going	to	introduce	each	programming	concept	with	simple	snippets	of	code,
all	written	in	JavaScript	(obviously!).

Into	Programming
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It	cannot	be	emphasized	enough:	while	you	go	through	this	chapter	--	and	you	may	need	to
spend	the	time	to	go	over	it	several	times	--	you	should	practice	each	of	these	concepts	by
typing	the	code	yourself.	The	easiest	way	to	do	that	is	to	open	up	the	developer	tools
console	in	your	nearest	browser	(Firefox,	Chrome,	IE,	etc.).

Tip:	Typically,	you	can	launch	the	developer	console	with	a	keyboard	shortcut	or	from	a
menu	item.	For	more	detailed	information	about	launching	and	using	the	console	in	your
favorite	browser,	see	"Mastering	The	Developer	Tools	Console"
(http://blog.teamtreehouse.com/mastering-developer-tools-console).	To	type	multiple	lines
into	the	console	at	once,	use		<shift>	+	<enter>		to	move	to	the	next	new	line.	Once	you	hit
	<enter>		by	itself,	the	console	will	run	everything	you've	just	typed.

Let's	get	familiar	with	the	process	of	running	code	in	the	console.	First,	I	suggest	opening	up
an	empty	tab	in	your	browser.	I	prefer	to	do	this	by	typing		about:blank		into	the	address	bar.
Then,	make	sure	your	developer	console	is	open,	as	we	just	mentioned.

Now,	type	this	code	and	see	how	it	runs:

a	=	21;

b	=	a	*	2;

console.log(	b	);

Typing	the	preceding	code	into	the	console	in	Chrome	should	produce	something	like	the
following:

Go	on,	try	it.	The	best	way	to	learn	programming	is	to	start	coding!

Output

In	the	previous	code	snippet,	we	used		console.log(..)	.	Briefly,	let's	look	at	what	that	line	of
code	is	all	about.

Into	Programming
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You	may	have	guessed,	but	that's	exactly	how	we	print	text	(aka	output	to	the	user)	in	the
developer	console.	There	are	two	characteristics	of	that	statement	that	we	should	explain.

First,	the		log(	b	)		part	is	referred	to	as	a	function	call	(see	"Functions").	What's	happening
is	we're	handing	the		b		variable	to	that	function,	which	asks	it	to	take	the	value	of		b		and
print	it	to	the	console.

Second,	the		console.		part	is	an	object	reference	where	the		log(..)		function	is	located.
We	cover	objects	and	their	properties	in	more	detail	in	Chapter	2.

Another	way	of	creating	output	that	you	can	see	is	to	run	an		alert(..)		statement.	For
example:

alert(	b	);

If	you	run	that,	you'll	notice	that	instead	of	printing	the	output	to	the	console,	it	shows	a
popup	"OK"	box	with	the	contents	of	the		b		variable.	However,	using		console.log(..)		is
generally	going	to	make	learning	about	coding	and	running	your	programs	in	the	console
easier	than	using		alert(..)	,	because	you	can	output	many	values	at	once	without
interrupting	the	browser	interface.

For	this	book,	we'll	use		console.log(..)		for	output.

Input

While	we're	discussing	output,	you	may	also	wonder	about	input	(i.e.,	receiving	information
from	the	user).

The	most	common	way	that	happens	is	for	the	HTML	page	to	show	form	elements	(like	text
boxes)	to	a	user	that	they	can	type	into,	and	then	using	JS	to	read	those	values	into	your
program's	variables.

But	there's	an	easier	way	to	get	input	for	simple	learning	and	demonstration	purposes	such
as	what	you'll	be	doing	throughout	this	book.	Use	the		prompt(..)		function:

age	=	prompt(	"Please	tell	me	your	age:"	);

console.log(	age	);

As	you	may	have	guessed,	the	message	you	pass	to		prompt(..)		--	in	this	case,		"Please
tell	me	your	age:"		--	is	printed	into	the	popup.

This	should	look	similar	to	the	following:
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Once	you	submit	the	input	text	by	clicking	"OK,"	you'll	observe	that	the	value	you	typed	is
stored	in	the		age		variable,	which	we	then	output	with		console.log(..)	:

To	keep	things	simple	while	we're	learning	basic	programming	concepts,	the	examples	in
this	book	will	not	require	input.	But	now	that	you've	seen	how	to	use		prompt(..)	,	if	you
want	to	challenge	yourself	you	can	try	to	use	input	in	your	explorations	of	the	examples.

Operators
Operators	are	how	we	perform	actions	on	variables	and	values.	We've	already	seen	two
JavaScript	operators,	the		=		and	the		*	.

The		*		operator	performs	mathematic	multiplication.	Simple	enough,	right?

The		=		equals	operator	is	used	for	assignment	--	we	first	calculate	the	value	on	the	right-
hand	side	(source	value)	of	the		=		and	then	put	it	into	the	variable	that	we	specify	on	the
left-hand	side	(target	variable).

Warning:	This	may	seem	like	a	strange	reverse	order	to	specify	assignment.	Instead	of		a	=
42	,	some	might	prefer	to	flip	the	order	so	the	source	value	is	on	the	left	and	the	target
variable	is	on	the	right,	like		42	->	a		(this	is	not	valid	JavaScript!).	Unfortunately,	the		a	=
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42		ordered	form,	and	similar	variations,	is	quite	prevalent	in	modern	programming
languages.	If	it	feels	unnatural,	just	spend	some	time	rehearsing	that	ordering	in	your	mind
to	get	accustomed	to	it.

Consider:

a	=	2;

b	=	a	+	1;

Here,	we	assign	the		2		value	to	the		a		variable.	Then,	we	get	the	value	of	the		a		variable
(still		2	),	add		1		to	it	resulting	in	the	value		3	,	then	store	that	value	in	the		b		variable.

While	not	technically	an	operator,	you'll	need	the	keyword		var		in	every	program,	as	it's	the
primary	way	you	declare	(aka	create)	variables	(see	"Variables").

You	should	always	declare	the	variable	by	name	before	you	use	it.	But	you	only	need	to
declare	a	variable	once	for	each	scope	(see	"Scope");	it	can	be	used	as	many	times	after
that	as	needed.	For	example:

var	a	=	20;

a	=	a	+	1;

a	=	a	*	2;

console.log(	a	);				//	42

Here	are	some	of	the	most	common	operators	in	JavaScript:

Assignment:		=		as	in		a	=	2	.
Math:		+		(addition),		-		(subtraction),		*		(multiplication),	and		/		(division),	as	in		a	*
3	.
Compound	Assignment:		+=	,		-=	,		*=	,	and		/=		are	compound	operators	that	combine
a	math	operation	with	assignment,	as	in		a	+=	2		(same	as		a	=	a	+	2	).
Increment/Decrement:		++		(increment),		--		(decrement),	as	in		a++		(similar	to		a	=	a
+	1	).
Object	Property	Access:		.		as	in		console.log()	.

Objects	are	values	that	hold	other	values	at	specific	named	locations	called	properties.
	obj.a		means	an	object	value	called		obj		with	a	property	of	the	name		a	.	Properties
can	alternatively	be	accessed	as		obj["a"]	.	See	Chapter	2.

Equality:		==		(loose-equals),		===		(strict-equals),		!=		(loose	not-equals),		!==		(strict
not-equals),	as	in		a	==	b	.

See	"Values	&	Types"	and	Chapter	2.
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Comparison:		<		(less	than),		>		(greater	than),		<=		(less	than	or	loose-equals),		>=	
(greater	than	or	loose-equals),	as	in		a	<=	b	.

See	"Values	&	Types"	and	Chapter	2.

Logical:		&&		(and),		||		(or),	as	in		a	||	b		that	selects	either		a		or		b	.

These	operators	are	used	to	express	compound	conditionals	(see	"Conditionals"),	like	if
either		a		or		b		is	true.

Note:	For	much	more	detail,	and	coverage	of	operators	not	mentioned	here,	see	the	Mozilla
Developer	Network	(MDN)'s	"Expressions	and	Operators"	(https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Expressions_and_Operators).

Values	&	Types
If	you	ask	an	employee	at	a	phone	store	how	much	a	certain	phone	costs,	and	they	say
"ninety-nine,	ninety-nine"	(i.e.,	$99.99),	they're	giving	you	an	actual	numeric	dollar	figure	that
represents	what	you'll	need	to	pay	(plus	taxes)	to	buy	it.	If	you	want	to	buy	two	of	those
phones,	you	can	easily	do	the	mental	math	to	double	that	value	to	get	$199.98	for	your	base
cost.

If	that	same	employee	picks	up	another	similar	phone	but	says	it's	"free"	(perhaps	with	air
quotes),	they're	not	giving	you	a	number,	but	instead	another	kind	of	representation	of	your
expected	cost	($0.00)	--	the	word	"free."

When	you	later	ask	if	the	phone	includes	a	charger,	that	answer	could	only	have	been	either
"yes"	or	"no."

In	very	similar	ways,	when	you	express	values	in	a	program,	you	choose	different
representations	for	those	values	based	on	what	you	plan	to	do	with	them.

These	different	representations	for	values	are	called	types	in	programming	terminology.
JavaScript	has	built-in	types	for	each	of	these	so	called	primitive	values:

When	you	need	to	do	math,	you	want	a		number	.
When	you	need	to	print	a	value	on	the	screen,	you	need	a		string		(one	or	more
characters,	words,	sentences).
When	you	need	to	make	a	decision	in	your	program,	you	need	a		boolean		(	true		or
	false	).

Values	that	are	included	directly	in	the	source	code	are	called	literals.		string		literals	are
surrounded	by	double	quotes		"..."		or	single	quotes	(	'...'	)	--	the	only	difference	is
stylistic	preference.		number		and		boolean		literals	are	just	presented	as	is	(i.e.,		42	,		true	,
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etc.).

Consider:

"I	am	a	string";

'I	am	also	a	string';

42;

true;

false;

Beyond		string	/	number	/	boolean		value	types,	it's	common	for	programming	languages	to
provide	arrays,	objects,	functions,	and	more.	We'll	cover	much	more	about	values	and	types
throughout	this	chapter	and	the	next.

Converting	Between	Types

If	you	have	a		number		but	need	to	print	it	on	the	screen,	you	need	to	convert	the	value	to	a
	string	,	and	in	JavaScript	this	conversion	is	called	"coercion."	Similarly,	if	someone	enters
a	series	of	numeric	characters	into	a	form	on	an	ecommerce	page,	that's	a		string	,	but	if
you	need	to	then	use	that	value	to	do	math	operations,	you	need	to	coerce	it	to	a		number	.

JavaScript	provides	several	different	facilities	for	forcibly	coercing	between	types.	For
example:

var	a	=	"42";

var	b	=	Number(	a	);

console.log(	a	);				//	"42"

console.log(	b	);				//	42

Using		Number(..)		(a	built-in	function)	as	shown	is	an	explicit	coercion	from	any	other	type
to	the		number		type.	That	should	be	pretty	straightforward.

But	a	controversial	topic	is	what	happens	when	you	try	to	compare	two	values	that	are	not
already	of	the	same	type,	which	would	require	implicit	coercion.

When	comparing	the	string		"99.99"		to	the	number		99.99	,	most	people	would	agree	they
are	equivalent.	But	they're	not	exactly	the	same,	are	they?	It's	the	same	value	in	two
different	representations,	two	different	types.	You	could	say	they're	"loosely	equal,"	couldn't
you?

To	help	you	out	in	these	common	situations,	JavaScript	will	sometimes	kick	in	and	implicitly
coerce	values	to	the	matching	types.
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So	if	you	use	the		==		loose	equals	operator	to	make	the	comparison		"99.99"	==	99.99	,
JavaScript	will	convert	the	left-hand	side		"99.99"		to	its		number		equivalent		99.99	.	The
comparison	then	becomes		99.99	==	99.99	,	which	is	of	course		true	.

While	designed	to	help	you,	implicit	coercion	can	create	confusion	if	you	haven't	taken	the
time	to	learn	the	rules	that	govern	its	behavior.	Most	JS	developers	never	have,	so	the
common	feeling	is	that	implicit	coercion	is	confusing	and	harms	programs	with	unexpected
bugs,	and	should	thus	be	avoided.	It's	even	sometimes	called	a	flaw	in	the	design	of	the
language.

However,	implicit	coercion	is	a	mechanism	that	can	be	learned,	and	moreover	should	be
learned	by	anyone	wishing	to	take	JavaScript	programming	seriously.	Not	only	is	it	not
confusing	once	you	learn	the	rules,	it	can	actually	make	your	programs	better!	The	effort	is
well	worth	it.

Note:	For	more	information	on	coercion,	see	Chapter	2	of	this	title	and	Chapter	4	of	the
Types	&	Grammar	title	of	this	series.

Code	Comments
The	phone	store	employee	might	jot	down	some	notes	on	the	features	of	a	newly	released
phone	or	on	the	new	plans	her	company	offers.	These	notes	are	only	for	the	employee	--
they're	not	for	customers	to	read.	Nevertheless,	these	notes	help	the	employee	do	her	job
better	by	documenting	the	hows	and	whys	of	what	she	should	tell	customers.

One	of	the	most	important	lessons	you	can	learn	about	writing	code	is	that	it's	not	just	for	the
computer.	Code	is	every	bit	as	much,	if	not	more,	for	the	developer	as	it	is	for	the	compiler.

Your	computer	only	cares	about	machine	code,	a	series	of	binary	0s	and	1s,	that	comes
from	compilation.	There's	a	nearly	infinite	number	of	programs	you	could	write	that	yield	the
same	series	of	0s	and	1s.	The	choices	you	make	about	how	to	write	your	program	matter	--
not	only	to	you,	but	to	your	other	team	members	and	even	to	your	future	self.

You	should	strive	not	just	to	write	programs	that	work	correctly,	but	programs	that	make
sense	when	examined.	You	can	go	a	long	way	in	that	effort	by	choosing	good	names	for
your	variables	(see	"Variables")	and	functions	(see	"Functions").

But	another	important	part	is	code	comments.	These	are	bits	of	text	in	your	program	that	are
inserted	purely	to	explain	things	to	a	human.	The	interpreter/compiler	will	always	ignore
these	comments.

There	are	lots	of	opinions	on	what	makes	well-commented	code;	we	can't	really	define
absolute	universal	rules.	But	some	observations	and	guidelines	are	quite	useful:
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Code	without	comments	is	suboptimal.
Too	many	comments	(one	per	line,	for	example)	is	probably	a	sign	of	poorly	written
code.
Comments	should	explain	why,	not	what.	They	can	optionally	explain	how	if	that's
particularly	confusing.

In	JavaScript,	there	are	two	types	of	comments	possible:	a	single-line	comment	and	a
multiline	comment.

Consider:

//	This	is	a	single-line	comment

/*	But	this	is

							a	multiline

													comment.

																						*/

The		//		single-line	comment	is	appropriate	if	you're	going	to	put	a	comment	right	above	a
single	statement,	or	even	at	the	end	of	a	line.	Everything	on	the	line	after	the		//		is	treated
as	the	comment	(and	thus	ignored	by	the	compiler),	all	the	way	to	the	end	of	the	line.
There's	no	restriction	to	what	can	appear	inside	a	single-line	comment.

Consider:

var	a	=	42;								//	42	is	the	meaning	of	life

The		/*	..	*/		multiline	comment	is	appropriate	if	you	have	several	lines	worth	of
explanation	to	make	in	your	comment.

Here's	a	common	usage	of	multiline	comments:

/*	The	following	value	is	used	because

			it	has	been	shown	that	it	answers

			every	question	in	the	universe.	*/

var	a	=	42;

It	can	also	appear	anywhere	on	a	line,	even	in	the	middle	of	a	line,	because	the		*/		ends	it.
For	example:

var	a	=	/*	arbitrary	value	*/	42;

console.log(	a	);				//	42
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The	only	thing	that	cannot	appear	inside	a	multiline	comment	is	a		*/	,	because	that	would
be	interpreted	to	end	the	comment.

You	will	definitely	want	to	begin	your	learning	of	programming	by	starting	off	with	the	habit	of
commenting	code.	Throughout	the	rest	of	this	chapter,	you'll	see	I	use	comments	to	explain
things,	so	do	the	same	in	your	own	practice.	Trust	me,	everyone	who	reads	your	code	will
thank	you!

Variables
Most	useful	programs	need	to	track	a	value	as	it	changes	over	the	course	of	the	program,
undergoing	different	operations	as	called	for	by	your	program's	intended	tasks.

The	easiest	way	to	go	about	that	in	your	program	is	to	assign	a	value	to	a	symbolic
container,	called	a	variable	--	so	called	because	the	value	in	this	container	can	vary	over
time	as	needed.

In	some	programming	languages,	you	declare	a	variable	(container)	to	hold	a	specific	type
of	value,	such	as		number		or		string	.	Static	typing,	otherwise	known	as	type	enforcement,
is	typically	cited	as	a	benefit	for	program	correctness	by	preventing	unintended	value
conversions.

Other	languages	emphasize	types	for	values	instead	of	variables.	Weak	typing,	otherwise
known	as	dynamic	typing,	allows	a	variable	to	hold	any	type	of	value	at	any	time.	It's
typically	cited	as	a	benefit	for	program	flexibility	by	allowing	a	single	variable	to	represent	a
value	no	matter	what	type	form	that	value	may	take	at	any	given	moment	in	the	program's
logic	flow.

JavaScript	uses	the	latter	approach,	dynamic	typing,	meaning	variables	can	hold	values	of
any	type	without	any	type	enforcement.

As	mentioned	earlier,	we	declare	a	variable	using	the		var		statement	--	notice	there's	no
other	type	information	in	the	declaration.	Consider	this	simple	program:
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var	amount	=	99.99;

amount	=	amount	*	2;

console.log(	amount	);								//	199.98

//	convert	`amount`	to	a	string,	and

//	add	"$"	on	the	beginning

amount	=	"$"	+	String(	amount	);

console.log(	amount	);								//	"$199.98"

The		amount		variable	starts	out	holding	the	number		99.99	,	and	then	holds	the		number	
result	of		amount	*	2	,	which	is		199.98	.

The	first		console.log(..)		command	has	to	implicitly	coerce	that		number		value	to	a		string	
to	print	it	out.

Then	the	statement		amount	=	"$"	+	String(amount)		explicitly	coerces	the		199.98		value	to	a
	string		and	adds	a		"$"		character	to	the	beginning.	At	this	point,		amount		now	holds	the
	string		value		"$199.98"	,	so	the	second		console.log(..)		statement	doesn't	need	to	do
any	coercion	to	print	it	out.

JavaScript	developers	will	note	the	flexibility	of	using	the		amount		variable	for	each	of	the
	99.99	,		199.98	,	and	the		"$199.98"		values.	Static-typing	enthusiasts	would	prefer	a
separate	variable	like		amountStr		to	hold	the	final		"$199.98"		representation	of	the	value,
because	it's	a	different	type.

Either	way,	you'll	note	that		amount		holds	a	running	value	that	changes	over	the	course	of
the	program,	illustrating	the	primary	purpose	of	variables:	managing	program	state.

In	other	words,	state	is	tracking	the	changes	to	values	as	your	program	runs.

Another	common	usage	of	variables	is	for	centralizing	value	setting.	This	is	more	typically
called	constants,	when	you	declare	a	variable	with	a	value	and	intend	for	that	value	to	not
change	throughout	the	program.

You	declare	these	constants,	often	at	the	top	of	a	program,	so	that	it's	convenient	for	you	to
have	one	place	to	go	to	alter	a	value	if	you	need	to.	By	convention,	JavaScript	variables	as
constants	are	usually	capitalized,	with	underscores		_		between	multiple	words.

Here's	a	silly	example:
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var	TAX_RATE	=	0.08;				//	8%	sales	tax

var	amount	=	99.99;

amount	=	amount	*	2;

amount	=	amount	+	(amount	*	TAX_RATE);

console.log(	amount	);																//	215.9784

console.log(	amount.toFixed(	2	)	);				//	"215.98"

Note:	Similar	to	how		console.log(..)		is	a	function		log(..)		accessed	as	an	object
property	on	the		console		value,		toFixed(..)		here	is	a	function	that	can	be	accessed	on
	number		values.	JavaScript		number	s	aren't	automatically	formatted	for	dollars	--	the	engine
doesn't	know	what	your	intent	is	and	there's	no	type	for	currency.		toFixed(..)		lets	us
specify	how	many	decimal	places	we'd	like	the		number		rounded	to,	and	it	produces	the
	string		as	necessary.

The		TAX_RATE		variable	is	only	constant	by	convention	--	there's	nothing	special	in	this
program	that	prevents	it	from	being	changed.	But	if	the	city	raises	the	sales	tax	rate	to	9%,
we	can	still	easily	update	our	program	by	setting	the		TAX_RATE		assigned	value	to		0.09		in
one	place,	instead	of	finding	many	occurrences	of	the	value		0.08		strewn	throughout	the
program	and	updating	all	of	them.

The	newest	version	of	JavaScript	at	the	time	of	this	writing	(commonly	called	"ES6")
includes	a	new	way	to	declare	constants,	by	using		const		instead	of		var	:

//	as	of	ES6:

const	TAX_RATE	=	0.08;

var	amount	=	99.99;

//	..

Constants	are	useful	just	like	variables	with	unchanged	values,	except	that	constants	also
prevent	accidentally	changing	value	somewhere	else	after	the	initial	setting.	If	you	tried	to
assign	any	different	value	to		TAX_RATE		after	that	first	declaration,	your	program	would	reject
the	change	(and	in	strict	mode,	fail	with	an	error	--	see	"Strict	Mode"	in	Chapter	2).

By	the	way,	that	kind	of	"protection"	against	mistakes	is	similar	to	the	static-typing	type
enforcement,	so	you	can	see	why	static	types	in	other	languages	can	be	attractive!

Note:	For	more	information	about	how	different	values	in	variables	can	be	used	in	your
programs,	see	the	Types	&	Grammar	title	of	this	series.
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Blocks
The	phone	store	employee	must	go	through	a	series	of	steps	to	complete	the	checkout	as
you	buy	your	new	phone.

Similarly,	in	code	we	often	need	to	group	a	series	of	statements	together,	which	we	often	call
a	block.	In	JavaScript,	a	block	is	defined	by	wrapping	one	or	more	statements	inside	a	curly-
brace	pair		{	..	}	.	Consider:

var	amount	=	99.99;

//	a	general	block

{

				amount	=	amount	*	2;

				console.log(	amount	);				//	199.98

}

This	kind	of	standalone		{	..	}		general	block	is	valid,	but	isn't	as	commonly	seen	in	JS
programs.	Typically,	blocks	are	attached	to	some	other	control	statement,	such	as	an		if	
statement	(see	"Conditionals")	or	a	loop	(see	"Loops").	For	example:

var	amount	=	99.99;

//	is	amount	big	enough?

if	(amount	>	10)	{												//	<--	block	attached	to	`if`

				amount	=	amount	*	2;

				console.log(	amount	);				//	199.98

}

We'll	explain		if		statements	in	the	next	section,	but	as	you	can	see,	the		{	..	}		block	with
its	two	statements	is	attached	to		if	(amount	>	10)	;	the	statements	inside	the	block	will	only
be	processed	if	the	conditional	passes.

Note:	Unlike	most	other	statements	like		console.log(amount);	,	a	block	statement	does	not
need	a	semicolon	(	;	)	to	conclude	it.

Conditionals
"Do	you	want	to	add	on	the	extra	screen	protectors	to	your	purchase,	for	$9.99?"	The	helpful
phone	store	employee	has	asked	you	to	make	a	decision.	And	you	may	need	to	first	consult
the	current	state	of	your	wallet	or	bank	account	to	answer	that	question.	But	obviously,	this	is
just	a	simple	"yes	or	no"	question.
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There	are	quite	a	few	ways	we	can	express	conditionals	(aka	decisions)	in	our	programs.

The	most	common	one	is	the		if		statement.	Essentially,	you're	saying,	"If	this	condition	is
true,	do	the	following...".	For	example:

var	bank_balance	=	302.13;

var	amount	=	99.99;

if	(amount	<	bank_balance)	{

				console.log(	"I	want	to	buy	this	phone!"	);

}

The		if		statement	requires	an	expression	in	between	the	parentheses		(	)		that	can	be
treated	as	either		true		or		false	.	In	this	program,	we	provided	the	expression		amount	<
bank_balance	,	which	indeed	will	either	evaluate	to		true		or		false		depending	on	the
amount	in	the		bank_balance		variable.

You	can	even	provide	an	alternative	if	the	condition	isn't	true,	called	an		else		clause.
Consider:

const	ACCESSORY_PRICE	=	9.99;

var	bank_balance	=	302.13;

var	amount	=	99.99;

amount	=	amount	*	2;

//	can	we	afford	the	extra	purchase?

if	(	amount	<	bank_balance	)	{

				console.log(	"I'll	take	the	accessory!"	);

				amount	=	amount	+	ACCESSORY_PRICE;

}

//	otherwise:

else	{

				console.log(	"No,	thanks."	);

}

Here,	if		amount	<	bank_balance		is		true	,	we'll	print	out		"I'll	take	the	accessory!"		and	add
the		9.99		to	our		amount		variable.	Otherwise,	the		else		clause	says	we'll	just	politely
respond	with		"No,	thanks."		and	leave		amount		unchanged.

As	we	discussed	in	"Values	&	Types"	earlier,	values	that	aren't	already	of	an	expected	type
are	often	coerced	to	that	type.	The		if		statement	expects	a		boolean	,	but	if	you	pass	it
something	that's	not	already		boolean	,	coercion	will	occur.
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JavaScript	defines	a	list	of	specific	values	that	are	considered	"falsy"	because	when	coerced
to	a		boolean	,	they	become		false		--	these	include	values	like		0		and		""	.	Any	other	value
not	on	the	"falsy"	list	is	automatically	"truthy"	--	when	coerced	to	a		boolean		they	become
	true	.	Truthy	values	include	things	like		99.99		and		"free"	.	See	"Truthy	&	Falsy"	in
Chapter	2	for	more	information.

Conditionals	exist	in	other	forms	besides	the		if	.	For	example,	the		switch		statement	can
be	used	as	a	shorthand	for	a	series	of		if..else		statements	(see	Chapter	2).	Loops	(see
"Loops")	use	a	conditional	to	determine	if	the	loop	should	keep	going	or	stop.

Note:	For	deeper	information	about	the	coercions	that	can	occur	implicitly	in	the	test
expressions	of	conditionals,	see	Chapter	4	of	the	Types	&	Grammar	title	of	this	series.

Loops
During	busy	times,	there's	a	waiting	list	for	customers	who	need	to	speak	to	the	phone	store
employee.	While	there's	still	people	on	that	list,	she	just	needs	to	keep	serving	the	next
customer.

Repeating	a	set	of	actions	until	a	certain	condition	fails	--	in	other	words,	repeating	only
while	the	condition	holds	--	is	the	job	of	programming	loops;	loops	can	take	different	forms,
but	they	all	satisfy	this	basic	behavior.

A	loop	includes	the	test	condition	as	well	as	a	block	(typically	as		{	..	}	).	Each	time	the
loop	block	executes,	that's	called	an	iteration.

For	example,	the		while		loop	and	the		do..while		loop	forms	illustrate	the	concept	of
repeating	a	block	of	statements	until	a	condition	no	longer	evaluates	to		true	:
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while	(numOfCustomers	>	0)	{

				console.log(	"How	may	I	help	you?"	);

				//	help	the	customer...

				numOfCustomers	=	numOfCustomers	-	1;

}

//	versus:

do	{

				console.log(	"How	may	I	help	you?"	);

				//	help	the	customer...

				numOfCustomers	=	numOfCustomers	-	1;

}	while	(numOfCustomers	>	0);

The	only	practical	difference	between	these	loops	is	whether	the	conditional	is	tested	before
the	first	iteration	(	while	)	or	after	the	first	iteration	(	do..while	).

In	either	form,	if	the	conditional	tests	as		false	,	the	next	iteration	will	not	run.	That	means	if
the	condition	is	initially		false	,	a		while		loop	will	never	run,	but	a		do..while		loop	will	run
just	the	first	time.

Sometimes	you	are	looping	for	the	intended	purpose	of	counting	a	certain	set	of	numbers,
like	from		0		to		9		(ten	numbers).	You	can	do	that	by	setting	a	loop	iteration	variable	like		i	
at	value		0		and	incrementing	it	by		1		each	iteration.

Warning:	For	a	variety	of	historical	reasons,	programming	languages	almost	always	count
things	in	a	zero-based	fashion,	meaning	starting	with		0		instead	of		1	.	If	you're	not	familiar
with	that	mode	of	thinking,	it	can	be	quite	confusing	at	first.	Take	some	time	to	practice
counting	starting	with		0		to	become	more	comfortable	with	it!

The	conditional	is	tested	on	each	iteration,	much	as	if	there	is	an	implied		if		statement
inside	the	loop.

We	can	use	JavaScript's		break		statement	to	stop	a	loop.	Also,	we	can	observe	that	it's
awfully	easy	to	create	a	loop	that	would	otherwise	run	forever	without	a		break	ing
mechanism.

Let's	illustrate:
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var	i	=	0;

//	a	`while..true`	loop	would	run	forever,	right?

while	(true)	{

				//	stop	the	loop?

				if	((i	<=	9)	===	false)	{

								break;

				}

				console.log(	i	);

				i	=	i	+	1;

}

//	0	1	2	3	4	5	6	7	8	9

Warning:	This	is	not	necessarily	a	practical	form	you'd	want	to	use	for	your	loops.	It's
presented	here	for	illustration	purposes	only.

While	a		while		(or		do..while	)	can	accomplish	the	task	manually,	there's	another	syntactic
form	called	a		for		loop	for	just	that	purpose:

for	(var	i	=	0;	i	<=	9;	i	=	i	+	1)	{

				console.log(	i	);

}

//	0	1	2	3	4	5	6	7	8	9

As	you	can	see,	in	both	cases	the	conditional		i	<=	9		is		true		for	the	first	10	iterations	(	i	
of	values		0		through		9	)	of	either	loop	form,	but	becomes		false		once		i		is	value		10	.

The		for		loop	has	three	clauses:	the	initialization	clause	(	var	i=0	),	the	conditional	test
clause	(	i	<=	9	),	and	the	update	clause	(	i	=	i	+	1	).	So	if	you're	going	to	do	counting	with
your	loop	iterations,		for		is	a	more	compact	and	often	easier	form	to	understand	and	write.

There	are	other	specialized	loop	forms	that	are	intended	to	iterate	over	specific	values,	such
as	the	properties	of	an	object	(see	Chapter	2)	where	the	implied	conditional	test	is	just
whether	all	the	properties	have	been	processed.	The	"loop	until	a	condition	fails"	concept
holds	no	matter	what	the	form	of	the	loop.

Functions
The	phone	store	employee	probably	doesn't	carry	around	a	calculator	to	figure	out	the	taxes
and	final	purchase	amount.	That's	a	task	she	needs	to	define	once	and	reuse	over	and	over
again.	Odds	are,	the	company	has	a	checkout	register	(computer,	tablet,	etc.)	with	those
"functions"	built	in.
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Similarly,	your	program	will	almost	certainly	want	to	break	up	the	code's	tasks	into	reusable
pieces,	instead	of	repeatedly	repeating	yourself	repetitiously	(pun	intended!).	The	way	to	do
this	is	to	define	a		function	.

A	function	is	generally	a	named	section	of	code	that	can	be	"called"	by	name,	and	the	code
inside	it	will	be	run	each	time.	Consider:

function	printAmount()	{

				console.log(	amount.toFixed(	2	)	);

}

var	amount	=	99.99;

printAmount();	//	"99.99"

amount	=	amount	*	2;

printAmount();	//	"199.98"

Functions	can	optionally	take	arguments	(aka	parameters)	--	values	you	pass	in.	And	they
can	also	optionally	return	a	value	back.

function	printAmount(amt)	{

				console.log(	amt.toFixed(	2	)	);

}

function	formatAmount()	{

				return	"$"	+	amount.toFixed(	2	);

}

var	amount	=	99.99;

printAmount(	amount	*	2	);								//	"199.98"

amount	=	formatAmount();

console.log(	amount	);												//	"$99.99"

The	function		printAmount(..)		takes	a	parameter	that	we	call		amt	.	The	function
	formatAmount()		returns	a	value.	Of	course,	you	can	also	combine	those	two	techniques	in
the	same	function.

Functions	are	often	used	for	code	that	you	plan	to	call	multiple	times,	but	they	can	also	be
useful	just	to	organize	related	bits	of	code	into	named	collections,	even	if	you	only	plan	to
call	them	once.

Consider:
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const	TAX_RATE	=	0.08;

function	calculateFinalPurchaseAmount(amt)	{

				//	calculate	the	new	amount	with	the	tax

				amt	=	amt	+	(amt	*	TAX_RATE);

				//	return	the	new	amount

				return	amt;

}

var	amount	=	99.99;

amount	=	calculateFinalPurchaseAmount(	amount	);

console.log(	amount.toFixed(	2	)	);								//	"107.99"

Although		calculateFinalPurchaseAmount(..)		is	only	called	once,	organizing	its	behavior	into
a	separate	named	function	makes	the	code	that	uses	its	logic	(the		amount	=
calculateFinal...		statement)	cleaner.	If	the	function	had	more	statements	in	it,	the	benefits
would	be	even	more	pronounced.

Scope

If	you	ask	the	phone	store	employee	for	a	phone	model	that	her	store	doesn't	carry,	she	will
not	be	able	to	sell	you	the	phone	you	want.	She	only	has	access	to	the	phones	in	her	store's
inventory.	You'll	have	to	try	another	store	to	see	if	you	can	find	the	phone	you're	looking	for.

Programming	has	a	term	for	this	concept:	scope	(technically	called	lexical	scope).	In
JavaScript,	each	function	gets	its	own	scope.	Scope	is	basically	a	collection	of	variables	as
well	as	the	rules	for	how	those	variables	are	accessed	by	name.	Only	code	inside	that
function	can	access	that	function's	scoped	variables.

A	variable	name	has	to	be	unique	within	the	same	scope	--	there	can't	be	two	different		a	
variables	sitting	right	next	to	each	other.	But	the	same	variable	name		a		could	appear	in
different	scopes.
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function	one()	{

				//	this	`a`	only	belongs	to	the	`one()`	function

				var	a	=	1;

				console.log(	a	);

}

function	two()	{

				//	this	`a`	only	belongs	to	the	`two()`	function

				var	a	=	2;

				console.log(	a	);

}

one();								//	1

two();								//	2

Also,	a	scope	can	be	nested	inside	another	scope,	just	like	if	a	clown	at	a	birthday	party
blows	up	one	balloon	inside	another	balloon.	If	one	scope	is	nested	inside	another,	code
inside	the	innermost	scope	can	access	variables	from	either	scope.

Consider:

function	outer()	{

				var	a	=	1;

				function	inner()	{

								var	b	=	2;

								//	we	can	access	both	`a`	and	`b`	here

								console.log(	a	+	b	);				//	3

				}

				inner();

				//	we	can	only	access	`a`	here

				console.log(	a	);												//	1

}

outer();

Lexical	scope	rules	say	that	code	in	one	scope	can	access	variables	of	either	that	scope	or
any	scope	outside	of	it.

So,	code	inside	the		inner()		function	has	access	to	both	variables		a		and		b	,	but	code	in
	outer()		has	access	only	to		a		--	it	cannot	access		b		because	that	variable	is	only	inside
	inner()	.

Recall	this	code	snippet	from	earlier:
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const	TAX_RATE	=	0.08;

function	calculateFinalPurchaseAmount(amt)	{

				//	calculate	the	new	amount	with	the	tax

				amt	=	amt	+	(amt	*	TAX_RATE);

				//	return	the	new	amount

				return	amt;

}

The		TAX_RATE		constant	(variable)	is	accessible	from	inside	the
	calculateFinalPurchaseAmount(..)		function,	even	though	we	didn't	pass	it	in,	because	of
lexical	scope.

Note:	For	more	information	about	lexical	scope,	see	the	first	three	chapters	of	the	Scope	&
Closures	title	of	this	series.

Practice
There	is	absolutely	no	substitute	for	practice	in	learning	programming.	No	amount	of
articulate	writing	on	my	part	is	alone	going	to	make	you	a	programmer.

With	that	in	mind,	let's	try	practicing	some	of	the	concepts	we	learned	here	in	this	chapter.	I'll
give	the	"requirements,"	and	you	try	it	first.	Then	consult	the	code	listing	below	to	see	how	I
approached	it.

Write	a	program	to	calculate	the	total	price	of	your	phone	purchase.	You	will	keep
purchasing	phones	(hint:	loop!)	until	you	run	out	of	money	in	your	bank	account.	You'll
also	buy	accessories	for	each	phone	as	long	as	your	purchase	amount	is	below	your
mental	spending	threshold.
After	you've	calculated	your	purchase	amount,	add	in	the	tax,	then	print	out	the
calculated	purchase	amount,	properly	formatted.
Finally,	check	the	amount	against	your	bank	account	balance	to	see	if	you	can	afford	it
or	not.
You	should	set	up	some	constants	for	the	"tax	rate,"	"phone	price,"	"accessory	price,"
and	"spending	threshold,"	as	well	as	a	variable	for	your	"bank	account	balance.""
You	should	define	functions	for	calculating	the	tax	and	for	formatting	the	price	with	a	"$"
and	rounding	to	two	decimal	places.
Bonus	Challenge:	Try	to	incorporate	input	into	this	program,	perhaps	with	the
	prompt(..)		covered	in	"Input"	earlier.	You	may	prompt	the	user	for	their	bank	account
balance,	for	example.	Have	fun	and	be	creative!

OK,	go	ahead.	Try	it.	Don't	peek	at	my	code	listing	until	you've	given	it	a	shot	yourself!
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Note:	Because	this	is	a	JavaScript	book,	I'm	obviously	going	to	solve	the	practice	exercise
in	JavaScript.	But	you	can	do	it	in	another	language	for	now	if	you	feel	more	comfortable.

Here's	my	JavaScript	solution	for	this	exercise:

const	SPENDING_THRESHOLD	=	200;

const	TAX_RATE	=	0.08;

const	PHONE_PRICE	=	99.99;

const	ACCESSORY_PRICE	=	9.99;

var	bank_balance	=	303.91;

var	amount	=	0;

function	calculateTax(amount)	{

				return	amount	*	TAX_RATE;

}

function	formatAmount(amount)	{

				return	"$"	+	amount.toFixed(	2	);

}

//	keep	buying	phones	while	you	still	have	money

while	(amount	<	bank_balance)	{

				//	buy	a	new	phone!

				amount	=	amount	+	PHONE_PRICE;

				//	can	we	afford	the	accessory?

				if	(amount	<	SPENDING_THRESHOLD)	{

								amount	=	amount	+	ACCESSORY_PRICE;

				}

}

//	don't	forget	to	pay	the	government,	too

amount	=	amount	+	calculateTax(	amount	);

console.log(

				"Your	purchase:	"	+	formatAmount(	amount	)

);

//	Your	purchase:	$334.76

//	can	you	actually	afford	this	purchase?

if	(amount	>	bank_balance)	{

				console.log(

								"You	can't	afford	this	purchase.	:("

				);

}

//	You	can't	afford	this	purchase.	:(

Note:	The	simplest	way	to	run	this	JavaScript	program	is	to	type	it	into	the	developer
console	of	your	nearest	browser.
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How	did	you	do?	It	wouldn't	hurt	to	try	it	again	now	that	you've	seen	my	code.	And	play
around	with	changing	some	of	the	constants	to	see	how	the	program	runs	with	different
values.

Review
Learning	programming	doesn't	have	to	be	a	complex	and	overwhelming	process.	There	are
just	a	few	basic	concepts	you	need	to	wrap	your	head	around.

These	act	like	building	blocks.	To	build	a	tall	tower,	you	start	first	by	putting	block	on	top	of
block	on	top	of	block.	The	same	goes	with	programming.	Here	are	some	of	the	essential
programming	building	blocks:

You	need	operators	to	perform	actions	on	values.
You	need	values	and	types	to	perform	different	kinds	of	actions	like	math	on		number	s
or	output	with		string	s.
You	need	variables	to	store	data	(aka	state)	during	your	program's	execution.
You	need	conditionals	like		if		statements	to	make	decisions.
You	need	loops	to	repeat	tasks	until	a	condition	stops	being	true.
You	need	functions	to	organize	your	code	into	logical	and	reusable	chunks.

Code	comments	are	one	effective	way	to	write	more	readable	code,	which	makes	your
program	easier	to	understand,	maintain,	and	fix	later	if	there	are	problems.

Finally,	don't	neglect	the	power	of	practice.	The	best	way	to	learn	how	to	write	code	is	to
write	code.

I'm	excited	you're	well	on	your	way	to	learning	how	to	code,	now!	Keep	it	up.	Don't	forget	to
check	out	other	beginner	programming	resources	(books,	blogs,	online	training,	etc.).	This
chapter	and	this	book	are	a	great	start,	but	they're	just	a	brief	introduction.

The	next	chapter	will	review	many	of	the	concepts	from	this	chapter,	but	from	a	more
JavaScript-specific	perspective,	which	will	highlight	most	of	the	major	topics	that	are
addressed	in	deeper	detail	throughout	the	rest	of	the	series.
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Chapter	2:	Into	JavaScript
In	the	previous	chapter,	I	introduced	the	basic	building	blocks	of	programming,	such	as
variables,	loops,	conditionals,	and	functions.	Of	course,	all	the	code	shown	has	been	in
JavaScript.	But	in	this	chapter,	we	want	to	focus	specifically	on	things	you	need	to	know
about	JavaScript	to	get	up	and	going	as	a	JS	developer.

We	will	introduce	quite	a	few	concepts	in	this	chapter	that	will	not	be	fully	explored	until
subsequent	YDKJS	books.	You	can	think	of	this	chapter	as	an	overview	of	the	topics
covered	in	detail	throughout	the	rest	of	this	series.

Especially	if	you're	new	to	JavaScript,	you	should	expect	to	spend	quite	a	bit	of	time
reviewing	the	concepts	and	code	examples	here	multiple	times.	Any	good	foundation	is	laid
brick	by	brick,	so	don't	expect	that	you'll	immediately	understand	it	all	the	first	pass	through.

Your	journey	to	deeply	learn	JavaScript	starts	here.

Note:	As	I	said	in	Chapter	1,	you	should	definitely	try	all	this	code	yourself	as	you	read	and
work	through	this	chapter.	Be	aware	that	some	of	the	code	here	assumes	capabilities
introduced	in	the	newest	version	of	JavaScript	at	the	time	of	this	writing	(commonly	referred
to	as	"ES6"	for	the	6th	edition	of	ECMAScript	--	the	official	name	of	the	JS	specification).	If
you	happen	to	be	using	an	older,	pre-ES6	browser,	the	code	may	not	work.	A	recent	update
of	a	modern	browser	(like	Chrome,	Firefox,	or	IE)	should	be	used.

Values	&	Types
As	we	asserted	in	Chapter	1,	JavaScript	has	typed	values,	not	typed	variables.	The	following
built-in	types	are	available:

	string	

	number	

	boolean	

	null		and		undefined	
	object	

	symbol		(new	to	ES6)

JavaScript	provides	a		typeof		operator	that	can	examine	a	value	and	tell	you	what	type	it	is:
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var	a;

typeof	a;																//	"undefined"

a	=	"hello	world";

typeof	a;																//	"string"

a	=	42;

typeof	a;																//	"number"

a	=	true;

typeof	a;																//	"boolean"

a	=	null;

typeof	a;																//	"object"	--	weird,	bug

a	=	undefined;

typeof	a;																//	"undefined"

a	=	{	b:	"c"	};

typeof	a;																//	"object"

The	return	value	from	the		typeof		operator	is	always	one	of	six	(seven	as	of	ES6!	-	the
"symbol"	type)	string	values.	That	is,		typeof	"abc"		returns		"string"	,	not		string	.

Notice	how	in	this	snippet	the		a		variable	holds	every	different	type	of	value,	and	that
despite	appearances,		typeof	a		is	not	asking	for	the	"type	of		a	",	but	rather	for	the	"type	of
the	value	currently	in		a	."	Only	values	have	types	in	JavaScript;	variables	are	just	simple
containers	for	those	values.

	typeof	null		is	an	interesting	case,	because	it	errantly	returns		"object"	,	when	you'd
expect	it	to	return		"null"	.

Warning:	This	is	a	long-standing	bug	in	JS,	but	one	that	is	likely	never	going	to	be	fixed.	Too
much	code	on	the	Web	relies	on	the	bug	and	thus	fixing	it	would	cause	a	lot	more	bugs!

Also,	note		a	=	undefined	.	We're	explicitly	setting		a		to	the		undefined		value,	but	that	is
behaviorally	no	different	from	a	variable	that	has	no	value	set	yet,	like	with	the		var	a;		line
at	the	top	of	the	snippet.	A	variable	can	get	to	this	"undefined"	value	state	in	several	different
ways,	including	functions	that	return	no	values	and	usage	of	the		void		operator.

Objects

The		object		type	refers	to	a	compound	value	where	you	can	set	properties	(named
locations)	that	each	hold	their	own	values	of	any	type.	This	is	perhaps	one	of	the	most	useful
value	types	in	all	of	JavaScript.
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var	obj	=	{

				a:	"hello	world",

				b:	42,

				c:	true

};

obj.a;								//	"hello	world"

obj.b;								//	42

obj.c;								//	true

obj["a"];				//	"hello	world"

obj["b"];				//	42

obj["c"];				//	true

It	may	be	helpful	to	think	of	this		obj		value	visually:

Properties	can	either	be	accessed	with	dot	notation	(i.e.,		obj.a	)	or	bracket	notation	(i.e.,
	obj["a"]	).	Dot	notation	is	shorter	and	generally	easier	to	read,	and	is	thus	preferred	when
possible.

Bracket	notation	is	useful	if	you	have	a	property	name	that	has	special	characters	in	it,	like
	obj["hello	world!"]		--	such	properties	are	often	referred	to	as	keys	when	accessed	via
bracket	notation.	The		[	]		notation	requires	either	a	variable	(explained	next)	or	a		string	
literal	(which	needs	to	be	wrapped	in		"	..	"		or		'	..	'	).

Of	course,	bracket	notation	is	also	useful	if	you	want	to	access	a	property/key	but	the	name
is	stored	in	another	variable,	such	as:

var	obj	=	{

				a:	"hello	world",

				b:	42

};

var	b	=	"a";

obj[b];												//	"hello	world"

obj["b"];								//	42

Note:	For	more	information	on	JavaScript		object	s,	see	the	this	&	Object	Prototypes	title	of
this	series,	specifically	Chapter	3.
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There	are	a	couple	of	other	value	types	that	you	will	commonly	interact	with	in	JavaScript
programs:	array	and	function.	But	rather	than	being	proper	built-in	types,	these	should	be
thought	of	more	like	subtypes	--	specialized	versions	of	the		object		type.

Arrays

An	array	is	an		object		that	holds	values	(of	any	type)	not	particularly	in	named
properties/keys,	but	rather	in	numerically	indexed	positions.	For	example:

var	arr	=	[

				"hello	world",

				42,

				true

];

arr[0];												//	"hello	world"

arr[1];												//	42

arr[2];												//	true

arr.length;								//	3

typeof	arr;								//	"object"

Note:	Languages	that	start	counting	at	zero,	like	JS	does,	use		0		as	the	index	of	the	first
element	in	the	array.

It	may	be	helpful	to	think	of		arr		visually:

Because	arrays	are	special	objects	(as		typeof		implies),	they	can	also	have	properties,
including	the	automatically	updated		length		property.

You	theoretically	could	use	an	array	as	a	normal	object	with	your	own	named	properties,	or
you	could	use	an		object		but	only	give	it	numeric	properties	(	0	,		1	,	etc.)	similar	to	an
array.	However,	this	would	generally	be	considered	improper	usage	of	the	respective	types.

The	best	and	most	natural	approach	is	to	use	arrays	for	numerically	positioned	values	and
use		object	s	for	named	properties.

Functions

The	other		object		subtype	you'll	use	all	over	your	JS	programs	is	a	function:
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function	foo()	{

				return	42;

}

foo.bar	=	"hello	world";

typeof	foo;												//	"function"

typeof	foo();								//	"number"

typeof	foo.bar;								//	"string"

Again,	functions	are	a	subtype	of		objects		--		typeof		returns		"function"	,	which	implies
that	a		function		is	a	main	type	--	and	can	thus	have	properties,	but	you	typically	will	only
use	function	object	properties	(like		foo.bar	)	in	limited	cases.

Note:	For	more	information	on	JS	values	and	their	types,	see	the	first	two	chapters	of	the
Types	&	Grammar	title	of	this	series.

Built-In	Type	Methods

The	built-in	types	and	subtypes	we've	just	discussed	have	behaviors	exposed	as	properties
and	methods	that	are	quite	powerful	and	useful.

For	example:

var	a	=	"hello	world";

var	b	=	3.14159;

a.length;																//	11

a.toUpperCase();								//	"HELLO	WORLD"

b.toFixed(4);												//	"3.1416"

The	"how"	behind	being	able	to	call		a.toUpperCase()		is	more	complicated	than	just	that
method	existing	on	the	value.

Briefly,	there	is	a		String		(capital		S	)	object	wrapper	form,	typically	called	a	"native,"	that
pairs	with	the	primitive		string		type;	it's	this	object	wrapper	that	defines	the		toUpperCase()	
method	on	its	prototype.

When	you	use	a	primitive	value	like		"hello	world"		as	an		object		by	referencing	a	property
or	method	(e.g.,		a.toUpperCase()		in	the	previous	snippet),	JS	automatically	"boxes"	the
value	to	its	object	wrapper	counterpart	(hidden	under	the	covers).

A		string		value	can	be	wrapped	by	a		String		object,	a		number		can	be	wrapped	by	a
	Number		object,	and	a		boolean		can	be	wrapped	by	a		Boolean		object.	For	the	most	part,
you	don't	need	to	worry	about	or	directly	use	these	object	wrapper	forms	of	the	values	--
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prefer	the	primitive	value	forms	in	practically	all	cases	and	JavaScript	will	take	care	of	the
rest	for	you.

Note:	For	more	information	on	JS	natives	and	"boxing,"	see	Chapter	3	of	the	Types	&
Grammar	title	of	this	series.	To	better	understand	the	prototype	of	an	object,	see	Chapter	5
of	the	this	&	Object	Prototypes	title	of	this	series.

Comparing	Values

There	are	two	main	types	of	value	comparison	that	you	will	need	to	make	in	your	JS
programs:	equality	and	inequality.	The	result	of	any	comparison	is	a	strictly		boolean		value
(	true		or		false	),	regardless	of	what	value	types	are	compared.

Coercion

We	talked	briefly	about	coercion	in	Chapter	1,	but	let's	revisit	it	here.

Coercion	comes	in	two	forms	in	JavaScript:	explicit	and	implicit.	Explicit	coercion	is	simply
that	you	can	see	obviously	from	the	code	that	a	conversion	from	one	type	to	another	will
occur,	whereas	implicit	coercion	is	when	the	type	conversion	can	happen	as	more	of	a	non-
obvious	side	effect	of	some	other	operation.

You've	probably	heard	sentiments	like	"coercion	is	evil"	drawn	from	the	fact	that	there	are
clearly	places	where	coercion	can	produce	some	surprising	results.	Perhaps	nothing	evokes
frustration	from	developers	more	than	when	the	language	surprises	them.

Coercion	is	not	evil,	nor	does	it	have	to	be	surprising.	In	fact,	the	majority	of	cases	you	can
construct	with	type	coercion	are	quite	sensible	and	understandable,	and	can	even	be	used
to	improve	the	readability	of	your	code.	But	we	won't	go	much	further	into	that	debate	--
Chapter	4	of	the	Types	&	Grammar	title	of	this	series	covers	all	sides.

Here's	an	example	of	explicit	coercion:

var	a	=	"42";

var	b	=	Number(	a	);

a;																//	"42"

b;																//	42	--	the	number!

And	here's	an	example	of	implicit	coercion:
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var	a	=	"42";

var	b	=	a	*	1;				//	"42"	implicitly	coerced	to	42	here

a;																//	"42"

b;																//	42	--	the	number!

Truthy	&	Falsy

In	Chapter	1,	we	briefly	mentioned	the	"truthy"	and	"falsy"	nature	of	values:	when	a
non-	boolean		value	is	coerced	to	a		boolean	,	does	it	become		true		or		false	,
respectively?

The	specific	list	of	"falsy"	values	in	JavaScript	is	as	follows:

	""		(empty	string)
	0	,		-0	,		NaN		(invalid		number	)
	null	,		undefined	
	false	

Any	value	that's	not	on	this	"falsy"	list	is	"truthy."	Here	are	some	examples	of	those:

	"hello"	

	42	

	true	

	[	]	,		[	1,	"2",	3	]		(arrays)
	{	}	,		{	a:	42	}		(objects)
	function	foo()	{	..	}		(functions)

It's	important	to	remember	that	a	non-	boolean		value	only	follows	this	"truthy"/"falsy"
coercion	if	it's	actually	coerced	to	a		boolean	.	It's	not	all	that	difficult	to	confuse	yourself	with
a	situation	that	seems	like	it's	coercing	a	value	to	a		boolean		when	it's	not.

Equality

There	are	four	equality	operators:		==	,		===	,		!=	,	and		!==	.	The		!		forms	are	of	course
the	symmetric	"not	equal"	versions	of	their	counterparts;	non-equality	should	not	be
confused	with	inequality.

The	difference	between		==		and		===		is	usually	characterized	that		==		checks	for	value
equality	and		===		checks	for	both	value	and	type	equality.	However,	this	is	inaccurate.	The
proper	way	to	characterize	them	is	that		==		checks	for	value	equality	with	coercion	allowed,
and		===		checks	for	value	equality	without	allowing	coercion;		===		is	often	called	"strict
equality"	for	this	reason.
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Consider	the	implicit	coercion	that's	allowed	by	the		==		loose-equality	comparison	and	not
allowed	with	the		===		strict-equality:

var	a	=	"42";

var	b	=	42;

a	==	b;												//	true

a	===	b;								//	false

In	the		a	==	b		comparison,	JS	notices	that	the	types	do	not	match,	so	it	goes	through	an
ordered	series	of	steps	to	coerce	one	or	both	values	to	a	different	type	until	the	types	match,
where	then	a	simple	value	equality	can	be	checked.

If	you	think	about	it,	there's	two	possible	ways		a	==	b		could	give		true		via	coercion.	Either
the	comparison	could	end	up	as		42	==	42		or	it	could	be		"42"	==	"42"	.	So	which	is	it?

The	answer:		"42"		becomes		42	,	to	make	the	comparison		42	==	42	.	In	such	a	simple
example,	it	doesn't	really	seem	to	matter	which	way	that	process	goes,	as	the	end	result	is
the	same.	There	are	more	complex	cases	where	it	matters	not	just	what	the	end	result	of	the
comparison	is,	but	how	you	get	there.

The		a	===	b		produces		false	,	because	the	coercion	is	not	allowed,	so	the	simple	value
comparison	obviously	fails.	Many	developers	feel	that		===		is	more	predictable,	so	they
advocate	always	using	that	form	and	staying	away	from		==	.	I	think	this	view	is	very
shortsighted.	I	believe		==		is	a	powerful	tool	that	helps	your	program,	if	you	take	the	time	to
learn	how	it	works.

We're	not	going	to	cover	all	the	nitty-gritty	details	of	how	the	coercion	in		==		comparisons
works	here.	Much	of	it	is	pretty	sensible,	but	there	are	some	important	corner	cases	to	be
careful	of.	You	can	read	section	11.9.3	of	the	ES5	specification	(http://www.ecma-
international.org/ecma-262/5.1/)	to	see	the	exact	rules,	and	you'll	be	surprised	at	just	how
straightforward	this	mechanism	is,	compared	to	all	the	negative	hype	surrounding	it.

To	boil	down	a	whole	lot	of	details	to	a	few	simple	takeaways,	and	help	you	know	whether	to
use		==		or		===		in	various	situations,	here	are	my	simple	rules:

If	either	value	(aka	side)	in	a	comparison	could	be	the		true		or		false		value,	avoid
	==		and	use		===	.
If	either	value	in	a	comparison	could	be	of	these	specific	values	(	0	,		""	,	or		[]		--
empty	array),	avoid		==		and	use		===	.
In	all	other	cases,	you're	safe	to	use		==	.	Not	only	is	it	safe,	but	in	many	cases	it
simplifies	your	code	in	a	way	that	improves	readability.
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What	these	rules	boil	down	to	is	requiring	you	to	think	critically	about	your	code	and	about
what	kinds	of	values	can	come	through	variables	that	get	compared	for	equality.	If	you	can
be	certain	about	the	values,	and		==		is	safe,	use	it!	If	you	can't	be	certain	about	the	values,
use		===	.	It's	that	simple.

The		!=		non-equality	form	pairs	with		==	,	and	the		!==		form	pairs	with		===	.	All	the	rules
and	observations	we	just	discussed	hold	symmetrically	for	these	non-equality	comparisons.

You	should	take	special	note	of	the		==		and		===		comparison	rules	if	you're	comparing	two
non-primitive	values,	like		object	s	(including		function		and		array	).	Because	those	values
are	actually	held	by	reference,	both		==		and		===		comparisons	will	simply	check	whether
the	references	match,	not	anything	about	the	underlying	values.

For	example,		array	s	are	by	default	coerced	to		string	s	by	simply	joining	all	the	values
with	commas	(	,	)	in	between.	You	might	think	that	two		array	s	with	the	same	contents
would	be		==		equal,	but	they're	not:

var	a	=	[1,2,3];

var	b	=	[1,2,3];

var	c	=	"1,2,3";

a	==	c;								//	true

b	==	c;								//	true

a	==	b;								//	false

Note:	For	more	information	about	the		==		equality	comparison	rules,	see	the	ES5
specification	(section	11.9.3)	and	also	consult	Chapter	4	of	the	Types	&	Grammar	title	of	this
series;	see	Chapter	2	for	more	information	about	values	versus	references.

Inequality

The		<	,		>	,		<=	,	and		>=		operators	are	used	for	inequality,	referred	to	in	the	specification
as	"relational	comparison."	Typically	they	will	be	used	with	ordinally	comparable	values	like
	number	s.	It's	easy	to	understand	that		3	<	4	.

But	JavaScript		string		values	can	also	be	compared	for	inequality,	using	typical	alphabetic
rules	(	"bar"	<	"foo"	).

What	about	coercion?	Similar	rules	as		==		comparison	(though	not	exactly	identical!)	apply
to	the	inequality	operators.	Notably,	there	are	no	"strict	inequality"	operators	that	would
disallow	coercion	the	same	way		===		"strict	equality"	does.

Consider:
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var	a	=	41;

var	b	=	"42";

var	c	=	"43";

a	<	b;								//	true

b	<	c;								//	true

What	happens	here?	In	section	11.8.5	of	the	ES5	specification,	it	says	that	if	both	values	in
the		<		comparison	are		string	s,	as	it	is	with		b	<	c	,	the	comparison	is	made
lexicographically	(aka	alphabetically	like	a	dictionary).	But	if	one	or	both	is	not	a		string	,	as
it	is	with		a	<	b	,	then	both	values	are	coerced	to	be		number	s,	and	a	typical	numeric
comparison	occurs.

The	biggest	gotcha	you	may	run	into	here	with	comparisons	between	potentially	different
value	types	--	remember,	there	are	no	"strict	inequality"	forms	to	use	--	is	when	one	of	the
values	cannot	be	made	into	a	valid	number,	such	as:

var	a	=	42;

var	b	=	"foo";

a	<	b;								//	false

a	>	b;								//	false

a	==	b;								//	false

Wait,	how	can	all	three	of	those	comparisons	be		false	?	Because	the		b		value	is	being
coerced	to	the	"invalid	number	value"		NaN		in	the		<		and		>		comparisons,	and	the
specification	says	that		NaN		is	neither	greater-than	nor	less-than	any	other	value.

The		==		comparison	fails	for	a	different	reason.		a	==	b		could	fail	if	it's	interpreted	either	as
	42	==	NaN		or		"42"	==	"foo"		--	as	we	explained	earlier,	the	former	is	the	case.

Note:	For	more	information	about	the	inequality	comparison	rules,	see	section	11.8.5	of	the
ES5	specification	and	also	consult	Chapter	4	of	the	Types	&	Grammar	title	of	this	series.

Variables
In	JavaScript,	variable	names	(including	function	names)	must	be	valid	identifiers.	The	strict
and	complete	rules	for	valid	characters	in	identifiers	are	a	little	complex	when	you	consider
nontraditional	characters	such	as	Unicode.	If	you	only	consider	typical	ASCII	alphanumeric
characters,	though,	the	rules	are	simple.

An	identifier	must	start	with		a	-	z	,		A	-	Z	,		$	,	or		_	.	It	can	then	contain	any	of	those
characters	plus	the	numerals		0	-	9	.
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Generally,	the	same	rules	apply	to	a	property	name	as	to	a	variable	identifier.	However,
certain	words	cannot	be	used	as	variables,	but	are	OK	as	property	names.	These	words	are
called	"reserved	words,"	and	include	the	JS	keywords	(	for	,		in	,		if	,	etc.)	as	well	as
	null	,		true	,	and		false	.

Note:	For	more	information	about	reserved	words,	see	Appendix	A	of	the	Types	&	Grammar
title	of	this	series.

Function	Scopes

You	use	the		var		keyword	to	declare	a	variable	that	will	belong	to	the	current	function
scope,	or	the	global	scope	if	at	the	top	level	outside	of	any	function.

Hoisting

Wherever	a		var		appears	inside	a	scope,	that	declaration	is	taken	to	belong	to	the	entire
scope	and	accessible	everywhere	throughout.

Metaphorically,	this	behavior	is	called	hoisting,	when	a		var		declaration	is	conceptually
"moved"	to	the	top	of	its	enclosing	scope.	Technically,	this	process	is	more	accurately
explained	by	how	code	is	compiled,	but	we	can	skip	over	those	details	for	now.

Consider:

var	a	=	2;

foo();																				//	works	because	`foo()`

																								//	declaration	is	"hoisted"

function	foo()	{

				a	=	3;

				console.log(	a	);				//	3

				var	a;																//	declaration	is	"hoisted"

																								//	to	the	top	of	`foo()`

}

console.log(	a	);				//	2

Warning:	It's	not	common	or	a	good	idea	to	rely	on	variable	hoisting	to	use	a	variable	earlier
in	its	scope	than	its		var		declaration	appears;	it	can	be	quite	confusing.	It's	much	more
common	and	accepted	to	use	hoisted	function	declarations,	as	we	do	with	the		foo()		call
appearing	before	its	formal	declaration.
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Nested	Scopes

When	you	declare	a	variable,	it	is	available	anywhere	in	that	scope,	as	well	as	any
lower/inner	scopes.	For	example:

function	foo()	{

				var	a	=	1;

				function	bar()	{

								var	b	=	2;

								function	baz()	{

												var	c	=	3;

												console.log(	a,	b,	c	);				//	1	2	3

								}

								baz();

								console.log(	a,	b	);								//	1	2

				}

				bar();

				console.log(	a	);																//	1

}

foo();

Notice	that		c		is	not	available	inside	of		bar()	,	because	it's	declared	only	inside	the	inner
	baz()		scope,	and	that		b		is	not	available	to		foo()		for	the	same	reason.

If	you	try	to	access	a	variable's	value	in	a	scope	where	it's	not	available,	you'll	get	a
	ReferenceError		thrown.	If	you	try	to	set	a	variable	that	hasn't	been	declared,	you'll	either
end	up	creating	a	variable	in	the	top-level	global	scope	(bad!)	or	getting	an	error,	depending
on	"strict	mode"	(see	"Strict	Mode").	Let's	take	a	look:

function	foo()	{

				a	=	1;				//	`a`	not	formally	declared

}

foo();

a;												//	1	--	oops,	auto	global	variable	:(

This	is	a	very	bad	practice.	Don't	do	it!	Always	formally	declare	your	variables.

In	addition	to	creating	declarations	for	variables	at	the	function	level,	ES6	lets	you	declare
variables	to	belong	to	individual	blocks	(pairs	of		{	..	}	),	using	the		let		keyword.	Besides
some	nuanced	details,	the	scoping	rules	will	behave	roughly	the	same	as	we	just	saw	with
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functions:

function	foo()	{

				var	a	=	1;

				if	(a	>=	1)	{

								let	b	=	2;

								while	(b	<	5)	{

												let	c	=	b	*	2;

												b++;

												console.log(	a	+	c	);

								}

				}

}

foo();

//	5	7	9

Because	of	using		let		instead	of		var	,		b		will	belong	only	to	the		if		statement	and	thus
not	to	the	whole		foo()		function's	scope.	Similarly,		c		belongs	only	to	the		while		loop.
Block	scoping	is	very	useful	for	managing	your	variable	scopes	in	a	more	fine-grained
fashion,	which	can	make	your	code	much	easier	to	maintain	over	time.

Note:	For	more	information	about	scope,	see	the	Scope	&	Closures	title	of	this	series.	See
the	ES6	&	Beyond	title	of	this	series	for	more	information	about		let		block	scoping.

Conditionals
In	addition	to	the		if		statement	we	introduced	briefly	in	Chapter	1,	JavaScript	provides	a
few	other	conditionals	mechanisms	that	we	should	take	a	look	at.

Sometimes	you	may	find	yourself	writing	a	series	of		if..else..if		statements	like	this:
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if	(a	==	2)	{

				//	do	something

}

else	if	(a	==	10)	{

				//	do	another	thing

}

else	if	(a	==	42)	{

				//	do	yet	another	thing

}

else	{

				//	fallback	to	here

}

This	structure	works,	but	it's	a	little	verbose	because	you	need	to	specify	the		a		test	for
each	case.	Here's	another	option,	the		switch		statement:

switch	(a)	{

				case	2:

								//	do	something

								break;

				case	10:

								//	do	another	thing

								break;

				case	42:

								//	do	yet	another	thing

								break;

				default:

								//	fallback	to	here

}

The		break		is	important	if	you	want	only	the	statement(s)	in	one		case		to	run.	If	you	omit
	break		from	a		case	,	and	that		case		matches	or	runs,	execution	will	continue	with	the	next
	case	's	statements	regardless	of	that		case		matching.	This	so	called	"fall	through"	is
sometimes	useful/desired:

switch	(a)	{

				case	2:

				case	10:

								//	some	cool	stuff

								break;

				case	42:

								//	other	stuff

								break;

				default:

								//	fallback

}
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Here,	if		a		is	either		2		or		10	,	it	will	execute	the	"some	cool	stuff"	code	statements.

Another	form	of	conditional	in	JavaScript	is	the	"conditional	operator,"	often	called	the
"ternary	operator."	It's	like	a	more	concise	form	of	a	single		if..else		statement,	such	as:

var	a	=	42;

var	b	=	(a	>	41)	?	"hello"	:	"world";

//	similar	to:

//	if	(a	>	41)	{

//				b	=	"hello";

//	}

//	else	{

//				b	=	"world";

//	}

If	the	test	expression	(	a	>	41		here)	evaluates	as		true	,	the	first	clause	(	"hello"	)	results,
otherwise	the	second	clause	(	"world"	)	results,	and	whatever	the	result	is	then	gets
assigned	to		b	.

The	conditional	operator	doesn't	have	to	be	used	in	an	assignment,	but	that's	definitely	the
most	common	usage.

Note:	For	more	information	about	testing	conditions	and	other	patterns	for		switch		and		?
:	,	see	the	Types	&	Grammar	title	of	this	series.

Strict	Mode
ES5	added	a	"strict	mode"	to	the	language,	which	tightens	the	rules	for	certain	behaviors.
Generally,	these	restrictions	are	seen	as	keeping	the	code	to	a	safer	and	more	appropriate
set	of	guidelines.	Also,	adhering	to	strict	mode	makes	your	code	generally	more	optimizable
by	the	engine.	Strict	mode	is	a	big	win	for	code,	and	you	should	use	it	for	all	your	programs.

You	can	opt	in	to	strict	mode	for	an	individual	function,	or	an	entire	file,	depending	on	where
you	put	the	strict	mode	pragma:
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function	foo()	{

				"use	strict";

				//	this	code	is	strict	mode

				function	bar()	{

								//	this	code	is	strict	mode

				}

}

//	this	code	is	not	strict	mode

Compare	that	to:

"use	strict";

function	foo()	{

				//	this	code	is	strict	mode

				function	bar()	{

								//	this	code	is	strict	mode

				}

}

//	this	code	is	strict	mode

One	key	difference	(improvement!)	with	strict	mode	is	disallowing	the	implicit	auto-global
variable	declaration	from	omitting	the		var	:

function	foo()	{

				"use	strict";				//	turn	on	strict	mode

				a	=	1;												//	`var`	missing,	ReferenceError

}

foo();

If	you	turn	on	strict	mode	in	your	code,	and	you	get	errors,	or	code	starts	behaving	buggy,
your	temptation	might	be	to	avoid	strict	mode.	But	that	instinct	would	be	a	bad	idea	to
indulge.	If	strict	mode	causes	issues	in	your	program,	almost	certainly	it's	a	sign	that	you
have	things	in	your	program	you	should	fix.

Not	only	will	strict	mode	keep	your	code	to	a	safer	path,	and	not	only	will	it	make	your	code
more	optimizable,	but	it	also	represents	the	future	direction	of	the	language.	It'd	be	easier	on
you	to	get	used	to	strict	mode	now	than	to	keep	putting	it	off	--	it'll	only	get	harder	to	convert
later!
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Note:	For	more	information	about	strict	mode,	see	the	Chapter	5	of	the	Types	&	Grammar
title	of	this	series.

Functions	As	Values
So	far,	we've	discussed	functions	as	the	primary	mechanism	of	scope	in	JavaScript.	You
recall	typical		function		declaration	syntax	as	follows:

function	foo()	{

				//	..

}

Though	it	may	not	seem	obvious	from	that	syntax,		foo		is	basically	just	a	variable	in	the
outer	enclosing	scope	that's	given	a	reference	to	the		function		being	declared.	That	is,	the
	function		itself	is	a	value,	just	like		42		or		[1,2,3]		would	be.

This	may	sound	like	a	strange	concept	at	first,	so	take	a	moment	to	ponder	it.	Not	only	can
you	pass	a	value	(argument)	to	a	function,	but	a	function	itself	can	be	a	value	that's
assigned	to	variables,	or	passed	to	or	returned	from	other	functions.

As	such,	a	function	value	should	be	thought	of	as	an	expression,	much	like	any	other	value
or	expression.

Consider:

var	foo	=	function()	{

				//	..

};

var	x	=	function	bar(){

				//	..

};

The	first	function	expression	assigned	to	the		foo		variable	is	called	anonymous	because	it
has	no		name	.

The	second	function	expression	is	named	(	bar	),	even	as	a	reference	to	it	is	also	assigned
to	the		x		variable.	Named	function	expressions	are	generally	more	preferable,	though
anonymous	function	expressions	are	still	extremely	common.

For	more	information,	see	the	Scope	&	Closures	title	of	this	series.

Immediately	Invoked	Function	Expressions	(IIFEs)
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In	the	previous	snippet,	neither	of	the	function	expressions	are	executed	--	we	could	if	we
had	included		foo()		or		x()	,	for	instance.

There's	another	way	to	execute	a	function	expression,	which	is	typically	referred	to	as	an
immediately	invoked	function	expression	(IIFE):

(function	IIFE(){

				console.log(	"Hello!"	);

})();

//	"Hello!"

The	outer		(	..	)		that	surrounds	the		(function	IIFE(){	..	})		function	expression	is	just	a
nuance	of	JS	grammar	needed	to	prevent	it	from	being	treated	as	a	normal	function
declaration.

The	final		()		on	the	end	of	the	expression	--	the		})();		line	--	is	what	actually	executes	the
function	expression	referenced	immediately	before	it.

That	may	seem	strange,	but	it's	not	as	foreign	as	first	glance.	Consider	the	similarities
between		foo		and		IIFE		here:

function	foo()	{	..	}

//	`foo`	function	reference	expression,

//	then	`()`	executes	it

foo();

//	`IIFE`	function	expression,

//	then	`()`	executes	it

(function	IIFE(){	..	})();

As	you	can	see,	listing	the		(function	IIFE(){	..	})		before	its	executing		()		is	essentially
the	same	as	including		foo		before	its	executing		()	;	in	both	cases,	the	function	reference	is
executed	with		()		immediately	after	it.

Because	an	IIFE	is	just	a	function,	and	functions	create	variable	scope,	using	an	IIFE	in	this
fashion	is	often	used	to	declare	variables	that	won't	affect	the	surrounding	code	outside	the
IIFE:
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var	a	=	42;

(function	IIFE(){

				var	a	=	10;

				console.log(	a	);				//	10

})();

console.log(	a	);								//	42

IIFEs	can	also	have	return	values:

var	x	=	(function	IIFE(){

				return	42;

})();

x;				//	42

The		42		value	gets		return	ed	from	the		IIFE	-named	function	being	executed,	and	is	then
assigned	to		x	.

Closure

Closure	is	one	of	the	most	important,	and	often	least	understood,	concepts	in	JavaScript.	I
won't	cover	it	in	deep	detail	here,	and	instead	refer	you	to	the	Scope	&	Closures	title	of	this
series.	But	I	want	to	say	a	few	things	about	it	so	you	understand	the	general	concept.	It	will
be	one	of	the	most	important	techniques	in	your	JS	skillset.

You	can	think	of	closure	as	a	way	to	"remember"	and	continue	to	access	a	function's	scope
(its	variables)	even	once	the	function	has	finished	running.

Consider:

function	makeAdder(x)	{

				//	parameter	`x`	is	an	inner	variable

				//	inner	function	`add()`	uses	`x`,	so

				//	it	has	a	"closure"	over	it

				function	add(y)	{

								return	y	+	x;

				};

				return	add;

}
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The	reference	to	the	inner		add(..)		function	that	gets	returned	with	each	call	to	the	outer
	makeAdder(..)		is	able	to	remember	whatever		x		value	was	passed	in	to		makeAdder(..)	.
Now,	let's	use		makeAdder(..)	:

//	`plusOne`	gets	a	reference	to	the	inner	`add(..)`

//	function	with	closure	over	the	`x`	parameter	of

//	the	outer	`makeAdder(..)`

var	plusOne	=	makeAdder(	1	);

//	`plusTen`	gets	a	reference	to	the	inner	`add(..)`

//	function	with	closure	over	the	`x`	parameter	of

//	the	outer	`makeAdder(..)`

var	plusTen	=	makeAdder(	10	);

plusOne(	3	);								//	4		<--	1	+	3

plusOne(	41	);								//	42	<--	1	+	41

plusTen(	13	);								//	23	<--	10	+	13

More	on	how	this	code	works:

1.	 When	we	call		makeAdder(1)	,	we	get	back	a	reference	to	its	inner		add(..)		that
remembers		x		as		1	.	We	call	this	function	reference		plusOne(..)	.

2.	 When	we	call		makeAdder(10)	,	we	get	back	another	reference	to	its	inner		add(..)		that
remembers		x		as		10	.	We	call	this	function	reference		plusTen(..)	.

3.	 When	we	call		plusOne(3)	,	it	adds		3		(its	inner		y	)	to	the		1		(remembered	by		x	),
and	we	get		4		as	the	result.

4.	 When	we	call		plusTen(13)	,	it	adds		13		(its	inner		y	)	to	the		10		(remembered	by		x	),
and	we	get		23		as	the	result.

Don't	worry	if	this	seems	strange	and	confusing	at	first	--	it	can	be!	It'll	take	lots	of	practice	to
understand	it	fully.

But	trust	me,	once	you	do,	it's	one	of	the	most	powerful	and	useful	techniques	in	all	of
programming.	It's	definitely	worth	the	effort	to	let	your	brain	simmer	on	closures	for	a	bit.	In
the	next	section,	we'll	get	a	little	more	practice	with	closure.

Modules

The	most	common	usage	of	closure	in	JavaScript	is	the	module	pattern.	Modules	let	you
define	private	implementation	details	(variables,	functions)	that	are	hidden	from	the	outside
world,	as	well	as	a	public	API	that	is	accessible	from	the	outside.

Consider:
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function	User(){

				var	username,	password;

				function	doLogin(user,pw)	{

								username	=	user;

								password	=	pw;

								//	do	the	rest	of	the	login	work

				}

				var	publicAPI	=	{

								login:	doLogin

				};

				return	publicAPI;

}

//	create	a	`User`	module	instance

var	fred	=	User();

fred.login(	"fred",	"12Battery34!"	);

The		User()		function	serves	as	an	outer	scope	that	holds	the	variables		username		and
	password	,	as	well	as	the	inner		doLogin()		function;	these	are	all	private	inner	details	of	this
	User		module	that	cannot	be	accessed	from	the	outside	world.

Warning:	We	are	not	calling		new	User()		here,	on	purpose,	despite	the	fact	that	probably
seems	more	common	to	most	readers.		User()		is	just	a	function,	not	a	class	to	be
instantiated,	so	it's	just	called	normally.	Using		new		would	be	inappropriate	and	actually
waste	resources.

Executing		User()		creates	an	instance	of	the		User		module	--	a	whole	new	scope	is
created,	and	thus	a	whole	new	copy	of	each	of	these	inner	variables/functions.	We	assign
this	instance	to		fred	.	If	we	run		User()		again,	we'd	get	a	new	instance	entirely	separate
from		fred	.

The	inner		doLogin()		function	has	a	closure	over		username		and		password	,	meaning	it	will
retain	its	access	to	them	even	after	the		User()		function	finishes	running.

	publicAPI		is	an	object	with	one	property/method	on	it,		login	,	which	is	a	reference	to	the
inner		doLogin()		function.	When	we	return		publicAPI		from		User()	,	it	becomes	the
instance	we	call		fred	.

At	this	point,	the	outer		User()		function	has	finished	executing.	Normally,	you'd	think	the
inner	variables	like		username		and		password		have	gone	away.	But	here	they	have	not,
because	there's	a	closure	in	the		login()		function	keeping	them	alive.
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That's	why	we	can	call		fred.login(..)		--	the	same	as	calling	the	inner		doLogin(..)		--	and
it	can	still	access		username		and		password		inner	variables.

There's	a	good	chance	that	with	just	this	brief	glimpse	at	closure	and	the	module	pattern,
some	of	it	is	still	a	bit	confusing.	That's	OK!	It	takes	some	work	to	wrap	your	brain	around	it.

From	here,	go	read	the	Scope	&	Closures	title	of	this	series	for	a	much	more	in-depth
exploration.

	this		Identifier
Another	very	commonly	misunderstood	concept	in	JavaScript	is	the		this		identifier.	Again,
there's	a	couple	of	chapters	on	it	in	the	this	&	Object	Prototypes	title	of	this	series,	so	here
we'll	just	briefly	introduce	the	concept.

While	it	may	often	seem	that		this		is	related	to	"object-oriented	patterns,"	in	JS		this		is	a
different	mechanism.

If	a	function	has	a		this		reference	inside	it,	that		this		reference	usually	points	to	an
	object	.	But	which		object		it	points	to	depends	on	how	the	function	was	called.

It's	important	to	realize	that		this		does	not	refer	to	the	function	itself,	as	is	the	most
common	misconception.

Here's	a	quick	illustration:

function	foo()	{

				console.log(	this.bar	);

}

var	bar	=	"global";

var	obj1	=	{

				bar:	"obj1",

				foo:	foo

};

var	obj2	=	{

				bar:	"obj2"

};

//	--------

foo();																//	"global"

obj1.foo();												//	"obj1"

foo.call(	obj2	);								//	"obj2"

new	foo();												//	undefined
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There	are	four	rules	for	how		this		gets	set,	and	they're	shown	in	those	last	four	lines	of	that
snippet.

1.	 	foo()		ends	up	setting		this		to	the	global	object	in	non-strict	mode	--	in	strict	mode,
	this		would	be		undefined		and	you'd	get	an	error	in	accessing	the		bar		property	--	so
	"global"		is	the	value	found	for		this.bar	.

2.	 	obj1.foo()		sets		this		to	the		obj1		object.
3.	 	foo.call(obj2)		sets		this		to	the		obj2		object.
4.	 	new	foo()		sets		this		to	a	brand	new	empty	object.

Bottom	line:	to	understand	what		this		points	to,	you	have	to	examine	how	the	function	in
question	was	called.	It	will	be	one	of	those	four	ways	just	shown,	and	that	will	then	answer
what		this		is.

Note:	For	more	information	about		this	,	see	Chapters	1	and	2	of	the	this	&	Object
Prototypes	title	of	this	series.

Prototypes
The	prototype	mechanism	in	JavaScript	is	quite	complicated.	We	will	only	glance	at	it	here.
You	will	want	to	spend	plenty	of	time	reviewing	Chapters	4-6	of	the	this	&	Object	Prototypes
title	of	this	series	for	all	the	details.

When	you	reference	a	property	on	an	object,	if	that	property	doesn't	exist,	JavaScript	will
automatically	use	that	object's	internal	prototype	reference	to	find	another	object	to	look	for
the	property	on.	You	could	think	of	this	almost	as	a	fallback	if	the	property	is	missing.

The	internal	prototype	reference	linkage	from	one	object	to	its	fallback	happens	at	the	time
the	object	is	created.	The	simplest	way	to	illustrate	it	is	with	a	built-in	utility	called
	Object.create(..)	.

Consider:

var	foo	=	{

				a:	42

};

//	create	`bar`	and	link	it	to	`foo`

var	bar	=	Object.create(	foo	);

bar.b	=	"hello	world";

bar.b;								//	"hello	world"

bar.a;								//	42	<--	delegated	to	`foo`
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It	may	help	to	visualize	the		foo		and		bar		objects	and	their	relationship:

The		a		property	doesn't	actually	exist	on	the		bar		object,	but	because		bar		is	prototype-
linked	to		foo	,	JavaScript	automatically	falls	back	to	looking	for		a		on	the		foo		object,
where	it's	found.

This	linkage	may	seem	like	a	strange	feature	of	the	language.	The	most	common	way	this
feature	is	used	--	and	I	would	argue,	abused	--	is	to	try	to	emulate/fake	a	"class"	mechanism
with	"inheritance."

But	a	more	natural	way	of	applying	prototypes	is	a	pattern	called	"behavior	delegation,"
where	you	intentionally	design	your	linked	objects	to	be	able	to	delegate	from	one	to	the
other	for	parts	of	the	needed	behavior.

Note:	For	more	information	about	prototypes	and	behavior	delegation,	see	Chapters	4-6	of
the	this	&	Object	Prototypes	title	of	this	series.

Old	&	New
Some	of	the	JS	features	we've	already	covered,	and	certainly	many	of	the	features	covered
in	the	rest	of	this	series,	are	newer	additions	and	will	not	necessarily	be	available	in	older
browsers.	In	fact,	some	of	the	newest	features	in	the	specification	aren't	even	implemented
in	any	stable	browsers	yet.

So,	what	do	you	do	with	the	new	stuff?	Do	you	just	have	to	wait	around	for	years	or	decades
for	all	the	old	browsers	to	fade	into	obscurity?

That's	how	many	people	think	about	the	situation,	but	it's	really	not	a	healthy	approach	to
JS.

There	are	two	main	techniques	you	can	use	to	"bring"	the	newer	JavaScript	stuff	to	the	older
browsers:	polyfilling	and	transpiling.

Polyfilling
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The	word	"polyfill"	is	an	invented	term	(by	Remy	Sharp)
(https://remysharp.com/2010/10/08/what-is-a-polyfill)	used	to	refer	to	taking	the	definition	of
a	newer	feature	and	producing	a	piece	of	code	that's	equivalent	to	the	behavior,	but	is	able
to	run	in	older	JS	environments.

For	example,	ES6	defines	a	utility	called		Number.isNaN(..)		to	provide	an	accurate	non-
buggy	check	for		NaN		values,	deprecating	the	original		isNaN(..)		utility.	But	it's	easy	to
polyfill	that	utility	so	that	you	can	start	using	it	in	your	code	regardless	of	whether	the	end
user	is	in	an	ES6	browser	or	not.

Consider:

if	(!Number.isNaN)	{

				Number.isNaN	=	function	isNaN(x)	{

								return	x	!==	x;

				};

}

The		if		statement	guards	against	applying	the	polyfill	definition	in	ES6	browsers	where	it
will	already	exist.	If	it's	not	already	present,	we	define		Number.isNaN(..)	.

Note:	The	check	we	do	here	takes	advantage	of	a	quirk	with		NaN		values,	which	is	that
they're	the	only	value	in	the	whole	language	that	is	not	equal	to	itself.	So	the		NaN		value	is
the	only	one	that	would	make		x	!==	x		be		true	.

Not	all	new	features	are	fully	polyfillable.	Sometimes	most	of	the	behavior	can	be	polyfilled,
but	there	are	still	small	deviations.	You	should	be	really,	really	careful	in	implementing	a
polyfill	yourself,	to	make	sure	you	are	adhering	to	the	specification	as	strictly	as	possible.

Or	better	yet,	use	an	already	vetted	set	of	polyfills	that	you	can	trust,	such	as	those	provided
by	ES5-Shim	(https://github.com/es-shims/es5-shim)	and	ES6-Shim	(https://github.com/es-
shims/es6-shim).

Transpiling

There's	no	way	to	polyfill	new	syntax	that	has	been	added	to	the	language.	The	new	syntax
would	throw	an	error	in	the	old	JS	engine	as	unrecognized/invalid.

So	the	better	option	is	to	use	a	tool	that	converts	your	newer	code	into	older	code
equivalents.	This	process	is	commonly	called	"transpiling,"	a	term	for	transforming	+
compiling.
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Essentially,	your	source	code	is	authored	in	the	new	syntax	form,	but	what	you	deploy	to	the
browser	is	the	transpiled	code	in	old	syntax	form.	You	typically	insert	the	transpiler	into	your
build	process,	similar	to	your	code	linter	or	your	minifier.

You	might	wonder	why	you'd	go	to	the	trouble	to	write	new	syntax	only	to	have	it	transpiled
away	to	older	code	--	why	not	just	write	the	older	code	directly?

There	are	several	important	reasons	you	should	care	about	transpiling:

The	new	syntax	added	to	the	language	is	designed	to	make	your	code	more	readable
and	maintainable.	The	older	equivalents	are	often	much	more	convoluted.	You	should
prefer	writing	newer	and	cleaner	syntax,	not	only	for	yourself	but	for	all	other	members
of	the	development	team.
If	you	transpile	only	for	older	browsers,	but	serve	the	new	syntax	to	the	newest
browsers,	you	get	to	take	advantage	of	browser	performance	optimizations	with	the	new
syntax.	This	also	lets	browser	makers	have	more	real-world	code	to	test	their
implementations	and	optimizations	on.
Using	the	new	syntax	earlier	allows	it	to	be	tested	more	robustly	in	the	real	world,	which
provides	earlier	feedback	to	the	JavaScript	committee	(TC39).	If	issues	are	found	early
enough,	they	can	be	changed/fixed	before	those	language	design	mistakes	become
permanent.

Here's	a	quick	example	of	transpiling.	ES6	adds	a	feature	called	"default	parameter	values."
It	looks	like	this:

function	foo(a	=	2)	{

				console.log(	a	);

}

foo();								//	2

foo(	42	);				//	42

Simple,	right?	Helpful,	too!	But	it's	new	syntax	that's	invalid	in	pre-ES6	engines.	So	what	will
a	transpiler	do	with	that	code	to	make	it	run	in	older	environments?

function	foo()	{

				var	a	=	arguments[0]	!==	(void	0)	?	arguments[0]	:	2;

				console.log(	a	);

}

As	you	can	see,	it	checks	to	see	if	the		arguments[0]		value	is		void	0		(aka		undefined	),	and
if	so	provides	the		2		default	value;	otherwise,	it	assigns	whatever	was	passed.
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In	addition	to	being	able	to	now	use	the	nicer	syntax	even	in	older	browsers,	looking	at	the
transpiled	code	actually	explains	the	intended	behavior	more	clearly.

You	may	not	have	realized	just	from	looking	at	the	ES6	version	that		undefined		is	the	only
value	that	can't	get	explicitly	passed	in	for	a	default-value	parameter,	but	the	transpiled	code
makes	that	much	more	clear.

The	last	important	detail	to	emphasize	about	transpilers	is	that	they	should	now	be	thought
of	as	a	standard	part	of	the	JS	development	ecosystem	and	process.	JS	is	going	to	continue
to	evolve,	much	more	quickly	than	before,	so	every	few	months	new	syntax	and	new
features	will	be	added.

If	you	use	a	transpiler	by	default,	you'll	always	be	able	to	make	that	switch	to	newer	syntax
whenever	you	find	it	useful,	rather	than	always	waiting	for	years	for	today's	browsers	to
phase	out.

There	are	quite	a	few	great	transpilers	for	you	to	choose	from.	Here	are	some	good	options
at	the	time	of	this	writing:

Babel	(https://babeljs.io)	(formerly	6to5):	Transpiles	ES6+	into	ES5
Traceur	(https://github.com/google/traceur-compiler):	Transpiles	ES6,	ES7,	and	beyond
into	ES5

Non-JavaScript
So	far,	the	only	things	we've	covered	are	in	the	JS	language	itself.	The	reality	is	that	most	JS
is	written	to	run	in	and	interact	with	environments	like	browsers.	A	good	chunk	of	the	stuff
that	you	write	in	your	code	is,	strictly	speaking,	not	directly	controlled	by	JavaScript.	That
probably	sounds	a	little	strange.

The	most	common	non-JavaScript	JavaScript	you'll	encounter	is	the	DOM	API.	For
example:

var	el	=	document.getElementById(	"foo"	);

The		document		variable	exists	as	a	global	variable	when	your	code	is	running	in	a	browser.
It's	not	provided	by	the	JS	engine,	nor	is	it	particularly	controlled	by	the	JavaScript
specification.	It	takes	the	form	of	something	that	looks	an	awful	lot	like	a	normal	JS		object	,
but	it's	not	really	exactly	that.	It's	a	special		object,		often	called	a	"host	object."

Moreover,	the		getElementById(..)		method	on		document		looks	like	a	normal	JS	function,	but
it's	just	a	thinly	exposed	interface	to	a	built-in	method	provided	by	the	DOM	from	your
browser.	In	some	(newer-generation)	browsers,	this	layer	may	also	be	in	JS,	but	traditionally
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the	DOM	and	its	behavior	is	implemented	in	something	more	like	C/C++.

Another	example	is	with	input/output	(I/O).

Everyone's	favorite		alert(..)		pops	up	a	message	box	in	the	user's	browser	window.
	alert(..)		is	provided	to	your	JS	program	by	the	browser,	not	by	the	JS	engine	itself.	The
call	you	make	sends	the	message	to	the	browser	internals	and	it	handles	drawing	and
displaying	the	message	box.

The	same	goes	with		console.log(..)	;	your	browser	provides	such	mechanisms	and	hooks
them	up	to	the	developer	tools.

This	book,	and	this	whole	series,	focuses	on	JavaScript	the	language.	That's	why	you	don't
see	any	substantial	coverage	of	these	non-JavaScript	JavaScript	mechanisms.
Nevertheless,	you	need	to	be	aware	of	them,	as	they'll	be	in	every	JS	program	you	write!

Review
The	first	step	to	learning	JavaScript's	flavor	of	programming	is	to	get	a	basic	understanding
of	its	core	mechanisms	like	values,	types,	function	closures,		this	,	and	prototypes.

Of	course,	each	of	these	topics	deserves	much	greater	coverage	than	you've	seen	here,	but
that's	why	they	have	chapters	and	books	dedicated	to	them	throughout	the	rest	of	this
series.	After	you	feel	pretty	comfortable	with	the	concepts	and	code	samples	in	this	chapter,
the	rest	of	the	series	awaits	you	to	really	dig	in	and	get	to	know	the	language	deeply.

The	final	chapter	of	this	book	will	briefly	summarize	each	of	the	other	titles	in	the	series	and
the	other	concepts	they	cover	besides	what	we've	already	explored.
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Chapter	3:	Into	YDKJS
What	is	this	series	all	about?	Put	simply,	it's	about	taking	seriously	the	task	of	learning	all
parts	of	JavaScript,	not	just	some	subset	of	the	language	that	someone	called	"the	good
parts,"	and	not	just	whatever	minimal	amount	you	need	to	get	your	job	done	at	work.

Serious	developers	in	other	languages	expect	to	put	in	the	effort	to	learn	most	or	all	of	the
language(s)	they	primarily	write	in,	but	JS	developers	seem	to	stand	out	from	the	crowd	in
the	sense	of	typically	not	learning	very	much	of	the	language.	This	is	not	a	good	thing,	and
it's	not	something	we	should	continue	to	allow	to	be	the	norm.

The	You	Don't	Know	JS	(YDKJS)	series	stands	in	stark	contrast	to	the	typical	approaches	to
learning	JS,	and	is	unlike	almost	any	other	JS	books	you	will	read.	It	challenges	you	to	go
beyond	your	comfort	zone	and	to	ask	the	deeper	"why"	questions	for	every	single	behavior
you	encounter.	Are	you	up	for	that	challenge?

I'm	going	to	use	this	final	chapter	to	briefly	summarize	what	to	expect	from	the	rest	of	the
books	in	the	series,	and	how	to	most	effectively	go	about	building	a	foundation	of	JS
learning	on	top	of	YDKJS.

Scope	&	Closures
Perhaps	one	of	the	most	fundamental	things	you'll	need	to	quickly	come	to	terms	with	is	how
scoping	of	variables	really	works	in	JavaScript.	It's	not	enough	to	have	anecdotal	fuzzy
beliefs	about	scope.

The	Scope	&	Closures	title	starts	by	debunking	the	common	misconception	that	JS	is	an
"interpreted	language"	and	therefore	not	compiled.	Nope.

The	JS	engine	compiles	your	code	right	before	(and	sometimes	during!)	execution.	So	we
use	some	deeper	understanding	of	the	compiler's	approach	to	our	code	to	understand	how	it
finds	and	deals	with	variable	and	function	declarations.	Along	the	way,	we	see	the	typical
metaphor	for	JS	variable	scope	management,	"Hoisting."

This	critical	understanding	of	"lexical	scope"	is	what	we	then	base	our	exploration	of	closure
on	for	the	last	chapter	of	the	book.	Closure	is	perhaps	the	single	most	important	concept	in
all	of	JS,	but	if	you	haven't	first	grasped	firmly	how	scope	works,	closure	will	likely	remain
beyond	your	grasp.
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One	important	application	of	closure	is	the	module	pattern,	as	we	briefly	introduced	in	this
book	in	Chapter	2.	The	module	pattern	is	perhaps	the	most	prevalent	code	organization
pattern	in	all	of	JavaScript;	deep	understanding	of	it	should	be	one	of	your	highest	priorities.

this	&	Object	Prototypes
Perhaps	one	of	the	most	widespread	and	persistent	mistruths	about	JavaScript	is	that	the
	this		keyword	refers	to	the	function	it	appears	in.	Terribly	mistaken.

The		this		keyword	is	dynamically	bound	based	on	how	the	function	in	question	is	executed,
and	it	turns	out	there	are	four	simple	rules	to	understand	and	fully	determine		this		binding.

Closely	related	to	the		this		keyword	is	the	object	prototype	mechanism,	which	is	a	look-up
chain	for	properties,	similar	to	how	lexical	scope	variables	are	found.	But	wrapped	up	in	the
prototypes	is	the	other	huge	miscue	about	JS:	the	idea	of	emulating	(fake)	classes	and	(so-
called	"prototypal")	inheritance.

Unfortunately,	the	desire	to	bring	class	and	inheritance	design	pattern	thinking	to	JavaScript
is	just	about	the	worst	thing	you	could	try	to	do,	because	while	the	syntax	may	trick	you	into
thinking	there's	something	like	classes	present,	in	fact	the	prototype	mechanism	is
fundamentally	opposite	in	its	behavior.

What's	at	issue	is	whether	it's	better	to	ignore	the	mismatch	and	pretend	that	what	you're
implementing	is	"inheritance,"	or	whether	it's	more	appropriate	to	learn	and	embrace	how
the	object	prototype	system	actually	works.	The	latter	is	more	appropriately	named
"behavior	delegation."

This	is	more	than	syntactic	preference.	Delegation	is	an	entirely	different,	and	more
powerful,	design	pattern,	one	that	replaces	the	need	to	design	with	classes	and	inheritance.
But	these	assertions	will	absolutely	fly	in	the	face	of	nearly	every	other	blog	post,	book,	and
conference	talk	on	the	subject	for	the	entirety	of	JavaScript's	lifetime.

The	claims	I	make	regarding	delegation	versus	inheritance	come	not	from	a	dislike	of	the
language	and	its	syntax,	but	from	the	desire	to	see	the	true	capability	of	the	language
properly	leveraged	and	the	endless	confusion	and	frustration	wiped	away.

But	the	case	I	make	regarding	prototypes	and	delegation	is	a	much	more	involved	one	than
what	I	will	indulge	here.	If	you're	ready	to	reconsider	everything	you	think	you	know	about
JavaScript	"classes"	and	"inheritance,"	I	offer	you	the	chance	to	"take	the	red	pill"	(Matrix
1999)	and	check	out	Chapters	4-6	of	the	this	&	Object	Prototypes	title	of	this	series.

Types	&	Grammar
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The	third	title	in	this	series	primarily	focuses	on	tackling	yet	another	highly	controversial
topic:	type	coercion.	Perhaps	no	topic	causes	more	frustration	with	JS	developers	than	when
you	talk	about	the	confusions	surrounding	implicit	coercion.

By	far,	the	conventional	wisdom	is	that	implicit	coercion	is	a	"bad	part"	of	the	language	and
should	be	avoided	at	all	costs.	In	fact,	some	have	gone	so	far	as	to	call	it	a	"flaw"	in	the
design	of	the	language.	Indeed,	there	are	tools	whose	entire	job	is	to	do	nothing	but	scan
your	code	and	complain	if	you're	doing	anything	even	remotely	like	coercion.

But	is	coercion	really	so	confusing,	so	bad,	so	treacherous,	that	your	code	is	doomed	from
the	start	if	you	use	it?

I	say	no.	After	having	built	up	an	understanding	of	how	types	and	values	really	work	in
Chapters	1-3,	Chapter	4	takes	on	this	debate	and	fully	explains	how	coercion	works,	in	all	its
nooks	and	crevices.	We	see	just	what	parts	of	coercion	really	are	surprising	and	what	parts
actually	make	complete	sense	if	given	the	time	to	learn.

But	I'm	not	merely	suggesting	that	coercion	is	sensible	and	learnable,	I'm	asserting	that
coercion	is	an	incredibly	useful	and	totally	underestimated	tool	that	you	should	be	using	in
your	code.	I'm	saying	that	coercion,	when	used	properly,	not	only	works,	but	makes	your
code	better.	All	the	naysayers	and	doubters	will	surely	scoff	at	such	a	position,	but	I	believe
it's	one	of	the	main	keys	to	upping	your	JS	game.

Do	you	want	to	just	keep	following	what	the	crowd	says,	or	are	you	willing	to	set	all	the
assumptions	aside	and	look	at	coercion	with	a	fresh	perspective?	The	Types	&	Grammar
title	of	this	series	will	coerce	your	thinking.

Async	&	Performance
The	first	three	titles	of	this	series	focus	on	the	core	mechanics	of	the	language,	but	the
fourth	title	branches	out	slightly	to	cover	patterns	on	top	of	the	language	mechanics	for
managing	asynchronous	programming.	Asynchrony	is	not	only	critical	to	the	performance	of
our	applications,	it's	increasingly	becoming	the	critical	factor	in	writability	and	maintainability.

The	book	starts	first	by	clearing	up	a	lot	of	terminology	and	concept	confusion	around	things
like	"async,"	"parallel,"	and	"concurrent,"	and	explains	in	depth	how	such	things	do	and	do
not	apply	to	JS.

Then	we	move	into	examining	callbacks	as	the	primary	method	of	enabling	asynchrony.	But
it's	here	that	we	quickly	see	that	the	callback	alone	is	hopelessly	insufficient	for	the	modern
demands	of	asynchronous	programming.	We	identify	two	major	deficiencies	of	callbacks-
only	coding:	Inversion	of	Control	(IoC)	trust	loss	and	lack	of	linear	reason-ability.
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To	address	these	two	major	deficiencies,	ES6	introduces	two	new	mechanisms	(and	indeed,
patterns):	promises	and	generators.

Promises	are	a	time-independent	wrapper	around	a	"future	value,"	which	lets	you	reason
about	and	compose	them	regardless	of	if	the	value	is	ready	or	not	yet.	Moreover,	they
effectively	solve	the	IoC	trust	issues	by	routing	callbacks	through	a	trustable	and
composable	promise	mechanism.

Generators	introduce	a	new	mode	of	execution	for	JS	functions,	whereby	the	generator	can
be	paused	at		yield		points	and	be	resumed	asynchronously	later.	The	pause-and-resume
capability	enables	synchronous,	sequential	looking	code	in	the	generator	to	be	processed
asynchronously	behind	the	scenes.	By	doing	so,	we	address	the	non-linear,	non-local-jump
confusions	of	callbacks	and	thereby	make	our	asynchronous	code	sync-looking	so	as	to	be
more	reason-able.

But	it's	the	combination	of	promises	and	generators	that	"yields"	our	most	effective
asynchronous	coding	pattern	to	date	in	JavaScript.	In	fact,	much	of	the	future	sophistication
of	asynchrony	coming	in	ES7	and	later	will	certainly	be	built	on	this	foundation.	To	be	serious
about	programming	effectively	in	an	async	world,	you're	going	to	need	to	get	really
comfortable	with	combining	promises	and	generators.

If	promises	and	generators	are	about	expressing	patterns	that	let	our	programs	run	more
concurrently	and	thus	get	more	processing	accomplished	in	a	shorter	period,	JS	has	many
other	facets	of	performance	optimization	worth	exploring.

Chapter	5	delves	into	topics	like	program	parallelism	with	Web	Workers	and	data	parallelism
with	SIMD,	as	well	as	low-level	optimization	techniques	like	ASM.js.	Chapter	6	takes	a	look
at	performance	optimization	from	the	perspective	of	proper	benchmarking	techniques,
including	what	kinds	of	performance	to	worry	about	and	what	to	ignore.

Writing	JavaScript	effectively	means	writing	code	that	can	break	the	constraint	barriers	of
being	run	dynamically	in	a	wide	range	of	browsers	and	other	environments.	It	requires	a	lot
of	intricate	and	detailed	planning	and	effort	on	our	parts	to	take	a	program	from	"it	works"	to
"it	works	well."

The	Async	&	Performance	title	is	designed	to	give	you	all	the	tools	and	skills	you	need	to
write	reasonable	and	performant	JavaScript	code.

ES6	&	Beyond
No	matter	how	much	you	feel	you've	mastered	JavaScript	to	this	point,	the	truth	is	that
JavaScript	is	never	going	to	stop	evolving,	and	moreover,	the	rate	of	evolution	is	increasing
rapidly.	This	fact	is	almost	a	metaphor	for	the	spirit	of	this	series,	to	embrace	that	we'll	never
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fully	know	every	part	of	JS,	because	as	soon	as	you	master	it	all,	there's	going	to	be	new
stuff	coming	down	the	line	that	you'll	need	to	learn.

This	title	is	dedicated	to	both	the	short-	and	mid-term	visions	of	where	the	language	is
headed,	not	just	the	known	stuff	like	ES6	but	the	likely	stuff	beyond.

While	all	the	titles	of	this	series	embrace	the	state	of	JavaScript	at	the	time	of	this	writing,
which	is	mid-way	through	ES6	adoption,	the	primary	focus	in	the	series	has	been	more	on
ES5.	Now,	we	want	to	turn	our	attention	to	ES6,	ES7,	and	...

Since	ES6	is	nearly	complete	at	the	time	of	this	writing,	ES6	&	Beyond	starts	by	dividing	up
the	concrete	stuff	from	the	ES6	landscape	into	several	key	categories,	including	new	syntax,
new	data	structures	(collections),	and	new	processing	capabilities	and	APIs.	We	cover	each
of	these	new	ES6	features,	in	varying	levels	of	detail,	including	reviewing	details	that	are
touched	on	in	other	books	of	this	series.

Some	exciting	ES6	things	to	look	forward	to	reading	about:	destructuring,	default	parameter
values,	symbols,	concise	methods,	computed	properties,	arrow	functions,	block	scoping,
promises,	generators,	iterators,	modules,	proxies,	weakmaps,	and	much,	much	more!	Phew,
ES6	packs	quite	a	punch!

The	first	part	of	the	book	is	a	roadmap	for	all	the	stuff	you	need	to	learn	to	get	ready	for	the
new	and	improved	JavaScript	you'll	be	writing	and	exploring	over	the	next	couple	of	years.

The	latter	part	of	the	book	turns	attention	to	briefly	glance	at	things	that	we	can	likely	expect
to	see	in	the	near	future	of	JavaScript.	The	most	important	realization	here	is	that	post-ES6,
JS	is	likely	going	to	evolve	feature	by	feature	rather	than	version	by	version,	which	means
we	can	expect	to	see	these	near-future	things	coming	much	sooner	than	you	might	imagine.

The	future	for	JavaScript	is	bright.	Isn't	it	time	we	start	learning	it!?

Review
The	YDKJS	series	is	dedicated	to	the	proposition	that	all	JS	developers	can	and	should
learn	all	of	the	parts	of	this	great	language.	No	person's	opinion,	no	framework's
assumptions,	and	no	project's	deadline	should	be	the	excuse	for	why	you	never	learn	and
deeply	understand	JavaScript.

We	take	each	important	area	of	focus	in	the	language	and	dedicate	a	short	but	very	dense
book	to	fully	explore	all	the	parts	of	it	that	you	perhaps	thought	you	knew	but	probably	didn't
fully.
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"You	Don't	Know	JS"	isn't	a	criticism	or	an	insult.	It's	a	realization	that	all	of	us,	myself
included,	must	come	to	terms	with.	Learning	JavaScript	isn't	an	end	goal	but	a	process.	We
don't	know	JavaScript,	yet.	But	we	will!
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Chapter	1:	What	is	Scope?
One	of	the	most	fundamental	paradigms	of	nearly	all	programming	languages	is	the	ability	to
store	values	in	variables,	and	later	retrieve	or	modify	those	values.	In	fact,	the	ability	to	store
values	and	pull	values	out	of	variables	is	what	gives	a	program	state.

Without	such	a	concept,	a	program	could	perform	some	tasks,	but	they	would	be	extremely
limited	and	not	terribly	interesting.

But	the	inclusion	of	variables	into	our	program	begets	the	most	interesting	questions	we	will
now	address:	where	do	those	variables	live?	In	other	words,	where	are	they	stored?	And,
most	importantly,	how	does	our	program	find	them	when	it	needs	them?

These	questions	speak	to	the	need	for	a	well-defined	set	of	rules	for	storing	variables	in
some	location,	and	for	finding	those	variables	at	a	later	time.	We'll	call	that	set	of	rules:
Scope.

But,	where	and	how	do	these	Scope	rules	get	set?

Compiler	Theory
It	may	be	self-evident,	or	it	may	be	surprising,	depending	on	your	level	of	interaction	with
various	languages,	but	despite	the	fact	that	JavaScript	falls	under	the	general	category	of
"dynamic"	or	"interpreted"	languages,	it	is	in	fact	a	compiled	language.	It	is	not	compiled	well
in	advance,	as	are	many	traditionally-compiled	languages,	nor	are	the	results	of	compilation
portable	among	various	distributed	systems.

But,	nevertheless,	the	JavaScript	engine	performs	many	of	the	same	steps,	albeit	in	more
sophisticated	ways	than	we	may	commonly	be	aware,	of	any	traditional	language-compiler.

In	a	traditional	compiled-language	process,	a	chunk	of	source	code,	your	program,	will
undergo	typically	three	steps	before	it	is	executed,	roughly	called	"compilation":

1.	 Tokenizing/Lexing:	breaking	up	a	string	of	characters	into	meaningful	(to	the
language)	chunks,	called	tokens.	For	instance,	consider	the	program:		var	a	=	2;	.	This
program	would	likely	be	broken	up	into	the	following	tokens:		var	,		a	,		=	,		2	,	and		;	.
Whitespace	may	or	may	not	be	persisted	as	a	token,	depending	on	whether	it's
meaningful	or	not.
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Note:	The	difference	between	tokenizing	and	lexing	is	subtle	and	academic,	but	it
centers	on	whether	or	not	these	tokens	are	identified	in	a	stateless	or	stateful	way.	Put
simply,	if	the	tokenizer	were	to	invoke	stateful	parsing	rules	to	figure	out	whether		a	
should	be	considered	a	distinct	token	or	just	part	of	another	token,	that	would	be	lexing.

2.	 Parsing:	taking	a	stream	(array)	of	tokens	and	turning	it	into	a	tree	of	nested	elements,
which	collectively	represent	the	grammatical	structure	of	the	program.	This	tree	is	called
an	"AST"	(Abstract	Syntax	Tree).

The	tree	for		var	a	=	2;		might	start	with	a	top-level	node	called		VariableDeclaration	,
with	a	child	node	called		Identifier		(whose	value	is		a	),	and	another	child	called
	AssignmentExpression		which	itself	has	a	child	called		NumericLiteral		(whose	value	is
	2	).

3.	 Code-Generation:	the	process	of	taking	an	AST	and	turning	it	into	executable	code.
This	part	varies	greatly	depending	on	the	language,	the	platform	it's	targeting,	etc.

So,	rather	than	get	mired	in	details,	we'll	just	handwave	and	say	that	there's	a	way	to
take	our	above	described	AST	for		var	a	=	2;		and	turn	it	into	a	set	of	machine
instructions	to	actually	create	a	variable	called		a		(including	reserving	memory,	etc.),
and	then	store	a	value	into		a	.

Note:	The	details	of	how	the	engine	manages	system	resources	are	deeper	than	we	will
dig,	so	we'll	just	take	it	for	granted	that	the	engine	is	able	to	create	and	store	variables
as	needed.

The	JavaScript	engine	is	vastly	more	complex	than	just	those	three	steps,	as	are	most	other
language	compilers.	For	instance,	in	the	process	of	parsing	and	code-generation,	there	are
certainly	steps	to	optimize	the	performance	of	the	execution,	including	collapsing	redundant
elements,	etc.

So,	I'm	painting	only	with	broad	strokes	here.	But	I	think	you'll	see	shortly	why	these	details
we	do	cover,	even	at	a	high	level,	are	relevant.

For	one	thing,	JavaScript	engines	don't	get	the	luxury	(like	other	language	compilers)	of
having	plenty	of	time	to	optimize,	because	JavaScript	compilation	doesn't	happen	in	a	build
step	ahead	of	time,	as	with	other	languages.

For	JavaScript,	the	compilation	that	occurs	happens,	in	many	cases,	mere	microseconds	(or
less!)	before	the	code	is	executed.	To	ensure	the	fastest	performance,	JS	engines	use	all
kinds	of	tricks	(like	JITs,	which	lazy	compile	and	even	hot	re-compile,	etc.)	which	are	well
beyond	the	"scope"	of	our	discussion	here.
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Let's	just	say,	for	simplicity's	sake,	that	any	snippet	of	JavaScript	has	to	be	compiled	before
(usually	right	before!)	it's	executed.	So,	the	JS	compiler	will	take	the	program		var	a	=	2;	
and	compile	it	first,	and	then	be	ready	to	execute	it,	usually	right	away.

Understanding	Scope
The	way	we	will	approach	learning	about	scope	is	to	think	of	the	process	in	terms	of	a
conversation.	But,	who	is	having	the	conversation?

The	Cast

Let's	meet	the	cast	of	characters	that	interact	to	process	the	program		var	a	=	2;	,	so	we
understand	their	conversations	that	we'll	listen	in	on	shortly:

1.	 Engine:	responsible	for	start-to-finish	compilation	and	execution	of	our	JavaScript
program.

2.	 Compiler:	one	of	Engine's	friends;	handles	all	the	dirty	work	of	parsing	and	code-
generation	(see	previous	section).

3.	 Scope:	another	friend	of	Engine;	collects	and	maintains	a	look-up	list	of	all	the	declared
identifiers	(variables),	and	enforces	a	strict	set	of	rules	as	to	how	these	are	accessible
to	currently	executing	code.

For	you	to	fully	understand	how	JavaScript	works,	you	need	to	begin	to	think	like	Engine
(and	friends)	think,	ask	the	questions	they	ask,	and	answer	those	questions	the	same.

Back	&	Forth

When	you	see	the	program		var	a	=	2;	,	you	most	likely	think	of	that	as	one	statement.	But
that's	not	how	our	new	friend	Engine	sees	it.	In	fact,	Engine	sees	two	distinct	statements,
one	which	Compiler	will	handle	during	compilation,	and	one	which	Engine	will	handle	during
execution.

So,	let's	break	down	how	Engine	and	friends	will	approach	the	program		var	a	=	2;	.

The	first	thing	Compiler	will	do	with	this	program	is	perform	lexing	to	break	it	down	into
tokens,	which	it	will	then	parse	into	a	tree.	But	when	Compiler	gets	to	code-generation,	it	will
treat	this	program	somewhat	differently	than	perhaps	assumed.

A	reasonable	assumption	would	be	that	Compiler	will	produce	code	that	could	be	summed
up	by	this	pseudo-code:	"Allocate	memory	for	a	variable,	label	it		a	,	then	stick	the	value		2	
into	that	variable."	Unfortunately,	that's	not	quite	accurate.
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Compiler	will	instead	proceed	as:

1.	 Encountering		var	a	,	Compiler	asks	Scope	to	see	if	a	variable		a		already	exists	for
that	particular	scope	collection.	If	so,	Compiler	ignores	this	declaration	and	moves	on.
Otherwise,	Compiler	asks	Scope	to	declare	a	new	variable	called		a		for	that	scope
collection.

2.	 Compiler	then	produces	code	for	Engine	to	later	execute,	to	handle	the		a	=	2	
assignment.	The	code	Engine	runs	will	first	ask	Scope	if	there	is	a	variable	called		a	
accessible	in	the	current	scope	collection.	If	so,	Engine	uses	that	variable.	If	not,	Engine
looks	elsewhere	(see	nested	Scope	section	below).

If	Engine	eventually	finds	a	variable,	it	assigns	the	value		2		to	it.	If	not,	Engine	will	raise	its
hand	and	yell	out	an	error!

To	summarize:	two	distinct	actions	are	taken	for	a	variable	assignment:	First,	Compiler
declares	a	variable	(if	not	previously	declared	in	the	current	scope),	and	second,	when
executing,	Engine	looks	up	the	variable	in	Scope	and	assigns	to	it,	if	found.

Compiler	Speak

We	need	a	little	bit	more	compiler	terminology	to	proceed	further	with	understanding.

When	Engine	executes	the	code	that	Compiler	produced	for	step	(2),	it	has	to	look-up	the
variable		a		to	see	if	it	has	been	declared,	and	this	look-up	is	consulting	Scope.	But	the	type
of	look-up	Engine	performs	affects	the	outcome	of	the	look-up.

In	our	case,	it	is	said	that	Engine	would	be	performing	an	"LHS"	look-up	for	the	variable		a	.
The	other	type	of	look-up	is	called	"RHS".

I	bet	you	can	guess	what	the	"L"	and	"R"	mean.	These	terms	stand	for	"Left-hand	Side"	and
"Right-hand	Side".

Side...	of	what?	Of	an	assignment	operation.

In	other	words,	an	LHS	look-up	is	done	when	a	variable	appears	on	the	left-hand	side	of	an
assignment	operation,	and	an	RHS	look-up	is	done	when	a	variable	appears	on	the	right-
hand	side	of	an	assignment	operation.

Actually,	let's	be	a	little	more	precise.	An	RHS	look-up	is	indistinguishable,	for	our	purposes,
from	simply	a	look-up	of	the	value	of	some	variable,	whereas	the	LHS	look-up	is	trying	to
find	the	variable	container	itself,	so	that	it	can	assign.	In	this	way,	RHS	doesn't	really	mean
"right-hand	side	of	an	assignment"	per	se,	it	just,	more	accurately,	means	"not	left-hand
side".
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Being	slightly	glib	for	a	moment,	you	could	also	think	"RHS"	instead	means	"retrieve	his/her
source	(value)",	implying	that	RHS	means	"go	get	the	value	of...".

Let's	dig	into	that	deeper.

When	I	say:

console.log(	a	);

The	reference	to		a		is	an	RHS	reference,	because	nothing	is	being	assigned	to		a		here.
Instead,	we're	looking-up	to	retrieve	the	value	of		a	,	so	that	the	value	can	be	passed	to
	console.log(..)	.

By	contrast:

a	=	2;

The	reference	to		a		here	is	an	LHS	reference,	because	we	don't	actually	care	what	the
current	value	is,	we	simply	want	to	find	the	variable	as	a	target	for	the		=	2		assignment
operation.

Note:	LHS	and	RHS	meaning	"left/right-hand	side	of	an	assignment"	doesn't	necessarily
literally	mean	"left/right	side	of	the		=		assignment	operator".	There	are	several	other	ways
that	assignments	happen,	and	so	it's	better	to	conceptually	think	about	it	as:	"who's	the
target	of	the	assignment	(LHS)"	and	"who's	the	source	of	the	assignment	(RHS)".

Consider	this	program,	which	has	both	LHS	and	RHS	references:

function	foo(a)	{

				console.log(	a	);	//	2

}

foo(	2	);

The	last	line	that	invokes		foo(..)		as	a	function	call	requires	an	RHS	reference	to		foo	,
meaning,	"go	look-up	the	value	of		foo	,	and	give	it	to	me."	Moreover,		(..)		means	the
value	of		foo		should	be	executed,	so	it'd	better	actually	be	a	function!

There's	a	subtle	but	important	assignment	here.	Did	you	spot	it?

You	may	have	missed	the	implied		a	=	2		in	this	code	snippet.	It	happens	when	the	value
	2		is	passed	as	an	argument	to	the		foo(..)		function,	in	which	case	the		2		value	is
assigned	to	the	parameter		a	.	To	(implicitly)	assign	to	parameter		a	,	an	LHS	look-up	is
performed.
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There's	also	an	RHS	reference	for	the	value	of		a	,	and	that	resulting	value	is	passed	to
	console.log(..)	.		console.log(..)		needs	a	reference	to	execute.	It's	an	RHS	look-up	for
the		console		object,	then	a	property-resolution	occurs	to	see	if	it	has	a	method	called		log	.

Finally,	we	can	conceptualize	that	there's	an	LHS/RHS	exchange	of	passing	the	value		2	
(by	way	of	variable		a	's	RHS	look-up)	into		log(..)	.	Inside	of	the	native	implementation	of
	log(..)	,	we	can	assume	it	has	parameters,	the	first	of	which	(perhaps	called		arg1	)	has
an	LHS	reference	look-up,	before	assigning		2		to	it.

Note:	You	might	be	tempted	to	conceptualize	the	function	declaration		function	foo(a)	{...	
as	a	normal	variable	declaration	and	assignment,	such	as		var	foo		and		foo	=	function(a)
{...	.	In	so	doing,	it	would	be	tempting	to	think	of	this	function	declaration	as	involving	an
LHS	look-up.

However,	the	subtle	but	important	difference	is	that	Compiler	handles	both	the	declaration
and	the	value	definition	during	code-generation,	such	that	when	Engine	is	executing	code,
there's	no	processing	necessary	to	"assign"	a	function	value	to		foo	.	Thus,	it's	not	really
appropriate	to	think	of	a	function	declaration	as	an	LHS	look-up	assignment	in	the	way	we're
discussing	them	here.

Engine/Scope	Conversation

function	foo(a)	{

				console.log(	a	);	//	2

}

foo(	2	);

Let's	imagine	the	above	exchange	(which	processes	this	code	snippet)	as	a	conversation.
The	conversation	would	go	a	little	something	like	this:
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Engine:	Hey	Scope,	I	have	an	RHS	reference	for		foo	.	Ever	heard	of	it?

Scope:	Why	yes,	I	have.	Compiler	declared	it	just	a	second	ago.	He's	a	function.	Here
you	go.

Engine:	Great,	thanks!	OK,	I'm	executing		foo	.

Engine:	Hey,	Scope,	I've	got	an	LHS	reference	for		a	,	ever	heard	of	it?

Scope:	Why	yes,	I	have.	Compiler	declared	it	as	a	formal	parameter	to		foo		just
recently.	Here	you	go.

Engine:	Helpful	as	always,	Scope.	Thanks	again.	Now,	time	to	assign		2		to		a	.

Engine:	Hey,	Scope,	sorry	to	bother	you	again.	I	need	an	RHS	look-up	for		console	.
Ever	heard	of	it?

Scope:	No	problem,	Engine,	this	is	what	I	do	all	day.	Yes,	I've	got		console	.	He's	built-
in.	Here	ya	go.

Engine:	Perfect.	Looking	up		log(..)	.	OK,	great,	it's	a	function.

Engine:	Yo,	Scope.	Can	you	help	me	out	with	an	RHS	reference	to		a	.	I	think	I
remember	it,	but	just	want	to	double-check.

Scope:	You're	right,	Engine.	Same	guy,	hasn't	changed.	Here	ya	go.

Engine:	Cool.	Passing	the	value	of		a	,	which	is		2	,	into		log(..)	.

...

Quiz

Check	your	understanding	so	far.	Make	sure	to	play	the	part	of	Engine	and	have	a
"conversation"	with	the	Scope:

function	foo(a)	{

				var	b	=	a;

				return	a	+	b;

}

var	c	=	foo(	2	);

1.	 Identify	all	the	LHS	look-ups	(there	are	3!).

2.	 Identify	all	the	RHS	look-ups	(there	are	4!).

Note:	See	the	chapter	review	for	the	quiz	answers!
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Nested	Scope
We	said	that	Scope	is	a	set	of	rules	for	looking	up	variables	by	their	identifier	name.	There's
usually	more	than	one	Scope	to	consider,	however.

Just	as	a	block	or	function	is	nested	inside	another	block	or	function,	scopes	are	nested
inside	other	scopes.	So,	if	a	variable	cannot	be	found	in	the	immediate	scope,	Engine
consults	the	next	outer	containing	scope,	continuing	until	found	or	until	the	outermost	(aka,
global)	scope	has	been	reached.

Consider:

function	foo(a)	{

				console.log(	a	+	b	);

}

var	b	=	2;

foo(	2	);	//	4

The	RHS	reference	for		b		cannot	be	resolved	inside	the	function		foo	,	but	it	can	be
resolved	in	the	Scope	surrounding	it	(in	this	case,	the	global).

So,	revisiting	the	conversations	between	Engine	and	Scope,	we'd	overhear:

Engine:	"Hey,	Scope	of		foo	,	ever	heard	of		b	?	Got	an	RHS	reference	for	it."

Scope:	"Nope,	never	heard	of	it.	Go	fish."

Engine:	"Hey,	Scope	outside	of		foo	,	oh	you're	the	global	Scope,	ok	cool.	Ever	heard
of		b	?	Got	an	RHS	reference	for	it."

Scope:	"Yep,	sure	have.	Here	ya	go."

The	simple	rules	for	traversing	nested	Scope:	Engine	starts	at	the	currently	executing
Scope,	looks	for	the	variable	there,	then	if	not	found,	keeps	going	up	one	level,	and	so	on.	If
the	outermost	global	scope	is	reached,	the	search	stops,	whether	it	finds	the	variable	or	not.

Building	on	Metaphors

To	visualize	the	process	of	nested	Scope	resolution,	I	want	you	to	think	of	this	tall	building.
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The	building	represents	our	program's	nested	Scope	rule	set.	The	first	floor	of	the	building
represents	your	currently	executing	Scope,	wherever	you	are.	The	top	level	of	the	building	is
the	global	Scope.

You	resolve	LHS	and	RHS	references	by	looking	on	your	current	floor,	and	if	you	don't	find	it,
taking	the	elevator	to	the	next	floor,	looking	there,	then	the	next,	and	so	on.	Once	you	get	to
the	top	floor	(the	global	Scope),	you	either	find	what	you're	looking	for,	or	you	don't.	But	you
have	to	stop	regardless.

Errors
Why	does	it	matter	whether	we	call	it	LHS	or	RHS?

Because	these	two	types	of	look-ups	behave	differently	in	the	circumstance	where	the
variable	has	not	yet	been	declared	(is	not	found	in	any	consulted	Scope).

Consider:

function	foo(a)	{

				console.log(	a	+	b	);

				b	=	a;

}

foo(	2	);
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When	the	RHS	look-up	occurs	for		b		the	first	time,	it	will	not	be	found.	This	is	said	to	be	an
"undeclared"	variable,	because	it	is	not	found	in	the	scope.

If	an	RHS	look-up	fails	to	ever	find	a	variable,	anywhere	in	the	nested	Scopes,	this	results	in
a		ReferenceError		being	thrown	by	the	Engine.	It's	important	to	note	that	the	error	is	of	the
type		ReferenceError	.

By	contrast,	if	the	Engine	is	performing	an	LHS	look-up	and	arrives	at	the	top	floor	(global
Scope)	without	finding	it,	and	if	the	program	is	not	running	in	"Strict	Mode"	 ,
then	the	global	Scope	will	create	a	new	variable	of	that	name	in	the	global	scope,	and
hand	it	back	to	Engine.

"No,	there	wasn't	one	before,	but	I	was	helpful	and	created	one	for	you."

"Strict	Mode"	 ,	which	was	added	in	ES5,	has	a	number	of	different	behaviors
from	normal/relaxed/lazy	mode.	One	such	behavior	is	that	it	disallows	the	automatic/implicit
global	variable	creation.	In	that	case,	there	would	be	no	global	Scope'd	variable	to	hand
back	from	an	LHS	look-up,	and	Engine	would	throw	a		ReferenceError		similarly	to	the	RHS
case.

Now,	if	a	variable	is	found	for	an	RHS	look-up,	but	you	try	to	do	something	with	its	value	that
is	impossible,	such	as	trying	to	execute-as-function	a	non-function	value,	or	reference	a
property	on	a		null		or		undefined		value,	then	Engine	throws	a	different	kind	of	error,	called
a		TypeError	.

	ReferenceError		is	Scope	resolution-failure	related,	whereas		TypeError		implies	that	Scope
resolution	was	successful,	but	that	there	was	an	illegal/impossible	action	attempted	against
the	result.

Review	(TL;DR)
Scope	is	the	set	of	rules	that	determines	where	and	how	a	variable	(identifier)	can	be
looked-up.	This	look-up	may	be	for	the	purposes	of	assigning	to	the	variable,	which	is	an
LHS	(left-hand-side)	reference,	or	it	may	be	for	the	purposes	of	retrieving	its	value,	which	is
an	RHS	(right-hand-side)	reference.

LHS	references	result	from	assignment	operations.	Scope-related	assignments	can	occur
either	with	the		=		operator	or	by	passing	arguments	to	(assign	to)	function	parameters.

The	JavaScript	Engine	first	compiles	code	before	it	executes,	and	in	so	doing,	it	splits	up
statements	like		var	a	=	2;		into	two	separate	steps:

1.	 First,		var	a		to	declare	it	in	that	Scope.	This	is	performed	at	the	beginning,	before	code
execution.

note-strictmode

note-strictmode
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2.	 Later,		a	=	2		to	look	up	the	variable	(LHS	reference)	and	assign	to	it	if	found.

Both	LHS	and	RHS	reference	look-ups	start	at	the	currently	executing	Scope,	and	if	need	be
(that	is,	they	don't	find	what	they're	looking	for	there),	they	work	their	way	up	the	nested
Scope,	one	scope	(floor)	at	a	time,	looking	for	the	identifier,	until	they	get	to	the	global	(top
floor)	and	stop,	and	either	find	it,	or	don't.

Unfulfilled	RHS	references	result	in		ReferenceError	s	being	thrown.	Unfulfilled	LHS
references	result	in	an	automatic,	implicitly-created	global	of	that	name	(if	not	in	"Strict
Mode"	 ),	or	a		ReferenceError		(if	in	"Strict	Mode"	 ).

Quiz	Answers

function	foo(a)	{

				var	b	=	a;

				return	a	+	b;

}

var	c	=	foo(	2	);

1.	 Identify	all	the	LHS	look-ups	(there	are	3!).

	c	=	..	,		a	=	2		(implicit	param	assignment)	and		b	=	..	

2.	 Identify	all	the	RHS	look-ups	(there	are	4!).

	foo(2..	,		=	a;	,		a	+	..		and		..	+	b	

.	MDN:	Strict	Mode	↩

note-strictmode note-strictmode

note-strictmode
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Chapter	2:	Lexical	Scope
In	Chapter	1,	we	defined	"scope"	as	the	set	of	rules	that	govern	how	the	Engine	can	look	up
a	variable	by	its	identifier	name	and	find	it,	either	in	the	current	Scope,	or	in	any	of	the
Nested	Scopes	it's	contained	within.

There	are	two	predominant	models	for	how	scope	works.	The	first	of	these	is	by	far	the	most
common,	used	by	the	vast	majority	of	programming	languages.	It's	called	Lexical	Scope,
and	we	will	examine	it	in-depth.	The	other	model,	which	is	still	used	by	some	languages
(such	as	Bash	scripting,	some	modes	in	Perl,	etc.)	is	called	Dynamic	Scope.

Dynamic	Scope	is	covered	in	Appendix	A.	I	mention	it	here	only	to	provide	a	contrast	with
Lexical	Scope,	which	is	the	scope	model	that	JavaScript	employs.

Lex-time
As	we	discussed	in	Chapter	1,	the	first	traditional	phase	of	a	standard	language	compiler	is
called	lexing	(aka,	tokenizing).	If	you	recall,	the	lexing	process	examines	a	string	of	source
code	characters	and	assigns	semantic	meaning	to	the	tokens	as	a	result	of	some	stateful
parsing.

It	is	this	concept	which	provides	the	foundation	to	understand	what	lexical	scope	is	and
where	the	name	comes	from.

To	define	it	somewhat	circularly,	lexical	scope	is	scope	that	is	defined	at	lexing	time.	In	other
words,	lexical	scope	is	based	on	where	variables	and	blocks	of	scope	are	authored,	by	you,
at	write	time,	and	thus	is	(mostly)	set	in	stone	by	the	time	the	lexer	processes	your	code.

Note:	We	will	see	in	a	little	bit	there	are	some	ways	to	cheat	lexical	scope,	thereby
modifying	it	after	the	lexer	has	passed	by,	but	these	are	frowned	upon.	It	is	considered	best
practice	to	treat	lexical	scope	as,	in	fact,	lexical-only,	and	thus	entirely	author-time	in	nature.

Let's	consider	this	block	of	code:
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function	foo(a)	{

				var	b	=	a	*	2;

				function	bar(c)	{

								console.log(	a,	b,	c	);

				}

				bar(b	*	3);

}

foo(	2	);	//	2	4	12

There	are	three	nested	scopes	inherent	in	this	code	example.	It	may	be	helpful	to	think
about	these	scopes	as	bubbles	inside	of	each	other.

Bubble	1	encompasses	the	global	scope,	and	has	just	one	identifier	in	it:		foo	.

Bubble	2	encompasses	the	scope	of		foo	,	which	includes	the	three	identifiers:		a	,		bar	
and		b	.

Bubble	3	encompasses	the	scope	of		bar	,	and	it	includes	just	one	identifier:		c	.

Scope	bubbles	are	defined	by	where	the	blocks	of	scope	are	written,	which	one	is	nested
inside	the	other,	etc.	In	the	next	chapter,	we'll	discuss	different	units	of	scope,	but	for	now,
let's	just	assume	that	each	function	creates	a	new	bubble	of	scope.

The	bubble	for		bar		is	entirely	contained	within	the	bubble	for		foo	,	because	(and	only
because)	that's	where	we	chose	to	define	the	function		bar	.
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Notice	that	these	nested	bubbles	are	strictly	nested.	We're	not	talking	about	Venn	diagrams
where	the	bubbles	can	cross	boundaries.	In	other	words,	no	bubble	for	some	function	can
simultaneously	exist	(partially)	inside	two	other	outer	scope	bubbles,	just	as	no	function	can
partially	be	inside	each	of	two	parent	functions.

Look-ups

The	structure	and	relative	placement	of	these	scope	bubbles	fully	explains	to	the	Engine	all
the	places	it	needs	to	look	to	find	an	identifier.

In	the	above	code	snippet,	the	Engine	executes	the		console.log(..)		statement	and	goes
looking	for	the	three	referenced	variables		a	,		b	,	and		c	.	It	first	starts	with	the	innermost
scope	bubble,	the	scope	of	the		bar(..)		function.	It	won't	find		a		there,	so	it	goes	up	one
level,	out	to	the	next	nearest	scope	bubble,	the	scope	of		foo(..)	.	It	finds		a		there,	and	so
it	uses	that		a	.	Same	thing	for		b	.	But		c	,	it	does	find	inside	of		bar(..)	.

Had	there	been	a		c		both	inside	of		bar(..)		and	inside	of		foo(..)	,	the		console.log(..)	
statement	would	have	found	and	used	the	one	in		bar(..)	,	never	getting	to	the	one	in
	foo(..)	.

Scope	look-up	stops	once	it	finds	the	first	match.	The	same	identifier	name	can	be
specified	at	multiple	layers	of	nested	scope,	which	is	called	"shadowing"	(the	inner	identifier
"shadows"	the	outer	identifier).	Regardless	of	shadowing,	scope	look-up	always	starts	at	the
innermost	scope	being	executed	at	the	time,	and	works	its	way	outward/upward	until	the	first
match,	and	stops.

Note:	Global	variables	are	also	automatically	properties	of	the	global	object	(	window		in
browsers,	etc.),	so	it	is	possible	to	reference	a	global	variable	not	directly	by	its	lexical	name,
but	instead	indirectly	as	a	property	reference	of	the	global	object.

window.a

This	technique	gives	access	to	a	global	variable	which	would	otherwise	be	inaccessible	due
to	it	being	shadowed.	However,	non-global	shadowed	variables	cannot	be	accessed.

No	matter	where	a	function	is	invoked	from,	or	even	how	it	is	invoked,	its	lexical	scope	is
only	defined	by	where	the	function	was	declared.

The	lexical	scope	look-up	process	only	applies	to	first-class	identifiers,	such	as	the		a	,		b	,
and		c	.	If	you	had	a	reference	to		foo.bar.baz		in	a	piece	of	code,	the	lexical	scope	look-up
would	apply	to	finding	the		foo		identifier,	but	once	it	locates	that	variable,	object	property-
access	rules	take	over	to	resolve	the		bar		and		baz		properties,	respectively.
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Cheating	Lexical
If	lexical	scope	is	defined	only	by	where	a	function	is	declared,	which	is	entirely	an	author-
time	decision,	how	could	there	possibly	be	a	way	to	"modify"	(aka,	cheat)	lexical	scope	at
run-time?

JavaScript	has	two	such	mechanisms.	Both	of	them	are	equally	frowned-upon	in	the	wider
community	as	bad	practices	to	use	in	your	code.	But	the	typical	arguments	against	them	are
often	missing	the	most	important	point:	cheating	lexical	scope	leads	to	poorer
performance.

Before	I	explain	the	performance	issue,	though,	let's	look	at	how	these	two	mechanisms
work.

	eval	

The		eval(..)		function	in	JavaScript	takes	a	string	as	an	argument,	and	treats	the	contents
of	the	string	as	if	it	had	actually	been	authored	code	at	that	point	in	the	program.	In	other
words,	you	can	programmatically	generate	code	inside	of	your	authored	code,	and	run	the
generated	code	as	if	it	had	been	there	at	author	time.

Evaluating		eval(..)		(pun	intended)	in	that	light,	it	should	be	clear	how		eval(..)		allows
you	to	modify	the	lexical	scope	environment	by	cheating	and	pretending	that	author-time
(aka,	lexical)	code	was	there	all	along.

On	subsequent	lines	of	code	after	an		eval(..)		has	executed,	the	Engine	will	not	"know"	or
"care"	that	the	previous	code	in	question	was	dynamically	interpreted	and	thus	modified	the
lexical	scope	environment.	The	Engine	will	simply	perform	its	lexical	scope	look-ups	as	it
always	does.

Consider	the	following	code:

function	foo(str,	a)	{

				eval(	str	);	//	cheating!

				console.log(	a,	b	);

}

var	b	=	2;

foo(	"var	b	=	3;",	1	);	//	1	3

The	string		"var	b	=	3;"		is	treated,	at	the	point	of	the		eval(..)		call,	as	code	that	was	there
all	along.	Because	that	code	happens	to	declare	a	new	variable		b	,	it	modifies	the	existing
lexical	scope	of		foo(..)	.	In	fact,	as	mentioned	above,	this	code	actually	creates	variable
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	b		inside	of		foo(..)		that	shadows	the		b		that	was	declared	in	the	outer	(global)	scope.

When	the		console.log(..)		call	occurs,	it	finds	both		a		and		b		in	the	scope	of		foo(..)	,
and	never	finds	the	outer		b	.	Thus,	we	print	out	"1	3"	instead	of	"1	2"	as	would	have
normally	been	the	case.

Note:	In	this	example,	for	simplicity's	sake,	the	string	of	"code"	we	pass	in	was	a	fixed	literal.
But	it	could	easily	have	been	programmatically	created	by	adding	characters	together	based
on	your	program's	logic.		eval(..)		is	usually	used	to	execute	dynamically	created	code,	as
dynamically	evaluating	essentially	static	code	from	a	string	literal	would	provide	no	real
benefit	to	just	authoring	the	code	directly.

By	default,	if	a	string	of	code	that		eval(..)		executes	contains	one	or	more	declarations
(either	variables	or	functions),	this	action	modifies	the	existing	lexical	scope	in	which	the
	eval(..)		resides.	Technically,		eval(..)		can	be	invoked	"indirectly",	through	various	tricks
(beyond	our	discussion	here),	which	causes	it	to	instead	execute	in	the	context	of	the	global
scope,	thus	modifying	it.	But	in	either	case,		eval(..)		can	at	runtime	modify	an	author-time
lexical	scope.

Note:		eval(..)		when	used	in	a	strict-mode	program	operates	in	its	own	lexical	scope,
which	means	declarations	made	inside	of	the		eval()		do	not	actually	modify	the	enclosing
scope.

function	foo(str)	{

			"use	strict";

			eval(	str	);

			console.log(	a	);	//	ReferenceError:	a	is	not	defined

}

foo(	"var	a	=	2"	);

There	are	other	facilities	in	JavaScript	which	amount	to	a	very	similar	effect	to		eval(..)	.
	setTimeout(..)		and		setInterval(..)		can	take	a	string	for	their	respective	first	argument,
the	contents	of	which	are		eval	uated	as	the	code	of	a	dynamically-generated	function.	This
is	old,	legacy	behavior	and	long-since	deprecated.	Don't	do	it!

The		new	Function(..)		function	constructor	similarly	takes	a	string	of	code	in	its	last
argument	to	turn	into	a	dynamically-generated	function	(the	first	argument(s),	if	any,	are	the
named	parameters	for	the	new	function).	This	function-constructor	syntax	is	slightly	safer
than		eval(..)	,	but	it	should	still	be	avoided	in	your	code.

The	use-cases	for	dynamically	generating	code	inside	your	program	are	incredibly	rare,	as
the	performance	degradations	are	almost	never	worth	the	capability.
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	with	

The	other	frowned-upon	(and	now	deprecated!)	feature	in	JavaScript	which	cheats	lexical
scope	is	the		with		keyword.	There	are	multiple	valid	ways	that		with		can	be	explained,	but
I	will	choose	here	to	explain	it	from	the	perspective	of	how	it	interacts	with	and	affects	lexical
scope.

	with		is	typically	explained	as	a	short-hand	for	making	multiple	property	references	against
an	object	without	repeating	the	object	reference	itself	each	time.

For	example:

var	obj	=	{

				a:	1,

				b:	2,

				c:	3

};

//	more	"tedious"	to	repeat	"obj"

obj.a	=	2;

obj.b	=	3;

obj.c	=	4;

//	"easier"	short-hand

with	(obj)	{

				a	=	3;

				b	=	4;

				c	=	5;

}

However,	there's	much	more	going	on	here	than	just	a	convenient	short-hand	for	object
property	access.	Consider:
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function	foo(obj)	{

				with	(obj)	{

								a	=	2;

				}

}

var	o1	=	{

				a:	3

};

var	o2	=	{

				b:	3

};

foo(	o1	);

console.log(	o1.a	);	//	2

foo(	o2	);

console.log(	o2.a	);	//	undefined

console.log(	a	);	//	2	--	Oops,	leaked	global!

In	this	code	example,	two	objects		o1		and		o2		are	created.	One	has	an		a		property,	and
the	other	does	not.	The		foo(..)		function	takes	an	object	reference		obj		as	an	argument,
and	calls		with	(obj)	{	..	}		on	the	reference.	Inside	the		with		block,	we	make	what
appears	to	be	a	normal	lexical	reference	to	a	variable		a	,	an	LHS	reference	in	fact	(see
Chapter	1),	to	assign	to	it	the	value	of		2	.

When	we	pass	in		o1	,	the		a	=	2		assignment	finds	the	property		o1.a		and	assigns	it	the
value		2	,	as	reflected	in	the	subsequent		console.log(o1.a)		statement.	However,	when	we
pass	in		o2	,	since	it	does	not	have	an		a		property,	no	such	property	is	created,	and		o2.a	
remains		undefined	.

But	then	we	note	a	peculiar	side-effect,	the	fact	that	a	global	variable		a		was	created	by	the
	a	=	2		assignment.	How	can	this	be?

The		with		statement	takes	an	object,	one	which	has	zero	or	more	properties,	and	treats
that	object	as	if	it	is	a	wholly	separate	lexical	scope,	and	thus	the	object's	properties	are
treated	as	lexically	defined	identifiers	in	that	"scope".

Note:	Even	though	a		with		block	treats	an	object	like	a	lexical	scope,	a	normal		var	
declaration	inside	that		with		block	will	not	be	scoped	to	that		with		block,	but	instead	the
containing	function	scope.

While	the		eval(..)		function	can	modify	existing	lexical	scope	if	it	takes	a	string	of	code	with
one	or	more	declarations	in	it,	the		with		statement	actually	creates	a	whole	new	lexical
scope	out	of	thin	air,	from	the	object	you	pass	to	it.
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Understood	in	this	way,	the	"scope"	declared	by	the		with		statement	when	we	passed	in
	o1		was		o1	,	and	that	"scope"	had	an	"identifier"	in	it	which	corresponds	to	the		o1.a	
property.	But	when	we	used		o2		as	the	"scope",	it	had	no	such		a		"identifier"	in	it,	and	so
the	normal	rules	of	LHS	identifier	look-up	(see	Chapter	1)	occurred.

Neither	the	"scope"	of		o2	,	nor	the	scope	of		foo(..)	,	nor	the	global	scope	even,	has	an
	a		identifier	to	be	found,	so	when		a	=	2		is	executed,	it	results	in	the	automatic-global
being	created	(since	we're	in	non-strict	mode).

It	is	a	strange	sort	of	mind-bending	thought	to	see		with		turning,	at	runtime,	an	object	and
its	properties	into	a	"scope"	with	"identifiers".	But	that	is	the	clearest	explanation	I	can	give
for	the	results	we	see.

Note:	In	addition	to	being	a	bad	idea	to	use,	both		eval(..)		and		with		are	affected
(restricted)	by	Strict	Mode.		with		is	outright	disallowed,	whereas	various	forms	of	indirect	or
unsafe		eval(..)		are	disallowed	while	retaining	the	core	functionality.

Performance

Both		eval(..)		and		with		cheat	the	otherwise	author-time	defined	lexical	scope	by
modifying	or	creating	new	lexical	scope	at	runtime.

So,	what's	the	big	deal,	you	ask?	If	they	offer	more	sophisticated	functionality	and	coding
flexibility,	aren't	these	good	features?	No.

The	JavaScript	Engine	has	a	number	of	performance	optimizations	that	it	performs	during
the	compilation	phase.	Some	of	these	boil	down	to	being	able	to	essentially	statically
analyze	the	code	as	it	lexes,	and	pre-determine	where	all	the	variable	and	function
declarations	are,	so	that	it	takes	less	effort	to	resolve	identifiers	during	execution.

But	if	the	Engine	finds	an		eval(..)		or		with		in	the	code,	it	essentially	has	to	assume	that
all	its	awareness	of	identifier	location	may	be	invalid,	because	it	cannot	know	at	lexing	time
exactly	what	code	you	may	pass	to		eval(..)		to	modify	the	lexical	scope,	or	the	contents	of
the	object	you	may	pass	to		with		to	create	a	new	lexical	scope	to	be	consulted.

In	other	words,	in	the	pessimistic	sense,	most	of	those	optimizations	it	would	make	are
pointless	if		eval(..)		or		with		are	present,	so	it	simply	doesn't	perform	the	optimizations	at
all.

Your	code	will	almost	certainly	tend	to	run	slower	simply	by	the	fact	that	you	include	an
	eval(..)		or		with		anywhere	in	the	code.	No	matter	how	smart	the	Engine	may	be	about
trying	to	limit	the	side-effects	of	these	pessimistic	assumptions,	there's	no	getting	around
the	fact	that	without	the	optimizations,	code	runs	slower.
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Review	(TL;DR)
Lexical	scope	means	that	scope	is	defined	by	author-time	decisions	of	where	functions	are
declared.	The	lexing	phase	of	compilation	is	essentially	able	to	know	where	and	how	all
identifiers	are	declared,	and	thus	predict	how	they	will	be	looked-up	during	execution.

Two	mechanisms	in	JavaScript	can	"cheat"	lexical	scope:		eval(..)		and		with	.	The	former
can	modify	existing	lexical	scope	(at	runtime)	by	evaluating	a	string	of	"code"	which	has	one
or	more	declarations	in	it.	The	latter	essentially	creates	a	whole	new	lexical	scope	(again,	at
runtime)	by	treating	an	object	reference	as	a	"scope"	and	that	object's	properties	as	scoped
identifiers.

The	downside	to	these	mechanisms	is	that	it	defeats	the	Engine's	ability	to	perform	compile-
time	optimizations	regarding	scope	look-up,	because	the	Engine	has	to	assume
pessimistically	that	such	optimizations	will	be	invalid.	Code	will	run	slower	as	a	result	of
using	either	feature.	Don't	use	them.
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Chapter	3:	Function	vs.	Block	Scope
As	we	explored	in	Chapter	2,	scope	consists	of	a	series	of	"bubbles"	that	each	act	as	a
container	or	bucket,	in	which	identifiers	(variables,	functions)	are	declared.	These	bubbles
nest	neatly	inside	each	other,	and	this	nesting	is	defined	at	author-time.

But	what	exactly	makes	a	new	bubble?	Is	it	only	the	function?	Can	other	structures	in
JavaScript	create	bubbles	of	scope?

Scope	From	Functions
The	most	common	answer	to	those	questions	is	that	JavaScript	has	function-based	scope.
That	is,	each	function	you	declare	creates	a	bubble	for	itself,	but	no	other	structures	create
their	own	scope	bubbles.	As	we'll	see	in	just	a	little	bit,	this	is	not	quite	true.

But	first,	let's	explore	function	scope	and	its	implications.

Consider	this	code:

function	foo(a)	{

				var	b	=	2;

				//	some	code

				function	bar()	{

								//	...

				}

				//	more	code

				var	c	=	3;

}

In	this	snippet,	the	scope	bubble	for		foo(..)		includes	identifiers		a	,		b	,		c		and		bar	.	It
doesn't	matter	where	in	the	scope	a	declaration	appears,	the	variable	or	function	belongs
to	the	containing	scope	bubble,	regardless.	We'll	explore	how	exactly	that	works	in	the	next
chapter.

	bar(..)		has	its	own	scope	bubble.	So	does	the	global	scope,	which	has	just	one	identifier
attached	to	it:		foo	.
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Because		a	,		b	,		c	,	and		bar		all	belong	to	the	scope	bubble	of		foo(..)	,	they	are	not
accessible	outside	of		foo(..)	.	That	is,	the	following	code	would	all	result	in
	ReferenceError		errors,	as	the	identifiers	are	not	available	to	the	global	scope:

bar();	//	fails

console.log(	a,	b,	c	);	//	all	3	fail

However,	all	these	identifiers	(	a	,		b	,		c	,		foo	,	and		bar	)	are	accessible	inside	of
	foo(..)	,	and	indeed	also	available	inside	of		bar(..)		(assuming	there	are	no	shadow
identifier	declarations	inside		bar(..)	).

Function	scope	encourages	the	idea	that	all	variables	belong	to	the	function,	and	can	be
used	and	reused	throughout	the	entirety	of	the	function	(and	indeed,	accessible	even	to
nested	scopes).	This	design	approach	can	be	quite	useful,	and	certainly	can	make	full	use	of
the	"dynamic"	nature	of	JavaScript	variables	to	take	on	values	of	different	types	as	needed.

On	the	other	hand,	if	you	don't	take	careful	precautions,	variables	existing	across	the
entirety	of	a	scope	can	lead	to	some	unexpected	pitfalls.

Hiding	In	Plain	Scope
The	traditional	way	of	thinking	about	functions	is	that	you	declare	a	function,	and	then	add
code	inside	it.	But	the	inverse	thinking	is	equally	powerful	and	useful:	take	any	arbitrary
section	of	code	you've	written,	and	wrap	a	function	declaration	around	it,	which	in	effect
"hides"	the	code.

The	practical	result	is	to	create	a	scope	bubble	around	the	code	in	question,	which	means
that	any	declarations	(variable	or	function)	in	that	code	will	now	be	tied	to	the	scope	of	the
new	wrapping	function,	rather	than	the	previously	enclosing	scope.	In	other	words,	you	can
"hide"	variables	and	functions	by	enclosing	them	in	the	scope	of	a	function.

Why	would	"hiding"	variables	and	functions	be	a	useful	technique?

There's	a	variety	of	reasons	motivating	this	scope-based	hiding.	They	tend	to	arise	from	the
software	design	principle	"Principle	of	Least	Privilege"	 ,	also	sometimes
called	"Least	Authority"	or	"Least	Exposure".	This	principle	states	that	in	the	design	of
software,	such	as	the	API	for	a	module/object,	you	should	expose	only	what	is	minimally
necessary,	and	"hide"	everything	else.

This	principle	extends	to	the	choice	of	which	scope	to	contain	variables	and	functions.	If	all
variables	and	functions	were	in	the	global	scope,	they	would	of	course	be	accessible	to	any
nested	scope.	But	this	would	violate	the	"Least..."	principle	in	that	you	are	(likely)	exposing
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many	variables	or	functions	which	you	should	otherwise	keep	private,	as	proper	use	of	the
code	would	discourage	access	to	those	variables/functions.

For	example:

function	doSomething(a)	{

				b	=	a	+	doSomethingElse(	a	*	2	);

				console.log(	b	*	3	);

}

function	doSomethingElse(a)	{

				return	a	-	1;

}

var	b;

doSomething(	2	);	//	15

In	this	snippet,	the		b		variable	and	the		doSomethingElse(..)		function	are	likely	"private"
details	of	how		doSomething(..)		does	its	job.	Giving	the	enclosing	scope	"access"	to		b		and
	doSomethingElse(..)		is	not	only	unnecessary	but	also	possibly	"dangerous",	in	that	they
may	be	used	in	unexpected	ways,	intentionally	or	not,	and	this	may	violate	pre-condition
assumptions	of		doSomething(..)	.

A	more	"proper"	design	would	hide	these	private	details	inside	the	scope	of
	doSomething(..)	,	such	as:

function	doSomething(a)	{

				function	doSomethingElse(a)	{

								return	a	-	1;

				}

				var	b;

				b	=	a	+	doSomethingElse(	a	*	2	);

				console.log(	b	*	3	);

}

doSomething(	2	);	//	15

Now,		b		and		doSomethingElse(..)		are	not	accessible	to	any	outside	influence,	instead
controlled	only	by		doSomething(..)	.	The	functionality	and	end-result	has	not	been	affected,
but	the	design	keeps	private	details	private,	which	is	usually	considered	better	software.
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Collision	Avoidance

Another	benefit	of	"hiding"	variables	and	functions	inside	a	scope	is	to	avoid	unintended
collision	between	two	different	identifiers	with	the	same	name	but	different	intended	usages.
Collision	results	often	in	unexpected	overwriting	of	values.

For	example:

function	foo()	{

				function	bar(a)	{

								i	=	3;	//	changing	the	`i`	in	the	enclosing	scope's	for-loop

								console.log(	a	+	i	);

				}

				for	(var	i=0;	i<10;	i++)	{

								bar(	i	*	2	);	//	oops,	infinite	loop	ahead!

				}

}

foo();

The		i	=	3		assignment	inside	of		bar(..)		overwrites,	unexpectedly,	the		i		that	was
declared	in		foo(..)		at	the	for-loop.	In	this	case,	it	will	result	in	an	infinite	loop,	because		i	
is	set	to	a	fixed	value	of		3		and	that	will	forever	remain		<	10	.

The	assignment	inside		bar(..)		needs	to	declare	a	local	variable	to	use,	regardless	of	what
identifier	name	is	chosen.		var	i	=	3;		would	fix	the	problem	(and	would	create	the
previously	mentioned	"shadowed	variable"	declaration	for		i	).	An	additional,	not	alternate,
option	is	to	pick	another	identifier	name	entirely,	such	as		var	j	=	3;	.	But	your	software
design	may	naturally	call	for	the	same	identifier	name,	so	utilizing	scope	to	"hide"	your	inner
declaration	is	your	best/only	option	in	that	case.

Global	"Namespaces"

A	particularly	strong	example	of	(likely)	variable	collision	occurs	in	the	global	scope.	Multiple
libraries	loaded	into	your	program	can	quite	easily	collide	with	each	other	if	they	don't
properly	hide	their	internal/private	functions	and	variables.

Such	libraries	typically	will	create	a	single	variable	declaration,	often	an	object,	with	a
sufficiently	unique	name,	in	the	global	scope.	This	object	is	then	used	as	a	"namespace"	for
that	library,	where	all	specific	exposures	of	functionality	are	made	as	properties	of	that	object
(namespace),	rather	than	as	top-level	lexically	scoped	identifiers	themselves.

For	example:
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var	MyReallyCoolLibrary	=	{

				awesome:	"stuff",

				doSomething:	function()	{

								//	...

				},

				doAnotherThing:	function()	{

								//	...

				}

};

Module	Management

Another	option	for	collision	avoidance	is	the	more	modern	"module"	approach,	using	any	of
various	dependency	managers.	Using	these	tools,	no	libraries	ever	add	any	identifiers	to	the
global	scope,	but	are	instead	required	to	have	their	identifier(s)	be	explicitly	imported	into
another	specific	scope	through	usage	of	the	dependency	manager's	various	mechanisms.

It	should	be	observed	that	these	tools	do	not	possess	"magic"	functionality	that	is	exempt
from	lexical	scoping	rules.	They	simply	use	the	rules	of	scoping	as	explained	here	to	enforce
that	no	identifiers	are	injected	into	any	shared	scope,	and	are	instead	kept	in	private,	non-
collision-susceptible	scopes,	which	prevents	any	accidental	scope	collisions.

As	such,	you	can	code	defensively	and	achieve	the	same	results	as	the	dependency
managers	do	without	actually	needing	to	use	them,	if	you	so	choose.	See	the	Chapter	5	for
more	information	about	the	module	pattern.

Functions	As	Scopes
We've	seen	that	we	can	take	any	snippet	of	code	and	wrap	a	function	around	it,	and	that
effectively	"hides"	any	enclosed	variable	or	function	declarations	from	the	outside	scope
inside	that	function's	inner	scope.

For	example:
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var	a	=	2;

function	foo()	{	//	<--	insert	this

				var	a	=	3;

				console.log(	a	);	//	3

}	//	<--	and	this

foo();	//	<--	and	this

console.log(	a	);	//	2

While	this	technique	"works",	it	is	not	necessarily	very	ideal.	There	are	a	few	problems	it
introduces.	The	first	is	that	we	have	to	declare	a	named-function		foo()	,	which	means	that
the	identifier	name		foo		itself	"pollutes"	the	enclosing	scope	(global,	in	this	case).	We	also
have	to	explicitly	call	the	function	by	name	(	foo()	)	so	that	the	wrapped	code	actually
executes.

It	would	be	more	ideal	if	the	function	didn't	need	a	name	(or,	rather,	the	name	didn't	pollute
the	enclosing	scope),	and	if	the	function	could	automatically	be	executed.

Fortunately,	JavaScript	offers	a	solution	to	both	problems.

var	a	=	2;

(function	foo(){	//	<--	insert	this

				var	a	=	3;

				console.log(	a	);	//	3

})();	//	<--	and	this

console.log(	a	);	//	2

Let's	break	down	what's	happening	here.

First,	notice	that	the	wrapping	function	statement	starts	with		(function...		as	opposed	to
just		function...	.	While	this	may	seem	like	a	minor	detail,	it's	actually	a	major	change.
Instead	of	treating	the	function	as	a	standard	declaration,	the	function	is	treated	as	a
function-expression.

Note:	The	easiest	way	to	distinguish	declaration	vs.	expression	is	the	position	of	the	word
"function"	in	the	statement	(not	just	a	line,	but	a	distinct	statement).	If	"function"	is	the	very
first	thing	in	the	statement,	then	it's	a	function	declaration.	Otherwise,	it's	a	function
expression.
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The	key	difference	we	can	observe	here	between	a	function	declaration	and	a	function
expression	relates	to	where	its	name	is	bound	as	an	identifier.

Compare	the	previous	two	snippets.	In	the	first	snippet,	the	name		foo		is	bound	in	the
enclosing	scope,	and	we	call	it	directly	with		foo()	.	In	the	second	snippet,	the	name		foo		is
not	bound	in	the	enclosing	scope,	but	instead	is	bound	only	inside	of	its	own	function.

In	other	words,		(function	foo(){	..	})		as	an	expression	means	the	identifier		foo		is	found
only	in	the	scope	where	the		..		indicates,	not	in	the	outer	scope.	Hiding	the	name		foo	
inside	itself	means	it	does	not	pollute	the	enclosing	scope	unnecessarily.

Anonymous	vs.	Named

You	are	probably	most	familiar	with	function	expressions	as	callback	parameters,	such	as:

setTimeout(	function(){

				console.log("I	waited	1	second!");

},	1000	);

This	is	called	an	"anonymous	function	expression",	because		function()...		has	no	name
identifier	on	it.	Function	expressions	can	be	anonymous,	but	function	declarations	cannot
omit	the	name	--	that	would	be	illegal	JS	grammar.

Anonymous	function	expressions	are	quick	and	easy	to	type,	and	many	libraries	and	tools
tend	to	encourage	this	idiomatic	style	of	code.	However,	they	have	several	draw-backs	to
consider:

1.	 Anonymous	functions	have	no	useful	name	to	display	in	stack	traces,	which	can	make
debugging	more	difficult.

2.	 Without	a	name,	if	the	function	needs	to	refer	to	itself,	for	recursion,	etc.,	the
deprecated		arguments.callee		reference	is	unfortunately	required.	Another	example	of
needing	to	self-reference	is	when	an	event	handler	function	wants	to	unbind	itself	after	it
fires.

3.	 Anonymous	functions	omit	a	name	that	is	often	helpful	in	providing	more
readable/understandable	code.	A	descriptive	name	helps	self-document	the	code	in
question.

Inline	function	expressions	are	powerful	and	useful	--	the	question	of	anonymous	vs.
named	doesn't	detract	from	that.	Providing	a	name	for	your	function	expression	quite
effectively	addresses	all	these	draw-backs,	but	has	no	tangible	downsides.	The	best	practice
is	to	always	name	your	function	expressions:
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setTimeout(	function	timeoutHandler(){	//	<--	Look,	I	have	a	name!

				console.log(	"I	waited	1	second!"	);

},	1000	);

Invoking	Function	Expressions	Immediately

var	a	=	2;

(function	foo(){

				var	a	=	3;

				console.log(	a	);	//	3

})();

console.log(	a	);	//	2

Now	that	we	have	a	function	as	an	expression	by	virtue	of	wrapping	it	in	a		(	)		pair,	we	can
execute	that	function	by	adding	another		()		on	the	end,	like		(function	foo(){	..	})()	.	The
first	enclosing		(	)		pair	makes	the	function	an	expression,	and	the	second		()		executes
the	function.

This	pattern	is	so	common,	a	few	years	ago	the	community	agreed	on	a	term	for	it:	IIFE,
which	stands	for	Immediately	Invoked	Function	Expression.

Of	course,	IIFE's	don't	need	names,	necessarily	--	the	most	common	form	of	IIFE	is	to	use
an	anonymous	function	expression.	While	certainly	less	common,	naming	an	IIFE	has	all	the
aforementioned	benefits	over	anonymous	function	expressions,	so	it's	a	good	practice	to
adopt.

var	a	=	2;

(function	IIFE(){

				var	a	=	3;

				console.log(	a	);	//	3

})();

console.log(	a	);	//	2

There's	a	slight	variation	on	the	traditional	IIFE	form,	which	some	prefer:		(function(){	..	}
())	.	Look	closely	to	see	the	difference.	In	the	first	form,	the	function	expression	is	wrapped
in		(	)	,	and	then	the	invoking		()		pair	is	on	the	outside	right	after	it.	In	the	second	form,
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the	invoking		()		pair	is	moved	to	the	inside	of	the	outer		(	)		wrapping	pair.

These	two	forms	are	identical	in	functionality.	It's	purely	a	stylistic	choice	which	you
prefer.

Another	variation	on	IIFE's	which	is	quite	common	is	to	use	the	fact	that	they	are,	in	fact,	just
function	calls,	and	pass	in	argument(s).

For	instance:

var	a	=	2;

(function	IIFE(	global	){

				var	a	=	3;

				console.log(	a	);	//	3

				console.log(	global.a	);	//	2

})(	window	);

console.log(	a	);	//	2

We	pass	in	the		window		object	reference,	but	we	name	the	parameter		global	,	so	that	we
have	a	clear	stylistic	delineation	for	global	vs.	non-global	references.	Of	course,	you	can
pass	in	anything	from	an	enclosing	scope	you	want,	and	you	can	name	the	parameter(s)
anything	that	suits	you.	This	is	mostly	just	stylistic	choice.

Another	application	of	this	pattern	addresses	the	(minor	niche)	concern	that	the	default
	undefined		identifier	might	have	its	value	incorrectly	overwritten,	causing	unexpected
results.	By	naming	a	parameter		undefined	,	but	not	passing	any	value	for	that	argument,	we
can	guarantee	that	the		undefined		identifier	is	in	fact	the	undefined	value	in	a	block	of	code:

undefined	=	true;	//	setting	a	land-mine	for	other	code!	avoid!

(function	IIFE(	undefined	){

				var	a;

				if	(a	===	undefined)	{

								console.log(	"Undefined	is	safe	here!"	);

				}

})();

Still	another	variation	of	the	IIFE	inverts	the	order	of	things,	where	the	function	to	execute	is
given	second,	after	the	invocation	and	parameters	to	pass	to	it.	This	pattern	is	used	in	the
UMD	(Universal	Module	Definition)	project.	Some	people	find	it	a	little	cleaner	to	understand,
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though	it	is	slightly	more	verbose.

var	a	=	2;

(function	IIFE(	def	){

				def(	window	);

})(function	def(	global	){

				var	a	=	3;

				console.log(	a	);	//	3

				console.log(	global.a	);	//	2

});

The		def		function	expression	is	defined	in	the	second-half	of	the	snippet,	and	then	passed
as	a	parameter	(also	called		def	)	to	the		IIFE		function	defined	in	the	first	half	of	the
snippet.	Finally,	the	parameter		def		(the	function)	is	invoked,	passing		window		in	as	the
	global		parameter.

Blocks	As	Scopes
While	functions	are	the	most	common	unit	of	scope,	and	certainly	the	most	wide-spread	of
the	design	approaches	in	the	majority	of	JS	in	circulation,	other	units	of	scope	are	possible,
and	the	usage	of	these	other	scope	units	can	lead	to	even	better,	cleaner	to	maintain	code.

Many	languages	other	than	JavaScript	support	Block	Scope,	and	so	developers	from	those
languages	are	accustomed	to	the	mindset,	whereas	those	who've	primarily	only	worked	in
JavaScript	may	find	the	concept	slightly	foreign.

But	even	if	you've	never	written	a	single	line	of	code	in	block-scoped	fashion,	you	are	still
probably	familiar	with	this	extremely	common	idiom	in	JavaScript:

for	(var	i=0;	i<10;	i++)	{

				console.log(	i	);

}

We	declare	the	variable		i		directly	inside	the	for-loop	head,	most	likely	because	our	intent
is	to	use		i		only	within	the	context	of	that	for-loop,	and	essentially	ignore	the	fact	that	the
variable	actually	scopes	itself	to	the	enclosing	scope	(function	or	global).

That's	what	block-scoping	is	all	about.	Declaring	variables	as	close	as	possible,	as	local	as
possible,	to	where	they	will	be	used.	Another	example:
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var	foo	=	true;

if	(foo)	{

				var	bar	=	foo	*	2;

				bar	=	something(	bar	);

				console.log(	bar	);

}

We	are	using	a		bar		variable	only	in	the	context	of	the	if-statement,	so	it	makes	a	kind	of
sense	that	we	would	declare	it	inside	the	if-block.	However,	where	we	declare	variables	is
not	relevant	when	using		var	,	because	they	will	always	belong	to	the	enclosing	scope.	This
snippet	is	essentially	"fake"	block-scoping,	for	stylistic	reasons,	and	relying	on	self-
enforcement	not	to	accidentally	use		bar		in	another	place	in	that	scope.

Block	scope	is	a	tool	to	extend	the	earlier	"Principle	of	Least	Privilege	Exposure"	
	from	hiding	information	in	functions	to	hiding	information	in	blocks	of	our	code.

Consider	the	for-loop	example	again:

for	(var	i=0;	i<10;	i++)	{

				console.log(	i	);

}

Why	pollute	the	entire	scope	of	a	function	with	the		i		variable	that	is	only	going	to	be	(or
only	should	be,	at	least)	used	for	the	for-loop?

But	more	importantly,	developers	may	prefer	to	check	themselves	against	accidentally
(re)using	variables	outside	of	their	intended	purpose,	such	as	being	issued	an	error	about	an
unknown	variable	if	you	try	to	use	it	in	the	wrong	place.	Block-scoping	(if	it	were	possible)	for
the		i		variable	would	make		i		available	only	for	the	for-loop,	causing	an	error	if		i		is
accessed	elsewhere	in	the	function.	This	helps	ensure	variables	are	not	re-used	in	confusing
or	hard-to-maintain	ways.

But,	the	sad	reality	is	that,	on	the	surface,	JavaScript	has	no	facility	for	block	scope.

That	is,	until	you	dig	a	little	further.

	with	

We	learned	about		with		in	Chapter	2.	While	it	is	a	frowned	upon	construct,	it	is	an	example
of	(a	form	of)	block	scope,	in	that	the	scope	that	is	created	from	the	object	only	exists	for	the
lifetime	of	that		with		statement,	and	not	in	the	enclosing	scope.

note-
leastprivilege
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	try/catch	

It's	a	very	little	known	fact	that	JavaScript	in	ES3	specified	the	variable	declaration	in	the
	catch		clause	of	a		try/catch		to	be	block-scoped	to	the		catch		block.

For	instance:

try	{

				undefined();	//	illegal	operation	to	force	an	exception!

}

catch	(err)	{

				console.log(	err	);	//	works!

}

console.log(	err	);	//	ReferenceError:	`err`	not	found

As	you	can	see,		err		exists	only	in	the		catch		clause,	and	throws	an	error	when	you	try	to
reference	it	elsewhere.

Note:	While	this	behavior	has	been	specified	and	true	of	practically	all	standard	JS
environments	(except	perhaps	old	IE),	many	linters	seem	to	still	complain	if	you	have	two	or
more		catch		clauses	in	the	same	scope	which	each	declare	their	error	variable	with	the
same	identifier	name.	This	is	not	actually	a	re-definition,	since	the	variables	are	safely	block-
scoped,	but	the	linters	still	seem	to,	annoyingly,	complain	about	this	fact.

To	avoid	these	unnecessary	warnings,	some	devs	will	name	their		catch		variables		err1	,
	err2	,	etc.	Other	devs	will	simply	turn	off	the	linting	check	for	duplicate	variable	names.

The	block-scoping	nature	of		catch		may	seem	like	a	useless	academic	fact,	but	see
Appendix	B	for	more	information	on	just	how	useful	it	might	be.

	let	

Thus	far,	we've	seen	that	JavaScript	only	has	some	strange	niche	behaviors	which	expose
block	scope	functionality.	If	that	were	all	we	had,	and	it	was	for	many,	many	years,	then
block	scoping	would	not	be	terribly	useful	to	the	JavaScript	developer.

Fortunately,	ES6	changes	that,	and	introduces	a	new	keyword		let		which	sits	alongside
	var		as	another	way	to	declare	variables.

The		let		keyword	attaches	the	variable	declaration	to	the	scope	of	whatever	block
(commonly	a		{	..	}		pair)	it's	contained	in.	In	other	words,		let		implicitly	hijacks	any
block's	scope	for	its	variable	declaration.
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var	foo	=	true;

if	(foo)	{

				let	bar	=	foo	*	2;

				bar	=	something(	bar	);

				console.log(	bar	);

}

console.log(	bar	);	//	ReferenceError

Using		let		to	attach	a	variable	to	an	existing	block	is	somewhat	implicit.	It	can	confuse	you
if	you're	not	paying	close	attention	to	which	blocks	have	variables	scoped	to	them,	and	are
in	the	habit	of	moving	blocks	around,	wrapping	them	in	other	blocks,	etc.,	as	you	develop
and	evolve	code.

Creating	explicit	blocks	for	block-scoping	can	address	some	of	these	concerns,	making	it
more	obvious	where	variables	are	attached	and	not.	Usually,	explicit	code	is	preferable	over
implicit	or	subtle	code.	This	explicit	block-scoping	style	is	easy	to	achieve,	and	fits	more
naturally	with	how	block-scoping	works	in	other	languages:

var	foo	=	true;

if	(foo)	{

				{	//	<--	explicit	block

								let	bar	=	foo	*	2;

								bar	=	something(	bar	);

								console.log(	bar	);

				}

}

console.log(	bar	);	//	ReferenceError

We	can	create	an	arbitrary	block	for		let		to	bind	to	by	simply	including	a		{	..	}		pair
anywhere	a	statement	is	valid	grammar.	In	this	case,	we've	made	an	explicit	block	inside	the
if-statement,	which	may	be	easier	as	a	whole	block	to	move	around	later	in	refactoring,
without	affecting	the	position	and	semantics	of	the	enclosing	if-statement.

Note:	For	another	way	to	express	explicit	block	scopes,	see	Appendix	B.

In	Chapter	4,	we	will	address	hoisting,	which	talks	about	declarations	being	taken	as	existing
for	the	entire	scope	in	which	they	occur.

However,	declarations	made	with		let		will	not	hoist	to	the	entire	scope	of	the	block	they
appear	in.	Such	declarations	will	not	observably	"exist"	in	the	block	until	the	declaration
statement.
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{

			console.log(	bar	);	//	ReferenceError!

			let	bar	=	2;

}

Garbage	Collection

Another	reason	block-scoping	is	useful	relates	to	closures	and	garbage	collection	to	reclaim
memory.	We'll	briefly	illustrate	here,	but	the	closure	mechanism	is	explained	in	detail	in
Chapter	5.

Consider:

function	process(data)	{

				//	do	something	interesting

}

var	someReallyBigData	=	{	..	};

process(	someReallyBigData	);

var	btn	=	document.getElementById(	"my_button"	);

btn.addEventListener(	"click",	function	click(evt){

				console.log("button	clicked");

},	/*capturingPhase=*/false	);

The		click		function	click	handler	callback	doesn't	need	the		someReallyBigData		variable	at
all.	That	means,	theoretically,	after		process(..)		runs,	the	big	memory-heavy	data	structure
could	be	garbage	collected.	However,	it's	quite	likely	(though	implementation	dependent)
that	the	JS	engine	will	still	have	to	keep	the	structure	around,	since	the		click		function	has
a	closure	over	the	entire	scope.

Block-scoping	can	address	this	concern,	making	it	clearer	to	the	engine	that	it	does	not	need
to	keep		someReallyBigData		around:
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function	process(data)	{

				//	do	something	interesting

}

//	anything	declared	inside	this	block	can	go	away	after!

{

				let	someReallyBigData	=	{	..	};

				process(	someReallyBigData	);

}

var	btn	=	document.getElementById(	"my_button"	);

btn.addEventListener(	"click",	function	click(evt){

				console.log("button	clicked");

},	/*capturingPhase=*/false	);

Declaring	explicit	blocks	for	variables	to	locally	bind	to	is	a	powerful	tool	that	you	can	add	to
your	code	toolbox.

	let		Loops

A	particular	case	where		let		shines	is	in	the	for-loop	case	as	we	discussed	previously.

for	(let	i=0;	i<10;	i++)	{

				console.log(	i	);

}

console.log(	i	);	//	ReferenceError

Not	only	does		let		in	the	for-loop	header	bind	the		i		to	the	for-loop	body,	but	in	fact,	it	re-
binds	it	to	each	iteration	of	the	loop,	making	sure	to	re-assign	it	the	value	from	the	end	of
the	previous	loop	iteration.

Here's	another	way	of	illustrating	the	per-iteration	binding	behavior	that	occurs:

{

				let	j;

				for	(j=0;	j<10;	j++)	{

								let	i	=	j;	//	re-bound	for	each	iteration!

								console.log(	i	);

				}

}

The	reason	why	this	per-iteration	binding	is	interesting	will	become	clear	in	Chapter	5	when
we	discuss	closures.
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Because		let		declarations	attach	to	arbitrary	blocks	rather	than	to	the	enclosing	function's
scope	(or	global),	there	can	be	gotchas	where	existing	code	has	a	hidden	reliance	on
function-scoped		var		declarations,	and	replacing	the		var		with		let		may	require	additional
care	when	refactoring	code.

Consider:

var	foo	=	true,	baz	=	10;

if	(foo)	{

				var	bar	=	3;

				if	(baz	>	bar)	{

								console.log(	baz	);

				}

				//	...

}

This	code	is	fairly	easily	re-factored	as:

var	foo	=	true,	baz	=	10;

if	(foo)	{

				var	bar	=	3;

				//	...

}

if	(baz	>	bar)	{

				console.log(	baz	);

}

But,	be	careful	of	such	changes	when	using	block-scoped	variables:

var	foo	=	true,	baz	=	10;

if	(foo)	{

				let	bar	=	3;

				if	(baz	>	bar)	{	//	<--	don't	forget	`bar`	when	moving!

								console.log(	baz	);

				}

}

See	Appendix	B	for	an	alternate	(more	explicit)	style	of	block-scoping	which	may	provide
easier	to	maintain/refactor	code	that's	more	robust	to	these	scenarios.
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	const	

In	addition	to		let	,	ES6	introduces		const	,	which	also	creates	a	block-scoped	variable,	but
whose	value	is	fixed	(constant).	Any	attempt	to	change	that	value	at	a	later	time	results	in	an
error.

var	foo	=	true;

if	(foo)	{

				var	a	=	2;

				const	b	=	3;	//	block-scoped	to	the	containing	`if`

				a	=	3;	//	just	fine!

				b	=	4;	//	error!

}

console.log(	a	);	//	3

console.log(	b	);	//	ReferenceError!

Review	(TL;DR)
Functions	are	the	most	common	unit	of	scope	in	JavaScript.	Variables	and	functions	that	are
declared	inside	another	function	are	essentially	"hidden"	from	any	of	the	enclosing	"scopes",
which	is	an	intentional	design	principle	of	good	software.

But	functions	are	by	no	means	the	only	unit	of	scope.	Block-scope	refers	to	the	idea	that
variables	and	functions	can	belong	to	an	arbitrary	block	(generally,	any		{	..	}		pair)	of
code,	rather	than	only	to	the	enclosing	function.

Starting	with	ES3,	the		try/catch		structure	has	block-scope	in	the		catch		clause.

In	ES6,	the		let		keyword	(a	cousin	to	the		var		keyword)	is	introduced	to	allow	declarations
of	variables	in	any	arbitrary	block	of	code.		if	(..)	{	let	a	=	2;	}		will	declare	a	variable
	a		that	essentially	hijacks	the	scope	of	the		if	's		{	..	}		block	and	attaches	itself	there.

Though	some	seem	to	believe	so,	block	scope	should	not	be	taken	as	an	outright
replacement	of		var		function	scope.	Both	functionalities	co-exist,	and	developers	can	and
should	use	both	function-scope	and	block-scope	techniques	where	respectively	appropriate
to	produce	better,	more	readable/maintainable	code.

.	Principle	of	Least	Privilege	↩note-leastprivilege
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Chapter	4:	Hoisting
By	now,	you	should	be	fairly	comfortable	with	the	idea	of	scope,	and	how	variables	are
attached	to	different	levels	of	scope	depending	on	where	and	how	they	are	declared.	Both
function	scope	and	block	scope	behave	by	the	same	rules	in	this	regard:	any	variable
declared	within	a	scope	is	attached	to	that	scope.

But	there's	a	subtle	detail	of	how	scope	attachment	works	with	declarations	that	appear	in
various	locations	within	a	scope,	and	that	detail	is	what	we	will	examine	here.

Chicken	Or	The	Egg?
There's	a	temptation	to	think	that	all	of	the	code	you	see	in	a	JavaScript	program	is
interpreted	line-by-line,	top-down	in	order,	as	the	program	executes.	While	that	is
substantially	true,	there's	one	part	of	that	assumption	which	can	lead	to	incorrect	thinking
about	your	program.

Consider	this	code:

a	=	2;

var	a;

console.log(	a	);

What	do	you	expect	to	be	printed	in	the		console.log(..)		statement?

Many	developers	would	expect		undefined	,	since	the		var	a		statement	comes	after	the		a	=
2	,	and	it	would	seem	natural	to	assume	that	the	variable	is	re-defined,	and	thus	assigned
the	default		undefined	.	However,	the	output	will	be		2	.

Consider	another	piece	of	code:

console.log(	a	);

var	a	=	2;

You	might	be	tempted	to	assume	that,	since	the	previous	snippet	exhibited	some	less-than-
top-down	looking	behavior,	perhaps	in	this	snippet,		2		will	also	be	printed.	Others	may	think
that	since	the		a		variable	is	used	before	it	is	declared,	this	must	result	in	a		ReferenceError	
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being	thrown.

Unfortunately,	both	guesses	are	incorrect.		undefined		is	the	output.

So,	what's	going	on	here?	It	would	appear	we	have	a	chicken-and-the-egg	question.
Which	comes	first,	the	declaration	("egg"),	or	the	assignment	("chicken")?

The	Compiler	Strikes	Again
To	answer	this	question,	we	need	to	refer	back	to	Chapter	1,	and	our	discussion	of
compilers.	Recall	that	the	Engine	actually	will	compile	your	JavaScript	code	before	it
interprets	it.	Part	of	the	compilation	phase	was	to	find	and	associate	all	declarations	with
their	appropriate	scopes.	Chapter	2	showed	us	that	this	is	the	heart	of	Lexical	Scope.

So,	the	best	way	to	think	about	things	is	that	all	declarations,	both	variables	and	functions,
are	processed	first,	before	any	part	of	your	code	is	executed.

When	you	see		var	a	=	2;	,	you	probably	think	of	that	as	one	statement.	But	JavaScript
actually	thinks	of	it	as	two	statements:		var	a;		and		a	=	2;	.	The	first	statement,	the
declaration,	is	processed	during	the	compilation	phase.	The	second	statement,	the
assignment,	is	left	in	place	for	the	execution	phase.

Our	first	snippet	then	should	be	thought	of	as	being	handled	like	this:

var	a;

a	=	2;

console.log(	a	);

...where	the	first	part	is	the	compilation	and	the	second	part	is	the	execution.

Similarly,	our	second	snippet	is	actually	processed	as:

var	a;

console.log(	a	);

a	=	2;
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So,	one	way	of	thinking,	sort	of	metaphorically,	about	this	process,	is	that	variable	and
function	declarations	are	"moved"	from	where	they	appear	in	the	flow	of	the	code	to	the	top
of	the	code.	This	gives	rise	to	the	name	"Hoisting".

In	other	words,	the	egg	(declaration)	comes	before	the	chicken	(assignment).

Note:	Only	the	declarations	themselves	are	hoisted,	while	any	assignments	or	other
executable	logic	are	left	in	place.	If	hoisting	were	to	re-arrange	the	executable	logic	of	our
code,	that	could	wreak	havoc.

foo();

function	foo()	{

				console.log(	a	);	//	undefined

				var	a	=	2;

}

The	function		foo	's	declaration	(which	in	this	case	includes	the	implied	value	of	it	as	an
actual	function)	is	hoisted,	such	that	the	call	on	the	first	line	is	able	to	execute.

It's	also	important	to	note	that	hoisting	is	per-scope.	So	while	our	previous	snippets	were
simplified	in	that	they	only	included	global	scope,	the		foo(..)		function	we	are	now
examining	itself	exhibits	that		var	a		is	hoisted	to	the	top	of		foo(..)		(not,	obviously,	to	the
top	of	the	program).	So	the	program	can	perhaps	be	more	accurately	interpreted	like	this:

function	foo()	{

				var	a;

				console.log(	a	);	//	undefined

				a	=	2;

}

foo();

Function	declarations	are	hoisted,	as	we	just	saw.	But	function	expressions	are	not.

foo();	//	not	ReferenceError,	but	TypeError!

var	foo	=	function	bar()	{

				//	...

};
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The	variable	identifier		foo		is	hoisted	and	attached	to	the	enclosing	scope	(global)	of	this
program,	so		foo()		doesn't	fail	as	a		ReferenceError	.	But		foo		has	no	value	yet	(as	it	would
if	it	had	been	a	true	function	declaration	instead	of	expression).	So,		foo()		is	attempting	to
invoke	the		undefined		value,	which	is	a		TypeError		illegal	operation.

Also	recall	that	even	though	it's	a	named	function	expression,	the	name	identifier	is	not
available	in	the	enclosing	scope:

foo();	//	TypeError

bar();	//	ReferenceError

var	foo	=	function	bar()	{

				//	...

};

This	snippet	is	more	accurately	interpreted	(with	hoisting)	as:

var	foo;

foo();	//	TypeError

bar();	//	ReferenceError

foo	=	function()	{

				var	bar	=	...self...

				//	...

}

Functions	First
Both	function	declarations	and	variable	declarations	are	hoisted.	But	a	subtle	detail	(that	can
show	up	in	code	with	multiple	"duplicate"	declarations)	is	that	functions	are	hoisted	first,	and
then	variables.

Consider:
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foo();	//	1

var	foo;

function	foo()	{

				console.log(	1	);

}

foo	=	function()	{

				console.log(	2	);

};

	1		is	printed	instead	of		2	!	This	snippet	is	interpreted	by	the	Engine	as:

function	foo()	{

				console.log(	1	);

}

foo();	//	1

foo	=	function()	{

				console.log(	2	);

};

Notice	that		var	foo		was	the	duplicate	(and	thus	ignored)	declaration,	even	though	it	came
before	the		function	foo()...		declaration,	because	function	declarations	are	hoisted	before
normal	variables.

While	multiple/duplicate		var		declarations	are	effectively	ignored,	subsequent	function
declarations	do	override	previous	ones.

foo();	//	3

function	foo()	{

				console.log(	1	);

}

var	foo	=	function()	{

				console.log(	2	);

};

function	foo()	{

				console.log(	3	);

}
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While	this	all	may	sound	like	nothing	more	than	interesting	academic	trivia,	it	highlights	the
fact	that	duplicate	definitions	in	the	same	scope	are	a	really	bad	idea	and	will	often	lead	to
confusing	results.

Function	declarations	that	appear	inside	of	normal	blocks	typically	hoist	to	the	enclosing
scope,	rather	than	being	conditional	as	this	code	implies:

foo();	//	"b"

var	a	=	true;

if	(a)	{

			function	foo()	{	console.log(	"a"	);	}

}

else	{

			function	foo()	{	console.log(	"b"	);	}

}

However,	it's	important	to	note	that	this	behavior	is	not	reliable	and	is	subject	to	change	in
future	versions	of	JavaScript,	so	it's	probably	best	to	avoid	declaring	functions	in	blocks.

Review	(TL;DR)
We	can	be	tempted	to	look	at		var	a	=	2;		as	one	statement,	but	the	JavaScript	Engine
does	not	see	it	that	way.	It	sees		var	a		and		a	=	2		as	two	separate	statements,	the	first
one	a	compiler-phase	task,	and	the	second	one	an	execution-phase	task.

What	this	leads	to	is	that	all	declarations	in	a	scope,	regardless	of	where	they	appear,	are
processed	first	before	the	code	itself	is	executed.	You	can	visualize	this	as	declarations
(variables	and	functions)	being	"moved"	to	the	top	of	their	respective	scopes,	which	we	call
"hoisting".

Declarations	themselves	are	hoisted,	but	assignments,	even	assignments	of	function
expressions,	are	not	hoisted.

Be	careful	about	duplicate	declarations,	especially	mixed	between	normal	var	declarations
and	function	declarations	--	peril	awaits	if	you	do!
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Chapter	5:	Scope	Closure
We	arrive	at	this	point	with	hopefully	a	very	healthy,	solid	understanding	of	how	scope
works.

We	turn	our	attention	to	an	incredibly	important,	but	persistently	elusive,	almost
mythological,	part	of	the	language:	closure.	If	you	have	followed	our	discussion	of	lexical
scope	thus	far,	the	payoff	is	that	closure	is	going	to	be,	largely,	anticlimactic,	almost	self-
obvious.	There's	a	man	behind	the	wizard's	curtain,	and	we're	about	to	see	him.	No,	his
name	is	not	Crockford!

If	however	you	have	nagging	questions	about	lexical	scope,	now	would	be	a	good	time	to	go
back	and	review	Chapter	2	before	proceeding.

Enlightenment
For	those	who	are	somewhat	experienced	in	JavaScript,	but	have	perhaps	never	fully
grasped	the	concept	of	closures,	understanding	closure	can	seem	like	a	special	nirvana	that
one	must	strive	and	sacrifice	to	attain.

I	recall	years	back	when	I	had	a	firm	grasp	on	JavaScript,	but	had	no	idea	what	closure	was.
The	hint	that	there	was	this	other	side	to	the	language,	one	which	promised	even	more
capability	than	I	already	possessed,	teased	and	taunted	me.	I	remember	reading	through	the
source	code	of	early	frameworks	trying	to	understand	how	it	actually	worked.	I	remember	the
first	time	something	of	the	"module	pattern"	began	to	emerge	in	my	mind.	I	remember	the	a-
ha!	moments	quite	vividly.

What	I	didn't	know	back	then,	what	took	me	years	to	understand,	and	what	I	hope	to	impart
to	you	presently,	is	this	secret:	closure	is	all	around	you	in	JavaScript,	you	just	have	to
recognize	and	embrace	it.	Closures	are	not	a	special	opt-in	tool	that	you	must	learn	new
syntax	and	patterns	for.	No,	closures	are	not	even	a	weapon	that	you	must	learn	to	wield
and	master	as	Luke	trained	in	The	Force.

Closures	happen	as	a	result	of	writing	code	that	relies	on	lexical	scope.	They	just	happen.
You	do	not	even	really	have	to	intentionally	create	closures	to	take	advantage	of	them.
Closures	are	created	and	used	for	you	all	over	your	code.	What	you	are	missing	is	the
proper	mental	context	to	recognize,	embrace,	and	leverage	closures	for	your	own	will.
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The	enlightenment	moment	should	be:	oh,	closures	are	already	occurring	all	over	my
code,	I	can	finally	see	them	now.	Understanding	closures	is	like	when	Neo	sees	the	Matrix
for	the	first	time.

Nitty	Gritty
OK,	enough	hyperbole	and	shameless	movie	references.

Here's	a	down-n-dirty	definition	of	what	you	need	to	know	to	understand	and	recognize
closures:

Closure	is	when	a	function	is	able	to	remember	and	access	its	lexical	scope	even	when
that	function	is	executing	outside	its	lexical	scope.

Let's	jump	into	some	code	to	illustrate	that	definition.

function	foo()	{

				var	a	=	2;

				function	bar()	{

								console.log(	a	);	//	2

				}

				bar();

}

foo();

This	code	should	look	familiar	from	our	discussions	of	Nested	Scope.	Function		bar()		has
access	to	the	variable		a		in	the	outer	enclosing	scope	because	of	lexical	scope	look-up
rules	(in	this	case,	it's	an	RHS	reference	look-up).

Is	this	"closure"?

Well,	technically...	perhaps.	But	by	our	what-you-need-to-know	definition	above...	not
exactly.	I	think	the	most	accurate	way	to	explain		bar()		referencing		a		is	via	lexical	scope
look-up	rules,	and	those	rules	are	only	(an	important!)	part	of	what	closure	is.

From	a	purely	academic	perspective,	what	is	said	of	the	above	snippet	is	that	the	function
	bar()		has	a	closure	over	the	scope	of		foo()		(and	indeed,	even	over	the	rest	of	the
scopes	it	has	access	to,	such	as	the	global	scope	in	our	case).	Put	slightly	differently,	it's
said	that		bar()		closes	over	the	scope	of		foo()	.	Why?	Because		bar()		appears	nested
inside	of		foo()	.	Plain	and	simple.
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But,	closure	defined	in	this	way	is	not	directly	observable,	nor	do	we	see	closure	exercised
in	that	snippet.	We	clearly	see	lexical	scope,	but	closure	remains	sort	of	a	mysterious
shifting	shadow	behind	the	code.

Let	us	then	consider	code	which	brings	closure	into	full	light:

function	foo()	{

				var	a	=	2;

				function	bar()	{

								console.log(	a	);

				}

				return	bar;

}

var	baz	=	foo();

baz();	//	2	--	Whoa,	closure	was	just	observed,	man.

The	function		bar()		has	lexical	scope	access	to	the	inner	scope	of		foo()	.	But	then,	we
take		bar()	,	the	function	itself,	and	pass	it	as	a	value.	In	this	case,	we		return		the	function
object	itself	that		bar		references.

After	we	execute		foo()	,	we	assign	the	value	it	returned	(our	inner		bar()		function)	to	a
variable	called		baz	,	and	then	we	actually	invoke		baz()	,	which	of	course	is	invoking	our
inner	function		bar()	,	just	by	a	different	identifier	reference.

	bar()		is	executed,	for	sure.	But	in	this	case,	it's	executed	outside	of	its	declared	lexical
scope.

After		foo()		executed,	normally	we	would	expect	that	the	entirety	of	the	inner	scope	of
	foo()		would	go	away,	because	we	know	that	the	Engine	employs	a	Garbage	Collector	that
comes	along	and	frees	up	memory	once	it's	no	longer	in	use.	Since	it	would	appear	that	the
contents	of		foo()		are	no	longer	in	use,	it	would	seem	natural	that	they	should	be
considered	gone.

But	the	"magic"	of	closures	does	not	let	this	happen.	That	inner	scope	is	in	fact	still	"in	use",
and	thus	does	not	go	away.	Who's	using	it?	The	function		bar()		itself.

By	virtue	of	where	it	was	declared,		bar()		has	a	lexical	scope	closure	over	that	inner	scope
of		foo()	,	which	keeps	that	scope	alive	for		bar()		to	reference	at	any	later	time.

	bar()		still	has	a	reference	to	that	scope,	and	that	reference	is	called	closure.
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So,	a	few	microseconds	later,	when	the	variable		baz		is	invoked	(invoking	the	inner	function
we	initially	labeled		bar	),	it	duly	has	access	to	author-time	lexical	scope,	so	it	can	access
the	variable		a		just	as	we'd	expect.

The	function	is	being	invoked	well	outside	of	its	author-time	lexical	scope.	Closure	lets	the
function	continue	to	access	the	lexical	scope	it	was	defined	in	at	author-time.

Of	course,	any	of	the	various	ways	that	functions	can	be	passed	around	as	values,	and
indeed	invoked	in	other	locations,	are	all	examples	of	observing/exercising	closure.

function	foo()	{

				var	a	=	2;

				function	baz()	{

								console.log(	a	);	//	2

				}

				bar(	baz	);

}

function	bar(fn)	{

				fn();	//	look	ma,	I	saw	closure!

}

We	pass	the	inner	function		baz		over	to		bar	,	and	call	that	inner	function	(labeled		fn	
now),	and	when	we	do,	its	closure	over	the	inner	scope	of		foo()		is	observed,	by	accessing
	a	.

These	passings-around	of	functions	can	be	indirect,	too.
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var	fn;

function	foo()	{

				var	a	=	2;

				function	baz()	{

								console.log(	a	);

				}

				fn	=	baz;	//	assign	`baz`	to	global	variable

}

function	bar()	{

				fn();	//	look	ma,	I	saw	closure!

}

foo();

bar();	//	2

Whatever	facility	we	use	to	transport	an	inner	function	outside	of	its	lexical	scope,	it	will
maintain	a	scope	reference	to	where	it	was	originally	declared,	and	wherever	we	execute	it,
that	closure	will	be	exercised.

Now	I	Can	See
The	previous	code	snippets	are	somewhat	academic	and	artificially	constructed	to	illustrate
using	closure.	But	I	promised	you	something	more	than	just	a	cool	new	toy.	I	promised	that
closure	was	something	all	around	you	in	your	existing	code.	Let	us	now	see	that	truth.

function	wait(message)	{

				setTimeout(	function	timer(){

								console.log(	message	);

				},	1000	);

}

wait(	"Hello,	closure!"	);

We	take	an	inner	function	(named		timer	)	and	pass	it	to		setTimeout(..)	.	But		timer		has	a
scope	closure	over	the	scope	of		wait(..)	,	indeed	keeping	and	using	a	reference	to	the
variable		message	.
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A	thousand	milliseconds	after	we	have	executed		wait(..)	,	and	its	inner	scope	should
otherwise	be	long	gone,	that	inner	function		timer		still	has	closure	over	that	scope.

Deep	down	in	the	guts	of	the	Engine,	the	built-in	utility		setTimeout(..)		has	reference	to
some	parameter,	probably	called		fn		or		func		or	something	like	that.	Engine	goes	to	invoke
that	function,	which	is	invoking	our	inner		timer		function,	and	the	lexical	scope	reference	is
still	intact.

Closure.

Or,	if	you're	of	the	jQuery	persuasion	(or	any	JS	framework,	for	that	matter):

function	setupBot(name,selector)	{

				$(	selector	).click(	function	activator(){

								console.log(	"Activating:	"	+	name	);

				}	);

}

setupBot(	"Closure	Bot	1",	"#bot_1"	);

setupBot(	"Closure	Bot	2",	"#bot_2"	);

I	am	not	sure	what	kind	of	code	you	write,	but	I	regularly	write	code	which	is	responsible	for
controlling	an	entire	global	drone	army	of	closure	bots,	so	this	is	totally	realistic!

(Some)	joking	aside,	essentially	whenever	and	wherever	you	treat	functions	(which	access
their	own	respective	lexical	scopes)	as	first-class	values	and	pass	them	around,	you	are
likely	to	see	those	functions	exercising	closure.	Be	that	timers,	event	handlers,	Ajax
requests,	cross-window	messaging,	web	workers,	or	any	of	the	other	asynchronous	(or
synchronous!)	tasks,	when	you	pass	in	a	callback	function,	get	ready	to	sling	some	closure
around!

Note:	Chapter	3	introduced	the	IIFE	pattern.	While	it	is	often	said	that	IIFE	(alone)	is	an
example	of	observed	closure,	I	would	somewhat	disagree,	by	our	definition	above.

var	a	=	2;

(function	IIFE(){

				console.log(	a	);

})();

This	code	"works",	but	it's	not	strictly	an	observation	of	closure.	Why?	Because	the	function
(which	we	named	"IIFE"	here)	is	not	executed	outside	its	lexical	scope.	It's	still	invoked	right
there	in	the	same	scope	as	it	was	declared	(the	enclosing/global	scope	that	also	holds		a	).
	a		is	found	via	normal	lexical	scope	look-up,	not	really	via	closure.
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While	closure	might	technically	be	happening	at	declaration	time,	it	is	not	strictly	observable,
and	so,	as	they	say,	it's	a	tree	falling	in	the	forest	with	no	one	around	to	hear	it.

Though	an	IIFE	is	not	itself	an	example	of	closure,	it	absolutely	creates	scope,	and	it's	one
of	the	most	common	tools	we	use	to	create	scope	which	can	be	closed	over.	So	IIFEs	are
indeed	heavily	related	to	closure,	even	if	not	exercising	closure	themselves.

Put	this	book	down	right	now,	dear	reader.	I	have	a	task	for	you.	Go	open	up	some	of	your
recent	JavaScript	code.	Look	for	your	functions-as-values	and	identify	where	you	are
already	using	closure	and	maybe	didn't	even	know	it	before.

I'll	wait.

Now...	you	see!

Loops	+	Closure
The	most	common	canonical	example	used	to	illustrate	closure	involves	the	humble	for-loop.

for	(var	i=1;	i<=5;	i++)	{

				setTimeout(	function	timer(){

								console.log(	i	);

				},	i*1000	);

}

Note:	Linters	often	complain	when	you	put	functions	inside	of	loops,	because	the	mistakes
of	not	understanding	closure	are	so	common	among	developers.	We	explain	how	to	do	so
properly	here,	leveraging	the	full	power	of	closure.	But	that	subtlety	is	often	lost	on	linters
and	they	will	complain	regardless,	assuming	you	don't	actually	know	what	you're	doing.

The	spirit	of	this	code	snippet	is	that	we	would	normally	expect	for	the	behavior	to	be	that
the	numbers	"1",	"2",	..	"5"	would	be	printed	out,	one	at	a	time,	one	per	second,	respectively.

In	fact,	if	you	run	this	code,	you	get	"6"	printed	out	5	times,	at	the	one-second	intervals.

Huh?

Firstly,	let's	explain	where		6		comes	from.	The	terminating	condition	of	the	loop	is	when		i	
is	not		<=5	.	The	first	time	that's	the	case	is	when		i		is	6.	So,	the	output	is	reflecting	the	final
value	of	the		i		after	the	loop	terminates.

This	actually	seems	obvious	on	second	glance.	The	timeout	function	callbacks	are	all
running	well	after	the	completion	of	the	loop.	In	fact,	as	timers	go,	even	if	it	was
	setTimeout(..,	0)		on	each	iteration,	all	those	function	callbacks	would	still	run	strictly	after
the	completion	of	the	loop,	and	thus	print		6		each	time.
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But	there's	a	deeper	question	at	play	here.	What's	missing	from	our	code	to	actually	have	it
behave	as	we	semantically	have	implied?

What's	missing	is	that	we	are	trying	to	imply	that	each	iteration	of	the	loop	"captures"	its	own
copy	of		i	,	at	the	time	of	the	iteration.	But,	the	way	scope	works,	all	5	of	those	functions,
though	they	are	defined	separately	in	each	loop	iteration,	all	are	closed	over	the	same
shared	global	scope,	which	has,	in	fact,	only	one		i		in	it.

Put	that	way,	of	course	all	functions	share	a	reference	to	the	same		i	.	Something	about	the
loop	structure	tends	to	confuse	us	into	thinking	there's	something	else	more	sophisticated	at
work.	There	is	not.	There's	no	difference	than	if	each	of	the	5	timeout	callbacks	were	just
declared	one	right	after	the	other,	with	no	loop	at	all.

OK,	so,	back	to	our	burning	question.	What's	missing?	We	need	more	cowbell	closured
scope.	Specifically,	we	need	a	new	closured	scope	for	each	iteration	of	the	loop.

We	learned	in	Chapter	3	that	the	IIFE	creates	scope	by	declaring	a	function	and	immediately
executing	it.

Let's	try:

for	(var	i=1;	i<=5;	i++)	{

				(function(){

								setTimeout(	function	timer(){

												console.log(	i	);

								},	i*1000	);

				})();

}

Does	that	work?	Try	it.	Again,	I'll	wait.

I'll	end	the	suspense	for	you.	Nope.	But	why?	We	now	obviously	have	more	lexical	scope.
Each	timeout	function	callback	is	indeed	closing	over	its	own	per-iteration	scope	created
respectively	by	each	IIFE.

It's	not	enough	to	have	a	scope	to	close	over	if	that	scope	is	empty.	Look	closely.	Our	IIFE
is	just	an	empty	do-nothing	scope.	It	needs	something	in	it	to	be	useful	to	us.

It	needs	its	own	variable,	with	a	copy	of	the		i		value	at	each	iteration.
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for	(var	i=1;	i<=5;	i++)	{

				(function(){

								var	j	=	i;

								setTimeout(	function	timer(){

												console.log(	j	);

								},	j*1000	);

				})();

}

Eureka!	It	works!

A	slight	variation	some	prefer	is:

for	(var	i=1;	i<=5;	i++)	{

				(function(j){

								setTimeout(	function	timer(){

												console.log(	j	);

								},	j*1000	);

				})(	i	);

}

Of	course,	since	these	IIFEs	are	just	functions,	we	can	pass	in		i	,	and	we	can	call	it		j		if
we	prefer,	or	we	can	even	call	it		i		again.	Either	way,	the	code	works	now.

The	use	of	an	IIFE	inside	each	iteration	created	a	new	scope	for	each	iteration,	which	gave
our	timeout	function	callbacks	the	opportunity	to	close	over	a	new	scope	for	each	iteration,
one	which	had	a	variable	with	the	right	per-iteration	value	in	it	for	us	to	access.

Problem	solved!

Block	Scoping	Revisited

Look	carefully	at	our	analysis	of	the	previous	solution.	We	used	an	IIFE	to	create	new	scope
per-iteration.	In	other	words,	we	actually	needed	a	per-iteration	block	scope.	Chapter	3
showed	us	the		let		declaration,	which	hijacks	a	block	and	declares	a	variable	right	there	in
the	block.

It	essentially	turns	a	block	into	a	scope	that	we	can	close	over.	So,	the	following
awesome	code	"just	works":
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for	(var	i=1;	i<=5;	i++)	{

				let	j	=	i;	//	yay,	block-scope	for	closure!

				setTimeout(	function	timer(){

								console.log(	j	);

				},	j*1000	);

}

But,	that's	not	all!	(in	my	best	Bob	Barker	voice).	There's	a	special	behavior	defined	for		let	
declarations	used	in	the	head	of	a	for-loop.	This	behavior	says	that	the	variable	will	be
declared	not	just	once	for	the	loop,	but	each	iteration.	And,	it	will,	helpfully,	be	initialized	at
each	subsequent	iteration	with	the	value	from	the	end	of	the	previous	iteration.

for	(let	i=1;	i<=5;	i++)	{

				setTimeout(	function	timer(){

								console.log(	i	);

				},	i*1000	);

}

How	cool	is	that?	Block	scoping	and	closure	working	hand-in-hand,	solving	all	the	world's
problems.	I	don't	know	about	you,	but	that	makes	me	a	happy	JavaScripter.

Modules
There	are	other	code	patterns	which	leverage	the	power	of	closure	but	which	do	not	on	the
surface	appear	to	be	about	callbacks.	Let's	examine	the	most	powerful	of	them:	the	module.

function	foo()	{

				var	something	=	"cool";

				var	another	=	[1,	2,	3];

				function	doSomething()	{

								console.log(	something	);

				}

				function	doAnother()	{

								console.log(	another.join(	"	!	"	)	);

				}

}

As	this	code	stands	right	now,	there's	no	observable	closure	going	on.	We	simply	have	some
private	data	variables		something		and		another	,	and	a	couple	of	inner	functions
	doSomething()		and		doAnother()	,	which	both	have	lexical	scope	(and	thus	closure!)	over
the	inner	scope	of		foo()	.
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But	now	consider:

function	CoolModule()	{

				var	something	=	"cool";

				var	another	=	[1,	2,	3];

				function	doSomething()	{

								console.log(	something	);

				}

				function	doAnother()	{

								console.log(	another.join(	"	!	"	)	);

				}

				return	{

								doSomething:	doSomething,

								doAnother:	doAnother

				};

}

var	foo	=	CoolModule();

foo.doSomething();	//	cool

foo.doAnother();	//	1	!	2	!	3

This	is	the	pattern	in	JavaScript	we	call	module.	The	most	common	way	of	implementing	the
module	pattern	is	often	called	"Revealing	Module",	and	it's	the	variation	we	present	here.

Let's	examine	some	things	about	this	code.

Firstly,		CoolModule()		is	just	a	function,	but	it	has	to	be	invoked	for	there	to	be	a	module
instance	created.	Without	the	execution	of	the	outer	function,	the	creation	of	the	inner	scope
and	the	closures	would	not	occur.

Secondly,	the		CoolModule()		function	returns	an	object,	denoted	by	the	object-literal	syntax
	{	key:	value,	...	}	.	The	object	we	return	has	references	on	it	to	our	inner	functions,	but
not	to	our	inner	data	variables.	We	keep	those	hidden	and	private.	It's	appropriate	to	think	of
this	object	return	value	as	essentially	a	public	API	for	our	module.

This	object	return	value	is	ultimately	assigned	to	the	outer	variable		foo	,	and	then	we	can
access	those	property	methods	on	the	API,	like		foo.doSomething()	.

Note:	It	is	not	required	that	we	return	an	actual	object	(literal)	from	our	module.	We	could
just	return	back	an	inner	function	directly.	jQuery	is	actually	a	good	example	of	this.	The
	jQuery		and		$		identifiers	are	the	public	API	for	the	jQuery	"module",	but	they	are,
themselves,	just	a	function	(which	can	itself	have	properties,	since	all	functions	are	objects).
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The		doSomething()		and		doAnother()		functions	have	closure	over	the	inner	scope	of	the
module	"instance"	(arrived	at	by	actually	invoking		CoolModule()	).	When	we	transport	those
functions	outside	of	the	lexical	scope,	by	way	of	property	references	on	the	object	we	return,
we	have	now	set	up	a	condition	by	which	closure	can	be	observed	and	exercised.

To	state	it	more	simply,	there	are	two	"requirements"	for	the	module	pattern	to	be	exercised:

1.	 There	must	be	an	outer	enclosing	function,	and	it	must	be	invoked	at	least	once	(each
time	creates	a	new	module	instance).

2.	 The	enclosing	function	must	return	back	at	least	one	inner	function,	so	that	this	inner
function	has	closure	over	the	private	scope,	and	can	access	and/or	modify	that	private
state.

An	object	with	a	function	property	on	it	alone	is	not	really	a	module.	An	object	which	is
returned	from	a	function	invocation	which	only	has	data	properties	on	it	and	no	closured
functions	is	not	really	a	module,	in	the	observable	sense.

The	code	snippet	above	shows	a	standalone	module	creator	called		CoolModule()		which	can
be	invoked	any	number	of	times,	each	time	creating	a	new	module	instance.	A	slight
variation	on	this	pattern	is	when	you	only	care	to	have	one	instance,	a	"singleton"	of	sorts:

var	foo	=	(function	CoolModule()	{

				var	something	=	"cool";

				var	another	=	[1,	2,	3];

				function	doSomething()	{

								console.log(	something	);

				}

				function	doAnother()	{

								console.log(	another.join(	"	!	"	)	);

				}

				return	{

								doSomething:	doSomething,

								doAnother:	doAnother

				};

})();

foo.doSomething();	//	cool

foo.doAnother();	//	1	!	2	!	3

Here,	we	turned	our	module	function	into	an	IIFE	(see	Chapter	3),	and	we	immediately
invoked	it	and	assigned	its	return	value	directly	to	our	single	module	instance	identifier		foo	.

Modules	are	just	functions,	so	they	can	receive	parameters:
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function	CoolModule(id)	{

				function	identify()	{

								console.log(	id	);

				}

				return	{

								identify:	identify

				};

}

var	foo1	=	CoolModule(	"foo	1"	);

var	foo2	=	CoolModule(	"foo	2"	);

foo1.identify();	//	"foo	1"

foo2.identify();	//	"foo	2"

Another	slight	but	powerful	variation	on	the	module	pattern	is	to	name	the	object	you	are
returning	as	your	public	API:

var	foo	=	(function	CoolModule(id)	{

				function	change()	{

								//	modifying	the	public	API

								publicAPI.identify	=	identify2;

				}

				function	identify1()	{

								console.log(	id	);

				}

				function	identify2()	{

								console.log(	id.toUpperCase()	);

				}

				var	publicAPI	=	{

								change:	change,

								identify:	identify1

				};

				return	publicAPI;

})(	"foo	module"	);

foo.identify();	//	foo	module

foo.change();

foo.identify();	//	FOO	MODULE

By	retaining	an	inner	reference	to	the	public	API	object	inside	your	module	instance,	you	can
modify	that	module	instance	from	the	inside,	including	adding	and	removing	methods,
properties,	and	changing	their	values.
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Modern	Modules

Various	module	dependency	loaders/managers	essentially	wrap	up	this	pattern	of	module
definition	into	a	friendly	API.	Rather	than	examine	any	one	particular	library,	let	me	present	a
very	simple	proof	of	concept	for	illustration	purposes	(only):

var	MyModules	=	(function	Manager()	{

				var	modules	=	{};

				function	define(name,	deps,	impl)	{

								for	(var	i=0;	i<deps.length;	i++)	{

												deps[i]	=	modules[deps[i]];

								}

								modules[name]	=	impl.apply(	impl,	deps	);

				}

				function	get(name)	{

								return	modules[name];

				}

				return	{

								define:	define,

								get:	get

				};

})();

The	key	part	of	this	code	is		modules[name]	=	impl.apply(impl,	deps)	.	This	is	invoking	the
definition	wrapper	function	for	a	module	(passing	in	any	dependencies),	and	storing	the
return	value,	the	module's	API,	into	an	internal	list	of	modules	tracked	by	name.

And	here's	how	I	might	use	it	to	define	some	modules:
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MyModules.define(	"bar",	[],	function(){

				function	hello(who)	{

								return	"Let	me	introduce:	"	+	who;

				}

				return	{

								hello:	hello

				};

}	);

MyModules.define(	"foo",	["bar"],	function(bar){

				var	hungry	=	"hippo";

				function	awesome()	{

								console.log(	bar.hello(	hungry	).toUpperCase()	);

				}

				return	{

								awesome:	awesome

				};

}	);

var	bar	=	MyModules.get(	"bar"	);

var	foo	=	MyModules.get(	"foo"	);

console.log(

				bar.hello(	"hippo"	)

);	//	Let	me	introduce:	hippo

foo.awesome();	//	LET	ME	INTRODUCE:	HIPPO

Both	the	"foo"	and	"bar"	modules	are	defined	with	a	function	that	returns	a	public	API.	"foo"
even	receives	the	instance	of	"bar"	as	a	dependency	parameter,	and	can	use	it	accordingly.

Spend	some	time	examining	these	code	snippets	to	fully	understand	the	power	of	closures
put	to	use	for	our	own	good	purposes.	The	key	take-away	is	that	there's	not	really	any
particular	"magic"	to	module	managers.	They	fulfill	both	characteristics	of	the	module	pattern
I	listed	above:	invoking	a	function	definition	wrapper,	and	keeping	its	return	value	as	the	API
for	that	module.

In	other	words,	modules	are	just	modules,	even	if	you	put	a	friendly	wrapper	tool	on	top	of
them.

Future	Modules

ES6	adds	first-class	syntax	support	for	the	concept	of	modules.	When	loaded	via	the	module
system,	ES6	treats	a	file	as	a	separate	module.	Each	module	can	both	import	other	modules
or	specific	API	members,	as	well	export	their	own	public	API	members.
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Note:	Function-based	modules	aren't	a	statically	recognized	pattern	(something	the
compiler	knows	about),	so	their	API	semantics	aren't	considered	until	run-time.	That	is,	you
can	actually	modify	a	module's	API	during	the	run-time	(see	earlier		publicAPI		discussion).

By	contrast,	ES6	Module	APIs	are	static	(the	APIs	don't	change	at	run-time).	Since	the
compiler	knows	that,	it	can	(and	does!)	check	during	(file	loading	and)	compilation	that	a
reference	to	a	member	of	an	imported	module's	API	actually	exists.	If	the	API	reference
doesn't	exist,	the	compiler	throws	an	"early"	error	at	compile-time,	rather	than	waiting	for
traditional	dynamic	run-time	resolution	(and	errors,	if	any).

ES6	modules	do	not	have	an	"inline"	format,	they	must	be	defined	in	separate	files	(one	per
module).	The	browsers/engines	have	a	default	"module	loader"	(which	is	overridable,	but
that's	well-beyond	our	discussion	here)	which	synchronously	loads	a	module	file	when	it's
imported.

Consider:

bar.js

function	hello(who)	{

				return	"Let	me	introduce:	"	+	who;

}

export	hello;

foo.js

//	import	only	`hello()`	from	the	"bar"	module

import	hello	from	"bar";

var	hungry	=	"hippo";

function	awesome()	{

				console.log(

								hello(	hungry	).toUpperCase()

				);

}

export	awesome;
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//	import	the	entire	"foo"	and	"bar"	modules

module	foo	from	"foo";

module	bar	from	"bar";

console.log(

				bar.hello(	"rhino"	)

);	//	Let	me	introduce:	rhino

foo.awesome();	//	LET	ME	INTRODUCE:	HIPPO

Note:	Separate	files	"foo.js"	and	"bar.js"	would	need	to	be	created,	with	the	contents	as
shown	in	the	first	two	snippets,	respectively.	Then,	your	program	would	load/import	those
modules	to	use	them,	as	shown	in	the	third	snippet.

	import		imports	one	or	more	members	from	a	module's	API	into	the	current	scope,	each	to
a	bound	variable	(	hello		in	our	case).		module		imports	an	entire	module	API	to	a	bound
variable	(	foo	,		bar		in	our	case).		export		exports	an	identifier	(variable,	function)	to	the
public	API	for	the	current	module.	These	operators	can	be	used	as	many	times	in	a
module's	definition	as	is	necessary.

The	contents	inside	the	module	file	are	treated	as	if	enclosed	in	a	scope	closure,	just	like
with	the	function-closure	modules	seen	earlier.

Review	(TL;DR)
Closure	seems	to	the	un-enlightened	like	a	mystical	world	set	apart	inside	of	JavaScript
which	only	the	few	bravest	souls	can	reach.	But	it's	actually	just	a	standard	and	almost
obvious	fact	of	how	we	write	code	in	a	lexically	scoped	environment,	where	functions	are
values	and	can	be	passed	around	at	will.

Closure	is	when	a	function	can	remember	and	access	its	lexical	scope	even	when	it's
invoked	outside	its	lexical	scope.

Closures	can	trip	us	up,	for	instance	with	loops,	if	we're	not	careful	to	recognize	them	and
how	they	work.	But	they	are	also	an	immensely	powerful	tool,	enabling	patterns	like	modules
in	their	various	forms.

Modules	require	two	key	characteristics:	1)	an	outer	wrapping	function	being	invoked,	to
create	the	enclosing	scope	2)	the	return	value	of	the	wrapping	function	must	include
reference	to	at	least	one	inner	function	that	then	has	closure	over	the	private	inner	scope	of
the	wrapper.

Now	we	can	see	closures	all	around	our	existing	code,	and	we	have	the	ability	to	recognize
and	leverage	them	to	our	own	benefit!
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Appendix	A:	Dynamic	Scope
In	Chapter	2,	we	talked	about	"Dynamic	Scope"	as	a	contrast	to	the	"Lexical	Scope"	model,
which	is	how	scope	works	in	JavaScript	(and	in	fact,	most	other	languages).

We	will	briefly	examine	dynamic	scope,	to	hammer	home	the	contrast.	But,	more
importantly,	dynamic	scope	actually	is	a	near	cousin	to	another	mechanism	(	this	)	in
JavaScript,	which	we	covered	in	the	"this	&	Object	Prototypes"	title	of	this	book	series.

As	we	saw	in	Chapter	2,	lexical	scope	is	the	set	of	rules	about	how	the	Engine	can	look-up	a
variable	and	where	it	will	find	it.	The	key	characteristic	of	lexical	scope	is	that	it	is	defined	at
author-time,	when	the	code	is	written	(assuming	you	don't	cheat	with		eval()		or		with	).

Dynamic	scope	seems	to	imply,	and	for	good	reason,	that	there's	a	model	whereby	scope
can	be	determined	dynamically	at	runtime,	rather	than	statically	at	author-time.	That	is	in	fact
the	case.	Let's	illustrate	via	code:

function	foo()	{

				console.log(	a	);	//	2

}

function	bar()	{

				var	a	=	3;

				foo();

}

var	a	=	2;

bar();

Lexical	scope	holds	that	the	RHS	reference	to		a		in		foo()		will	be	resolved	to	the	global
variable		a	,	which	will	result	in	value		2		being	output.

Dynamic	scope,	by	contrast,	doesn't	concern	itself	with	how	and	where	functions	and
scopes	are	declared,	but	rather	where	they	are	called	from.	In	other	words,	the	scope
chain	is	based	on	the	call-stack,	not	the	nesting	of	scopes	in	code.

So,	if	JavaScript	had	dynamic	scope,	when		foo()		is	executed,	theoretically	the	code
below	would	instead	result	in		3		as	the	output.
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function	foo()	{

				console.log(	a	);	//	3		(not	2!)

}

function	bar()	{

				var	a	=	3;

				foo();

}

var	a	=	2;

bar();

How	can	this	be?	Because	when		foo()		cannot	resolve	the	variable	reference	for		a	,
instead	of	stepping	up	the	nested	(lexical)	scope	chain,	it	walks	up	the	call-stack,	to	find
where		foo()		was	called	from.	Since		foo()		was	called	from		bar()	,	it	checks	the	variables
in	scope	for		bar()	,	and	finds	an		a		there	with	value		3	.

Strange?	You're	probably	thinking	so,	at	the	moment.

But	that's	just	because	you've	probably	only	ever	worked	on	(or	at	least	deeply	considered)
code	which	is	lexically	scoped.	So	dynamic	scoping	seems	foreign.	If	you	had	only	ever
written	code	in	a	dynamically	scoped	language,	it	would	seem	natural,	and	lexical	scope
would	be	the	odd-ball.

To	be	clear,	JavaScript	does	not,	in	fact,	have	dynamic	scope.	It	has	lexical	scope.	Plain
and	simple.	But	the		this		mechanism	is	kind	of	like	dynamic	scope.

The	key	contrast:	lexical	scope	is	write-time,	whereas	dynamic	scope	(and		this	!)	are
runtime.	Lexical	scope	cares	where	a	function	was	declared,	but	dynamic	scope	cares
where	a	function	was	called	from.

Finally:		this		cares	how	a	function	was	called,	which	shows	how	closely	related	the		this	
mechanism	is	to	the	idea	of	dynamic	scoping.	To	dig	more	into		this	,	read	the	title	"this	&
Object	Prototypes".
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Appendix	B:	Polyfilling	Block	Scope
In	Chapter	3,	we	explored	Block	Scope.	We	saw	that		with		and	the		catch		clause	are	both
tiny	examples	of	block	scope	that	have	existed	in	JavaScript	since	at	least	the	introduction	of
ES3.

But	it's	ES6's	introduction	of		let		that	finally	gives	full,	unfettered	block-scoping	capability	to
our	code.	There	are	many	exciting	things,	both	functionally	and	code-stylistically,	that	block
scope	will	enable.

But	what	if	we	wanted	to	use	block	scope	in	pre-ES6	environments?

Consider	this	code:

{

				let	a	=	2;

				console.log(	a	);	//	2

}

console.log(	a	);	//	ReferenceError

This	will	work	great	in	ES6	environments.	But	can	we	do	so	pre-ES6?		catch		is	the	answer.

try{throw	2}catch(a){

				console.log(	a	);	//	2

}

console.log(	a	);	//	ReferenceError

Whoa!	That's	some	ugly,	weird	looking	code.	We	see	a		try/catch		that	appears	to	forcibly
throw	an	error,	but	the	"error"	it	throws	is	just	a	value		2	,	and	then	the	variable	declaration
that	receives	it	is	in	the		catch(a)		clause.	Mind:	blown.

That's	right,	the		catch		clause	has	block-scoping	to	it,	which	means	it	can	be	used	as	a
polyfill	for	block	scope	in	pre-ES6	environments.

"But...",	you	say.	"...no	one	wants	to	write	ugly	code	like	that!"	That's	true.	No	one	writes
(some	of)	the	code	output	by	the	CoffeeScript	compiler,	either.	That's	not	the	point.

The	point	is	that	tools	can	transpile	ES6	code	to	work	in	pre-ES6	environments.	You	can
write	code	using	block-scoping,	and	benefit	from	such	functionality,	and	let	a	build-step	tool
take	care	of	producing	code	that	will	actually	work	when	deployed.
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This	is	actually	the	preferred	migration	path	for	all	(ahem,	most)	of	ES6:	to	use	a	code
transpiler	to	take	ES6	code	and	produce	ES5-compatible	code	during	the	transition	from
pre-ES6	to	ES6.

Traceur
Google	maintains	a	project	called	"Traceur"	 ,	which	is	exactly	tasked	with
transpiling	ES6	features	into	pre-ES6	(mostly	ES5,	but	not	all!)	for	general	usage.	The	TC39
committee	relies	on	this	tool	(and	others)	to	test	out	the	semantics	of	the	features	they
specify.

What	does	Traceur	produce	from	our	snippet?	You	guessed	it!

{

				try	{

								throw	undefined;

				}	catch	(a)	{

								a	=	2;

								console.log(	a	);

				}

}

console.log(	a	);

So,	with	the	use	of	such	tools,	we	can	start	taking	advantage	of	block	scope	regardless	of	if
we	are	targeting	ES6	or	not,	because		try/catch		has	been	around	(and	worked	this	way)
from	ES3	days.

Implicit	vs.	Explicit	Blocks
In	Chapter	3,	we	identified	some	potential	pitfalls	to	code	maintainability/refactorability	when
we	introduce	block-scoping.	Is	there	another	way	to	take	advantage	of	block	scope	but	to
reduce	this	downside?

Consider	this	alternate	form	of		let	,	called	the	"let	block"	or	"let	statement"	(contrasted	with
"let	declarations"	from	before).

let	(a	=	2)	{

				console.log(	a	);	//	2

}

console.log(	a	);	//	ReferenceError

note-traceur
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Instead	of	implicitly	hijacking	an	existing	block,	the	let-statement	creates	an	explicit	block	for
its	scope	binding.	Not	only	does	the	explicit	block	stand	out	more,	and	perhaps	fare	more
robustly	in	code	refactoring,	it	produces	somewhat	cleaner	code	by,	grammatically,	forcing
all	the	declarations	to	the	top	of	the	block.	This	makes	it	easier	to	look	at	any	block	and
know	what's	scoped	to	it	and	not.

As	a	pattern,	it	mirrors	the	approach	many	people	take	in	function-scoping	when	they
manually	move/hoist	all	their		var		declarations	to	the	top	of	the	function.	The	let-statement
puts	them	there	at	the	top	of	the	block	by	intent,	and	if	you	don't	use		let		declarations
strewn	throughout,	your	block-scoping	declarations	are	somewhat	easier	to	identify	and
maintain.

But,	there's	a	problem.	The	let-statement	form	is	not	included	in	ES6.	Neither	does	the
official	Traceur	compiler	accept	that	form	of	code.

We	have	two	options.	We	can	format	using	ES6-valid	syntax	and	a	little	sprinkle	of	code
discipline:

/*let*/	{	let	a	=	2;

				console.log(	a	);

}

console.log(	a	);	//	ReferenceError

But,	tools	are	meant	to	solve	our	problems.	So	the	other	option	is	to	write	explicit	let
statement	blocks,	and	let	a	tool	convert	them	to	valid,	working	code.

So,	I	built	a	tool	called	"let-er"	 	to	address	just	this	issue.	let-er	is	a	build-step
code	transpiler,	but	its	only	task	is	to	find	let-statement	forms	and	transpile	them.	It	will	leave
alone	any	of	the	rest	of	your	code,	including	any	let-declarations.	You	can	safely	use	let-er
as	the	first	ES6	transpiler	step,	and	then	pass	your	code	through	something	like	Traceur	if
necessary.

Moreover,	let-er	has	a	configuration	flag		--es6	,	which	when	turned	on	(off	by	default),
changes	the	kind	of	code	produced.	Instead	of	the		try/catch		ES3	polyfill	hack,	let-er	would
take	our	snippet	and	produce	the	fully	ES6-compliant,	non-hacky:

{

				let	a	=	2;

				console.log(	a	);

}

console.log(	a	);	//	ReferenceError

note-let_er
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So,	you	can	start	using	let-er	right	away,	and	target	all	pre-ES6	environments,	and	when	you
only	care	about	ES6,	you	can	add	the	flag	and	instantly	target	only	ES6.

And	most	importantly,	you	can	use	the	more	preferable	and	more	explicit	let-statement
form	even	though	it	is	not	an	official	part	of	any	ES	version	(yet).

Performance
Let	me	add	one	last	quick	note	on	the	performance	of		try/catch	,	and/or	to	address	the
question,	"why	not	just	use	an	IIFE	to	create	the	scope?"

Firstly,	the	performance	of		try/catch		is	slower,	but	there's	no	reasonable	assumption	that	it
has	to	be	that	way,	or	even	that	it	always	will	be	that	way.	Since	the	official	TC39-approved
ES6	transpiler	uses		try/catch	,	the	Traceur	team	has	asked	Chrome	to	improve	the
performance	of		try/catch	,	and	they	are	obviously	motivated	to	do	so.

Secondly,	IIFE	is	not	a	fair	apples-to-apples	comparison	with		try/catch	,	because	a	function
wrapped	around	any	arbitrary	code	changes	the	meaning,	inside	of	that	code,	of		this	,
	return	,		break	,	and		continue	.	IIFE	is	not	a	suitable	general	substitute.	It	could	only	be
used	manually	in	certain	cases.

The	question	really	becomes:	do	you	want	block-scoping,	or	not.	If	you	do,	these	tools
provide	you	that	option.	If	not,	keep	using		var		and	go	on	about	your	coding!

.	Google	Traceur	↩

\:	let-er

note-traceur

note-let_er
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Appendix	C:	Lexical-this
Though	this	title	does	not	address	the		this		mechanism	in	any	detail,	there's	one	ES6	topic
which	relates		this		to	lexical	scope	in	an	important	way,	which	we	will	quickly	examine.

ES6	adds	a	special	syntactic	form	of	function	declaration	called	the	"arrow	function".	It	looks
like	this:

var	foo	=	a	=>	{

				console.log(	a	);

};

foo(	2	);	//	2

The	so-called	"fat	arrow"	is	often	mentioned	as	a	short-hand	for	the	tediously	verbose
(sarcasm)		function		keyword.

But	there's	something	much	more	important	going	on	with	arrow-functions	that	has	nothing
to	do	with	saving	keystrokes	in	your	declaration.

Briefly,	this	code	suffers	a	problem:

var	obj	=	{

				id:	"awesome",

				cool:	function	coolFn()	{

								console.log(	this.id	);

				}

};

var	id	=	"not	awesome";

obj.cool();	//	awesome

setTimeout(	obj.cool,	100	);	//	not	awesome

The	problem	is	the	loss	of		this		binding	on	the		cool()		function.	There	are	various	ways	to
address	that	problem,	but	one	often-repeated	solution	is		var	self	=	this;	.

That	might	look	like:
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var	obj	=	{

				count:	0,

				cool:	function	coolFn()	{

								var	self	=	this;

								if	(self.count	<	1)	{

												setTimeout(	function	timer(){

																self.count++;

																console.log(	"awesome?"	);

												},	100	);

								}

				}

};

obj.cool();	//	awesome?

Without	getting	too	much	into	the	weeds	here,	the		var	self	=	this		"solution"	just
dispenses	with	the	whole	problem	of	understanding	and	properly	using		this		binding,	and
instead	falls	back	to	something	we're	perhaps	more	comfortable	with:	lexical	scope.		self	
becomes	just	an	identifier	that	can	be	resolved	via	lexical	scope	and	closure,	and	cares	not
what	happened	to	the		this		binding	along	the	way.

People	don't	like	writing	verbose	stuff,	especially	when	they	do	it	over	and	over	again.	So,	a
motivation	of	ES6	is	to	help	alleviate	these	scenarios,	and	indeed,	fix	common	idiom
problems,	such	as	this	one.

The	ES6	solution,	the	arrow-function,	introduces	a	behavior	called	"lexical	this".

var	obj	=	{

				count:	0,

				cool:	function	coolFn()	{

								if	(this.count	<	1)	{

												setTimeout(	()	=>	{	//	arrow-function	ftw?

																this.count++;

																console.log(	"awesome?"	);

												},	100	);

								}

				}

};

obj.cool();	//	awesome?

The	short	explanation	is	that	arrow-functions	do	not	behave	at	all	like	normal	functions	when
it	comes	to	their		this		binding.	They	discard	all	the	normal	rules	for		this		binding,	and
instead	take	on	the		this		value	of	their	immediate	lexical	enclosing	scope,	whatever	it	is.
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So,	in	that	snippet,	the	arrow-function	doesn't	get	its		this		unbound	in	some	unpredictable
way,	it	just	"inherits"	the		this		binding	of	the		cool()		function	(which	is	correct	if	we	invoke
it	as	shown!).

While	this	makes	for	shorter	code,	my	perspective	is	that	arrow-functions	are	really	just
codifying	into	the	language	syntax	a	common	mistake	of	developers,	which	is	to	confuse	and
conflate	"this	binding"	rules	with	"lexical	scope"	rules.

Put	another	way:	why	go	to	the	trouble	and	verbosity	of	using	the		this		style	coding
paradigm,	only	to	cut	it	off	at	the	knees	by	mixing	it	with	lexical	references.	It	seems	natural
to	embrace	one	approach	or	the	other	for	any	given	piece	of	code,	and	not	mix	them	in	the
same	piece	of	code.

Note:	one	other	detraction	from	arrow-functions	is	that	they	are	anonymous,	not	named.
See	Chapter	3	for	the	reasons	why	anonymous	functions	are	less	desirable	than	named
functions.

A	more	appropriate	approach,	in	my	perspective,	to	this	"problem",	is	to	use	and	embrace
the		this		mechanism	correctly.

var	obj	=	{

				count:	0,

				cool:	function	coolFn()	{

								if	(this.count	<	1)	{

												setTimeout(	function	timer(){

																this.count++;	//	`this`	is	safe	because	of	`bind(..)`

																console.log(	"more	awesome"	);

												}.bind(	this	),	100	);	//	look,	`bind()`!

								}

				}

};

obj.cool();	//	more	awesome

Whether	you	prefer	the	new	lexical-this	behavior	of	arrow-functions,	or	you	prefer	the	tried-
and-true		bind()	,	it's	important	to	note	that	arrow-functions	are	not	just	about	less	typing	of
"function".

They	have	an	intentional	behavioral	difference	that	we	should	learn	and	understand,	and	if
we	so	choose,	leverage.

Now	that	we	fully	understand	lexical	scoping	(and	closure!),	understanding	lexical-this
should	be	a	breeze!
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Chapter	1:	Types
Most	developers	would	say	that	a	dynamic	language	(like	JS)	does	not	have	types.	Let's	see
what	the	ES5.1	specification	(http://www.ecma-international.org/ecma-262/5.1/)	has	to	say
on	the	topic:

Algorithms	within	this	specification	manipulate	values	each	of	which	has	an	associated
type.	The	possible	value	types	are	exactly	those	defined	in	this	clause.	Types	are
further	sub	classified	into	ECMAScript	language	types	and	specification	types.

An	ECMAScript	language	type	corresponds	to	values	that	are	directly	manipulated	by
an	ECMAScript	programmer	using	the	ECMAScript	language.	The	ECMAScript
language	types	are	Undefined,	Null,	Boolean,	String,	Number,	and	Object.

Now,	if	you're	a	fan	of	strongly	typed	(statically	typed)	languages,	you	may	object	to	this
usage	of	the	word	"type."	In	those	languages,	"type"	means	a	whole	lot	more	than	it	does
here	in	JS.

Some	people	say	JS	shouldn't	claim	to	have	"types,"	and	they	should	instead	be	called
"tags"	or	perhaps	"subtypes".

Bah!	We're	going	to	use	this	rough	definition	(the	same	one	that	seems	to	drive	the	wording
of	the	spec):	a	type	is	an	intrinsic,	built-in	set	of	characteristics	that	uniquely	identifies	the
behavior	of	a	particular	value	and	distinguishes	it	from	other	values,	both	to	the	engine	and
to	the	developer.

In	other	words,	if	both	the	engine	and	the	developer	treat	value		42		(the	number)	differently
than	they	treat	value		"42"		(the	string),	then	those	two	values	have	different	types	--
	number		and		string	,	respectively.	When	you	use		42	,	you	are	intending	to	do	something
numeric,	like	math.	But	when	you	use		"42"	,	you	are	intending	to	do	something	string'ish,
like	outputting	to	the	page,	etc.	These	two	values	have	different	types.

That's	by	no	means	a	perfect	definition.	But	it's	good	enough	for	this	discussion.	And	it's
consistent	with	how	JS	describes	itself.

A	Type	By	Any	Other	Name...
Beyond	academic	definition	disagreements,	why	does	it	matter	if	JavaScript	has	types	or
not?
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Having	a	proper	understanding	of	each	type	and	its	intrinsic	behavior	is	absolutely	essential
to	understanding	how	to	properly	and	accurately	convert	values	to	different	types	(see
Coercion,	Chapter	4).	Nearly	every	JS	program	ever	written	will	need	to	handle	value
coercion	in	some	shape	or	form,	so	it's	important	you	do	so	responsibly	and	with	confidence.

If	you	have	the		number		value		42	,	but	you	want	to	treat	it	like	a		string	,	such	as	pulling	out
the		"2"		as	a	character	in	position		1	,	you	obviously	must	first	convert	(coerce)	the	value
from		number		to		string	.

That	seems	simple	enough.

But	there	are	many	different	ways	that	such	coercion	can	happen.	Some	of	these	ways	are
explicit,	easy	to	reason	about,	and	reliable.	But	if	you're	not	careful,	coercion	can	happen	in
very	strange	and	surprising	ways.

Coercion	confusion	is	perhaps	one	of	the	most	profound	frustrations	for	JavaScript
developers.	It	has	often	been	criticized	as	being	so	dangerous	as	to	be	considered	a	flaw	in
the	design	of	the	language,	to	be	shunned	and	avoided.

Armed	with	a	full	understanding	of	JavaScript	types,	we're	aiming	to	illustrate	why	coercion's
bad	reputation	is	largely	overhyped	and	somewhat	undeserved	--	to	flip	your	perspective,	to
seeing	coercion's	power	and	usefulness.	But	first,	we	have	to	get	a	much	better	grip	on
values	and	types.

Built-in	Types
JavaScript	defines	seven	built-in	types:

	null	

	undefined	

	boolean	

	number	

	string	

	object	

	symbol		--	added	in	ES6!

Note:	All	of	these	types	except		object		are	called	"primitives".

The		typeof		operator	inspects	the	type	of	the	given	value,	and	always	returns	one	of	seven
string	values	--	surprisingly,	there's	not	an	exact	1-to-1	match	with	the	seven	built-in	types
we	just	listed.
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typeof	undefined					===	"undefined";	//	true

typeof	true										===	"boolean";			//	true

typeof	42												===	"number";				//	true

typeof	"42"										===	"string";				//	true

typeof	{	life:	42	}		===	"object";				//	true

//	added	in	ES6!

typeof	Symbol()						===	"symbol";				//	true

These	six	listed	types	have	values	of	the	corresponding	type	and	return	a	string	value	of	the
same	name,	as	shown.		Symbol		is	a	new	data	type	as	of	ES6,	and	will	be	covered	in
Chapter	3.

As	you	may	have	noticed,	I	excluded		null		from	the	above	listing.	It's	special	--	special	in
the	sense	that	it's	buggy	when	combined	with	the		typeof		operator:

typeof	null	===	"object";	//	true

It	would	have	been	nice	(and	correct!)	if	it	returned		"null"	,	but	this	original	bug	in	JS	has
persisted	for	nearly	two	decades,	and	will	likely	never	be	fixed	because	there's	too	much
existing	web	content	that	relies	on	its	buggy	behavior	that	"fixing"	the	bug	would	create	more
"bugs"	and	break	a	lot	of	web	software.

If	you	want	to	test	for	a		null		value	using	its	type,	you	need	a	compound	condition:

var	a	=	null;

(!a	&&	typeof	a	===	"object");	//	true

	null		is	the	only	primitive	value	that	is	"falsy"	(aka	false-like;	see	Chapter	4)	but	that	also
returns		"object"		from	the		typeof		check.

So	what's	the	seventh	string	value	that		typeof		can	return?

typeof	function	a(){	/*	..	*/	}	===	"function";	//	true

It's	easy	to	think	that		function		would	be	a	top-level	built-in	type	in	JS,	especially	given	this
behavior	of	the		typeof		operator.	However,	if	you	read	the	spec,	you'll	see	it's	actually	a
"subtype"	of	object.	Specifically,	a	function	is	referred	to	as	a	"callable	object"	--	an	object
that	has	an	internal		[[Call]]		property	that	allows	it	to	be	invoked.

The	fact	that	functions	are	actually	objects	is	quite	useful.	Most	importantly,	they	can	have
properties.	For	example:
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function	a(b,c)	{

				/*	..	*/

}

The	function	object	has	a		length		property	set	to	the	number	of	formal	parameters	it	is
declared	with.

a.length;	//	2

Since	you	declared	the	function	with	two	formal	named	parameters	(	b		and		c	),	the	"length
of	the	function"	is		2	.

What	about	arrays?	They're	native	to	JS,	so	are	they	a	special	type?

typeof	[1,2,3]	===	"object";	//	true

Nope,	just	objects.	It's	most	appropriate	to	think	of	them	also	as	a	"subtype"	of	object	(see
Chapter	3),	in	this	case	with	the	additional	characteristics	of	being	numerically	indexed	(as
opposed	to	just	being	string-keyed	like	plain	objects)	and	maintaining	an	automatically
updated		.length		property.

Values	as	Types
In	JavaScript,	variables	don't	have	types	--	values	have	types.	Variables	can	hold	any
value,	at	any	time.

Another	way	to	think	about	JS	types	is	that	JS	doesn't	have	"type	enforcement,"	in	that	the
engine	doesn't	insist	that	a	variable	always	holds	values	of	the	same	initial	type	that	it	starts
out	with.	A	variable	can,	in	one	assignment	statement,	hold	a		string	,	and	in	the	next	hold	a
	number	,	and	so	on.

The	value		42		has	an	intrinsic	type	of		number	,	and	its	type	cannot	be	changed.	Another
value,	like		"42"		with	the		string		type,	can	be	created	from	the		number		value		42		through
a	process	called	coercion	(see	Chapter	4).

If	you	use		typeof		against	a	variable,	it's	not	asking	"what's	the	type	of	the	variable?"	as	it
may	seem,	since	JS	variables	have	no	types.	Instead,	it's	asking	"what's	the	type	of	the
value	in	the	variable?"
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var	a	=	42;

typeof	a;	//	"number"

a	=	true;

typeof	a;	//	"boolean"

The		typeof		operator	always	returns	a	string.	So:

typeof	typeof	42;	//	"string"

The	first		typeof	42		returns		"number"	,	and		typeof	"number"		is		"string"	.

	undefined		vs	"undeclared"

Variables	that	have	no	value	currently,	actually	have	the		undefined		value.	Calling		typeof	
against	such	variables	will	return		"undefined"	:

var	a;

typeof	a;	//	"undefined"

var	b	=	42;

var	c;

//	later

b	=	c;

typeof	b;	//	"undefined"

typeof	c;	//	"undefined"

It's	tempting	for	most	developers	to	think	of	the	word	"undefined"	and	think	of	it	as	a
synonym	for	"undeclared."	However,	in	JS,	these	two	concepts	are	quite	different.

An	"undefined"	variable	is	one	that	has	been	declared	in	the	accessible	scope,	but	at	the
moment	has	no	other	value	in	it.	By	contrast,	an	"undeclared"	variable	is	one	that	has	not
been	formally	declared	in	the	accessible	scope.

Consider:

var	a;

a;	//	undefined

b;	//	ReferenceError:	b	is	not	defined
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An	annoying	confusion	is	the	error	message	that	browsers	assign	to	this	condition.	As	you
can	see,	the	message	is	"b	is	not	defined,"	which	is	of	course	very	easy	and	reasonable	to
confuse	with	"b	is	undefined."	Yet	again,	"undefined"	and	"is	not	defined"	are	very	different
things.	It'd	be	nice	if	the	browsers	said	something	like	"b	is	not	found"	or	"b	is	not	declared,"
to	reduce	the	confusion!

There's	also	a	special	behavior	associated	with		typeof		as	it	relates	to	undeclared	variables
that	even	further	reinforces	the	confusion.	Consider:

var	a;

typeof	a;	//	"undefined"

typeof	b;	//	"undefined"

The		typeof		operator	returns		"undefined"		even	for	"undeclared"	(or	"not	defined")
variables.	Notice	that	there	was	no	error	thrown	when	we	executed		typeof	b	,	even	though
	b		is	an	undeclared	variable.	This	is	a	special	safety	guard	in	the	behavior	of		typeof	.

Similar	to	above,	it	would	have	been	nice	if		typeof		used	with	an	undeclared	variable
returned	"undeclared"	instead	of	conflating	the	result	value	with	the	different	"undefined"
case.

	typeof		Undeclared

Nevertheless,	this	safety	guard	is	a	useful	feature	when	dealing	with	JavaScript	in	the
browser,	where	multiple	script	files	can	load	variables	into	the	shared	global	namespace.

Note:	Many	developers	believe	there	should	never	be	any	variables	in	the	global
namespace,	and	that	everything	should	be	contained	in	modules	and	private/separate
namespaces.	This	is	great	in	theory	but	nearly	impossible	in	practicality;	still	it's	a	good	goal
to	strive	toward!	Fortunately,	ES6	added	first-class	support	for	modules,	which	will	eventually
make	that	much	more	practical.

As	a	simple	example,	imagine	having	a	"debug	mode"	in	your	program	that	is	controlled	by	a
global	variable	(flag)	called		DEBUG	.	You'd	want	to	check	if	that	variable	was	declared	before
performing	a	debug	task	like	logging	a	message	to	the	console.	A	top-level	global		var	DEBUG
=	true		declaration	would	only	be	included	in	a	"debug.js"	file,	which	you	only	load	into	the
browser	when	you're	in	development/testing,	but	not	in	production.

However,	you	have	to	take	care	in	how	you	check	for	the	global		DEBUG		variable	in	the	rest
of	your	application	code,	so	that	you	don't	throw	a		ReferenceError	.	The	safety	guard	on
	typeof		is	our	friend	in	this	case.
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//	oops,	this	would	throw	an	error!

if	(DEBUG)	{

				console.log(	"Debugging	is	starting"	);

}

//	this	is	a	safe	existence	check

if	(typeof	DEBUG	!==	"undefined")	{

				console.log(	"Debugging	is	starting"	);

}

This	sort	of	check	is	useful	even	if	you're	not	dealing	with	user-defined	variables	(like
	DEBUG	).	If	you	are	doing	a	feature	check	for	a	built-in	API,	you	may	also	find	it	helpful	to
check	without	throwing	an	error:

if	(typeof	atob	===	"undefined")	{

				atob	=	function()	{	/*..*/	};

}

Note:	If	you're	defining	a	"polyfill"	for	a	feature	if	it	doesn't	already	exist,	you	probably	want
to	avoid	using		var		to	make	the		atob		declaration.	If	you	declare		var	atob		inside	the		if	
statement,	this	declaration	is	hoisted	(see	the	Scope	&	Closures	title	of	this	series)	to	the	top
of	the	scope,	even	if	the		if		condition	doesn't	pass	(because	the	global		atob		already
exists!).	In	some	browsers	and	for	some	special	types	of	global	built-in	variables	(often
called	"host	objects"),	this	duplicate	declaration	may	throw	an	error.	Omitting	the		var	
prevents	this	hoisted	declaration.

Another	way	of	doing	these	checks	against	global	variables	but	without	the	safety	guard
feature	of		typeof		is	to	observe	that	all	global	variables	are	also	properties	of	the	global
object,	which	in	the	browser	is	basically	the		window		object.	So,	the	above	checks	could
have	been	done	(quite	safely)	as:

if	(window.DEBUG)	{

				//	..

}

if	(!window.atob)	{

				//	..

}

Unlike	referencing	undeclared	variables,	there	is	no		ReferenceError		thrown	if	you	try	to
access	an	object	property	(even	on	the	global		window		object)	that	doesn't	exist.
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On	the	other	hand,	manually	referencing	the	global	variable	with	a		window		reference	is
something	some	developers	prefer	to	avoid,	especially	if	your	code	needs	to	run	in	multiple
JS	environments	(not	just	browsers,	but	server-side	node.js,	for	instance),	where	the	global
object	may	not	always	be	called		window	.

Technically,	this	safety	guard	on		typeof		is	useful	even	if	you're	not	using	global	variables,
though	these	circumstances	are	less	common,	and	some	developers	may	find	this	design
approach	less	desirable.	Imagine	a	utility	function	that	you	want	others	to	copy-and-paste
into	their	programs	or	modules,	in	which	you	want	to	check	to	see	if	the	including	program
has	defined	a	certain	variable	(so	that	you	can	use	it)	or	not:

function	doSomethingCool()	{

				var	helper	=

								(typeof	FeatureXYZ	!==	"undefined")	?

								FeatureXYZ	:

								function()	{	/*..	default	feature	..*/	};

				var	val	=	helper();

				//	..

}

	doSomethingCool()		tests	for	a	variable	called		FeatureXYZ	,	and	if	found,	uses	it,	but	if	not,
uses	its	own.	Now,	if	someone	includes	this	utility	in	their	module/program,	it	safely	checks	if
they've	defined		FeatureXYZ		or	not:

//	an	IIFE	(see	"Immediately	Invoked	Function	Expressions"

//	discussion	in	the	*Scope	&	Closures*	title	of	this	series)

(function(){

				function	FeatureXYZ()	{	/*..	my	XYZ	feature	..*/	}

				//	include	`doSomethingCool(..)`

				function	doSomethingCool()	{

								var	helper	=

												(typeof	FeatureXYZ	!==	"undefined")	?

												FeatureXYZ	:

												function()	{	/*..	default	feature	..*/	};

								var	val	=	helper();

								//	..

				}

				doSomethingCool();

})();
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Here,		FeatureXYZ		is	not	at	all	a	global	variable,	but	we're	still	using	the	safety	guard	of
	typeof		to	make	it	safe	to	check	for.	And	importantly,	here	there	is	no	object	we	can	use
(like	we	did	for	global	variables	with		window.___	)	to	make	the	check,	so		typeof		is	quite
helpful.

Other	developers	would	prefer	a	design	pattern	called	"dependency	injection,"	where	instead
of		doSomethingCool()		inspecting	implicitly	for		FeatureXYZ		to	be	defined	outside/around	it,	it
would	need	to	have	the	dependency	explicitly	passed	in,	like:

function	doSomethingCool(FeatureXYZ)	{

				var	helper	=	FeatureXYZ	||

								function()	{	/*..	default	feature	..*/	};

				var	val	=	helper();

				//	..

}

There	are	lots	of	options	when	designing	such	functionality.	No	one	pattern	here	is	"correct"
or	"wrong"	--	there	are	various	tradeoffs	to	each	approach.	But	overall,	it's	nice	that	the
	typeof		undeclared	safety	guard	gives	us	more	options.

Review
JavaScript	has	seven	built-in	types:		null	,		undefined	,		boolean	,		number	,		string	,
	object	,		symbol	.	They	can	be	identified	by	the		typeof		operator.

Variables	don't	have	types,	but	the	values	in	them	do.	These	types	define	intrinsic	behavior
of	the	values.

Many	developers	will	assume	"undefined"	and	"undeclared"	are	roughly	the	same	thing,	but
in	JavaScript,	they're	quite	different.		undefined		is	a	value	that	a	declared	variable	can	hold.
"Undeclared"	means	a	variable	has	never	been	declared.

JavaScript	unfortunately	kind	of	conflates	these	two	terms,	not	only	in	its	error	messages
("ReferenceError:	a	is	not	defined")	but	also	in	the	return	values	of		typeof	,	which	is
	"undefined"		for	both	cases.

However,	the	safety	guard	(preventing	an	error)	on		typeof		when	used	against	an
undeclared	variable	can	be	helpful	in	certain	cases.
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Chapter	2:	Values
	array	s,		string	s,	and		number	s	are	the	most	basic	building-blocks	of	any	program,	but
JavaScript	has	some	unique	characteristics	with	these	types	that	may	either	delight	or
confound	you.

Let's	look	at	several	of	the	built-in	value	types	in	JS,	and	explore	how	we	can	more	fully
understand	and	correctly	leverage	their	behaviors.

Arrays
As	compared	to	other	type-enforced	languages,	JavaScript		array	s	are	just	containers	for
any	type	of	value,	from		string		to		number		to		object		to	even	another		array		(which	is	how
you	get	multidimensional		array	s).

var	a	=	[	1,	"2",	[3]	];

a.length;								//	3

a[0]	===	1;								//	true

a[2][0]	===	3;				//	true

You	don't	need	to	presize	your		array	s	(see	"Arrays"	in	Chapter	3),	you	can	just	declare
them	and	add	values	as	you	see	fit:

var	a	=	[	];

a.length;				//	0

a[0]	=	1;

a[1]	=	"2";

a[2]	=	[	3	];

a.length;				//	3

Warning:	Using		delete		on	an		array		value	will	remove	that	slot	from	the		array	,	but	even
if	you	remove	the	final	element,	it	does	not	update	the		length		property,	so	be	careful!	We'll
cover	the		delete		operator	itself	in	more	detail	in	Chapter	5.

Be	careful	about	creating	"sparse"		array	s	(leaving	or	creating	empty/missing	slots):
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var	a	=	[	];

a[0]	=	1;

//	no	`a[1]`	slot	set	here

a[2]	=	[	3	];

a[1];								//	undefined

a.length;				//	3

While	that	works,	it	can	lead	to	some	confusing	behavior	with	the	"empty	slots"	you	leave	in
between.	While	the	slot	appears	to	have	the		undefined		value	in	it,	it	will	not	behave	the
same	as	if	the	slot	is	explicitly	set	(	a[1]	=	undefined	).	See	"Arrays"	in	Chapter	3	for	more
information.

	array	s	are	numerically	indexed	(as	you'd	expect),	but	the	tricky	thing	is	that	they	also	are
objects	that	can	have		string		keys/properties	added	to	them	(but	which	don't	count	toward
the		length		of	the		array	):

var	a	=	[	];

a[0]	=	1;

a["foobar"]	=	2;

a.length;								//	1

a["foobar"];				//	2

a.foobar;								//	2

However,	a	gotcha	to	be	aware	of	is	that	if	a		string		value	intended	as	a	key	can	be
coerced	to	a	standard	base-10		number	,	then	it	is	assumed	that	you	wanted	to	use	it	as	a
	number		index	rather	than	as	a		string		key!

var	a	=	[	];

a["13"]	=	42;

a.length;	//	14

Generally,	it's	not	a	great	idea	to	add		string		keys/properties	to		array	s.	Use		object	s	for
holding	values	in	keys/properties,	and	save		array	s	for	strictly	numerically	indexed	values.

Array-Likes
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There	will	be	occasions	where	you	need	to	convert	an		array	-like	value	(a	numerically
indexed	collection	of	values)	into	a	true		array	,	usually	so	you	can	call	array	utilities	(like
	indexOf(..)	,		concat(..)	,		forEach(..)	,	etc.)	against	the	collection	of	values.

For	example,	various	DOM	query	operations	return	lists	of	DOM	elements	that	are	not	true
	array	s	but	are		array	-like	enough	for	our	conversion	purposes.	Another	common	example
is	when	functions	expose	the		arguments		(	array	-like)	object	(as	of	ES6,	deprecated)	to
access	the	arguments	as	a	list.

One	very	common	way	to	make	such	a	conversion	is	to	borrow	the		slice(..)		utility	against
the	value:

function	foo()	{

				var	arr	=	Array.prototype.slice.call(	arguments	);

				arr.push(	"bam"	);

				console.log(	arr	);

}

foo(	"bar",	"baz"	);	//	["bar","baz","bam"]

If		slice()		is	called	without	any	other	parameters,	as	it	effectively	is	in	the	above	snippet,
the	default	values	for	its	parameters	have	the	effect	of	duplicating	the		array		(or,	in	this
case,		array	-like).

As	of	ES6,	there's	also	a	built-in	utility	called		Array.from(..)		that	can	do	the	same	task:

...

var	arr	=	Array.from(	arguments	);

...

Note:		Array.from(..)		has	several	powerful	capabilities,	and	will	be	covered	in	detail	in	the
ES6	&	Beyond	title	of	this	series.

Strings
It's	a	very	common	belief	that		string	s	are	essentially	just		array	s	of	characters.	While	the
implementation	under	the	covers	may	or	may	not	use		array	s,	it's	important	to	realize	that
JavaScript		string	s	are	really	not	the	same	as		array	s	of	characters.	The	similarity	is
mostly	just	skin-deep.

For	example,	let's	consider	these	two	values:
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var	a	=	"foo";

var	b	=	["f","o","o"];

Strings	do	have	a	shallow	resemblance	to		array	s	--		array	-likes,	as	above	--	for	instance,
both	of	them	having	a		length		property,	an		indexOf(..)		method	(	array		version	only	as	of
ES5),	and	a		concat(..)		method:

a.length;																												//	3

b.length;																												//	3

a.indexOf(	"o"	);																				//	1

b.indexOf(	"o"	);																				//	1

var	c	=	a.concat(	"bar"	);												//	"foobar"

var	d	=	b.concat(	["b","a","r"]	);				//	["f","o","o","b","a","r"]

a	===	c;																												//	false

b	===	d;																												//	false

a;																																				//	"foo"

b;																																				//	["f","o","o"]

So,	they're	both	basically	just	"arrays	of	characters",	right?	Not	exactly:

a[1]	=	"O";

b[1]	=	"O";

a;	//	"foo"

b;	//	["f","O","o"]

JavaScript		string	s	are	immutable,	while		array	s	are	quite	mutable.	Moreover,	the		a[1]	
character	position	access	form	was	not	always	widely	valid	JavaScript.	Older	versions	of	IE
did	not	allow	that	syntax	(but	now	they	do).	Instead,	the	correct	approach	has	been
	a.charAt(1)	.

A	further	consequence	of	immutable		string	s	is	that	none	of	the		string		methods	that	alter
its	contents	can	modify	in-place,	but	rather	must	create	and	return	new		string	s.	By
contrast,	many	of	the	methods	that	change		array		contents	actually	do	modify	in-place.
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c	=	a.toUpperCase();

a	===	c;				//	false

a;												//	"foo"

c;												//	"FOO"

b.push(	"!"	);

b;												//	["f","O","o","!"]

Also,	many	of	the		array		methods	that	could	be	helpful	when	dealing	with		string	s	are	not
actually	available	for	them,	but	we	can	"borrow"	non-mutation		array		methods	against	our
	string	:

a.join;												//	undefined

a.map;												//	undefined

var	c	=	Array.prototype.join.call(	a,	"-"	);

var	d	=	Array.prototype.map.call(	a,	function(v){

				return	v.toUpperCase()	+	".";

}	).join(	""	);

c;																//	"f-o-o"

d;																//	"F.O.O."

Let's	take	another	example:	reversing	a		string		(incidentally,	a	common	JavaScript
interview	trivia	question!).		array	s	have	a		reverse()		in-place	mutator	method,	but
	string	s	do	not:

a.reverse;								//	undefined

b.reverse();				//	["!","o","O","f"]

b;																//	["!","o","O","f"]

Unfortunately,	this	"borrowing"	doesn't	work	with		array		mutators,	because		string	s	are
immutable	and	thus	can't	be	modified	in	place:

Array.prototype.reverse.call(	a	);

//	still	returns	a	String	object	wrapper	(see	Chapter	3)

//	for	"foo"	:(

Another	workaround	(aka	hack)	is	to	convert	the		string		into	an		array	,	perform	the
desired	operation,	then	convert	it	back	to	a		string	.
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var	c	=	a

				//	split	`a`	into	an	array	of	characters

				.split(	""	)

				//	reverse	the	array	of	characters

				.reverse()

				//	join	the	array	of	characters	back	to	a	string

				.join(	""	);

c;	//	"oof"

If	that	feels	ugly,	it	is.	Nevertheless,	it	works	for	simple		string	s,	so	if	you	need	something
quick-n-dirty,	often	such	an	approach	gets	the	job	done.

Warning:	Be	careful!	This	approach	doesn't	work	for		string	s	with	complex	(unicode)
characters	in	them	(astral	symbols,	multibyte	characters,	etc.).	You	need	more	sophisticated
library	utilities	that	are	unicode-aware	for	such	operations	to	be	handled	accurately.	Consult
Mathias	Bynens'	work	on	the	subject:	Esrever	(https://github.com/mathiasbynens/esrever).

The	other	way	to	look	at	this	is:	if	you	are	more	commonly	doing	tasks	on	your	"strings"	that
treat	them	as	basically	arrays	of	characters,	perhaps	it's	better	to	just	actually	store	them	as
	array	s	rather	than	as		string	s.	You'll	probably	save	yourself	a	lot	of	hassle	of	converting
from		string		to		array		each	time.	You	can	always	call		join("")		on	the		array		of
characters	whenever	you	actually	need	the		string		representation.

Numbers
JavaScript	has	just	one	numeric	type:		number	.	This	type	includes	both	"integer"	values	and
fractional	decimal	numbers.	I	say	"integer"	in	quotes	because	it's	long	been	a	criticism	of	JS
that	there	are	not	true	integers,	as	there	are	in	other	languages.	That	may	change	at	some
point	in	the	future,	but	for	now,	we	just	have		number	s	for	everything.

So,	in	JS,	an	"integer"	is	just	a	value	that	has	no	fractional	decimal	value.	That	is,		42.0		is
as	much	an	"integer"	as		42	.

Like	most	modern	languages,	including	practically	all	scripting	languages,	the
implementation	of	JavaScript's		number	s	is	based	on	the	"IEEE	754"	standard,	often	called
"floating-point."	JavaScript	specifically	uses	the	"double	precision"	format	(aka	"64-bit
binary")	of	the	standard.

There	are	many	great	write-ups	on	the	Web	about	the	nitty-gritty	details	of	how	binary
floating-point	numbers	are	stored	in	memory,	and	the	implications	of	those	choices.	Because
understanding	bit	patterns	in	memory	is	not	strictly	necessary	to	understand	how	to	correctly
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use		number	s	in	JS,	we'll	leave	it	as	an	exercise	for	the	interested	reader	if	you'd	like	to	dig
further	into	IEEE	754	details.

Numeric	Syntax

Number	literals	are	expressed	in	JavaScript	generally	as	base-10	decimal	literals.	For
example:

var	a	=	42;

var	b	=	42.3;

The	leading	portion	of	a	decimal	value,	if		0	,	is	optional:

var	a	=	0.42;

var	b	=	.42;

Similarly,	the	trailing	portion	(the	fractional)	of	a	decimal	value	after	the		.	,	if		0	,	is	optional:

var	a	=	42.0;

var	b	=	42.;

Warning:		42.		is	pretty	uncommon,	and	probably	not	a	great	idea	if	you're	trying	to	avoid
confusion	when	other	people	read	your	code.	But	it	is,	nevertheless,	valid.

By	default,	most		number	s	will	be	outputted	as	base-10	decimals,	with	trailing	fractional		0	s
removed.	So:

var	a	=	42.300;

var	b	=	42.0;

a;	//	42.3

b;	//	42

Very	large	or	very	small		number	s	will	by	default	be	outputted	in	exponent	form,	the	same	as
the	output	of	the		toExponential()		method,	like:
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var	a	=	5E10;

a;																				//	50000000000

a.toExponential();				//	"5e+10"

var	b	=	a	*	a;

b;																				//	2.5e+21

var	c	=	1	/	a;

c;																				//	2e-11

Because		number		values	can	be	boxed	with	the		Number		object	wrapper	(see	Chapter	3),
	number		values	can	access	methods	that	are	built	into	the		Number.prototype		(see	Chapter
3).	For	example,	the		toFixed(..)		method	allows	you	to	specify	how	many	fractional
decimal	places	you'd	like	the	value	to	be	represented	with:

var	a	=	42.59;

a.toFixed(	0	);	//	"43"

a.toFixed(	1	);	//	"42.6"

a.toFixed(	2	);	//	"42.59"

a.toFixed(	3	);	//	"42.590"

a.toFixed(	4	);	//	"42.5900"

Notice	that	the	output	is	actually	a		string		representation	of	the		number	,	and	that	the	value
is		0	-padded	on	the	right-hand	side	if	you	ask	for	more	decimals	than	the	value	holds.

	toPrecision(..)		is	similar,	but	specifies	how	many	significant	digits	should	be	used	to
represent	the	value:

var	a	=	42.59;

a.toPrecision(	1	);	//	"4e+1"

a.toPrecision(	2	);	//	"43"

a.toPrecision(	3	);	//	"42.6"

a.toPrecision(	4	);	//	"42.59"

a.toPrecision(	5	);	//	"42.590"

a.toPrecision(	6	);	//	"42.5900"

You	don't	have	to	use	a	variable	with	the	value	in	it	to	access	these	methods;	you	can
access	these	methods	directly	on		number		literals.	But	you	have	to	be	careful	with	the		.	
operator.	Since		.		is	a	valid	numeric	character,	it	will	first	be	interpreted	as	part	of	the
	number		literal,	if	possible,	instead	of	being	interpreted	as	a	property	accessor.
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//	invalid	syntax:

42.toFixed(	3	);				//	SyntaxError

//	these	are	all	valid:

(42).toFixed(	3	);				//	"42.000"

0.42.toFixed(	3	);				//	"0.420"

42..toFixed(	3	);				//	"42.000"

	42.toFixed(3)		is	invalid	syntax,	because	the		.		is	swallowed	up	as	part	of	the		42.		literal
(which	is	valid	--	see	above!),	and	so	then	there's	no		.		property	operator	present	to	make
the		.toFixed		access.

	42..toFixed(3)		works	because	the	first		.		is	part	of	the		number		and	the	second		.		is	the
property	operator.	But	it	probably	looks	strange,	and	indeed	it's	very	rare	to	see	something
like	that	in	actual	JavaScript	code.	In	fact,	it's	pretty	uncommon	to	access	methods	directly
on	any	of	the	primitive	values.	Uncommon	doesn't	mean	bad	or	wrong.

Note:	There	are	libraries	that	extend	the	built-in		Number.prototype		(see	Chapter	3)	to
provide	extra	operations	on/with		number	s,	and	so	in	those	cases,	it's	perfectly	valid	to	use
something	like		10..makeItRain()		to	set	off	a	10-second	money	raining	animation,	or
something	else	silly	like	that.

This	is	also	technically	valid	(notice	the	space):

42	.toFixed(3);	//	"42.000"

However,	with	the		number		literal	specifically,	this	is	particularly	confusing	coding	style
and	will	serve	no	other	purpose	but	to	confuse	other	developers	(and	your	future	self).	Avoid
it.

	number	s	can	also	be	specified	in	exponent	form,	which	is	common	when	representing
larger		number	s,	such	as:

var	onethousand	=	1E3;																								//	means	1	*	10^3

var	onemilliononehundredthousand	=	1.1E6;				//	means	1.1	*	10^6

	number		literals	can	also	be	expressed	in	other	bases,	like	binary,	octal,	and	hexadecimal.

These	formats	work	in	current	versions	of	JavaScript:

0xf3;	//	hexadecimal	for:	243

0Xf3;	//	ditto

0363;	//	octal	for:	243
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Note:	Starting	with	ES6	+		strict		mode,	the		0363		form	of	octal	literals	is	no	longer
allowed	(see	below	for	the	new	form).	The		0363		form	is	still	allowed	in	non-	strict		mode,
but	you	should	stop	using	it	anyway,	to	be	future-friendly	(and	because	you	should	be	using
	strict		mode	by	now!).

As	of	ES6,	the	following	new	forms	are	also	valid:

0o363;								//	octal	for:	243

0O363;								//	ditto

0b11110011;				//	binary	for:	243

0B11110011;	//	ditto

Please	do	your	fellow	developers	a	favor:	never	use	the		0O363		form.		0		next	to	capital		O	
is	just	asking	for	confusion.	Always	use	the	lowercase	predicates		0x	,		0b	,	and		0o	.

Small	Decimal	Values

The	most	(in)famous	side	effect	of	using	binary	floating-point	numbers	(which,	remember,	is
true	of	all	languages	that	use	IEEE	754	--	not	just	JavaScript	as	many	assume/pretend)	is:

0.1	+	0.2	===	0.3;	//	false

Mathematically,	we	know	that	statement	should	be		true	.	Why	is	it		false	?

Simply	put,	the	representations	for		0.1		and		0.2		in	binary	floating-point	are	not	exact,	so
when	they	are	added,	the	result	is	not	exactly		0.3	.	It's	really	close:		0.30000000000000004	,
but	if	your	comparison	fails,	"close"	is	irrelevant.

Note:	Should	JavaScript	switch	to	a	different		number		implementation	that	has	exact
representations	for	all	values?	Some	think	so.	There	have	been	many	alternatives	presented
over	the	years.	None	of	them	have	been	accepted	yet,	and	perhaps	never	will.	As	easy	as	it
may	seem	to	just	wave	a	hand	and	say,	"fix	that	bug	already!",	it's	not	nearly	that	easy.	If	it
were,	it	most	definitely	would	have	been	changed	a	long	time	ago.

Now,	the	question	is,	if	some		number	s	can't	be	trusted	to	be	exact,	does	that	mean	we	can't
use		number	s	at	all?	Of	course	not.

There	are	some	applications	where	you	need	to	be	more	careful,	especially	when	dealing
with	fractional	decimal	values.	There	are	also	plenty	of	(maybe	most?)	applications	that	only
deal	with	whole	numbers	("integers"),	and	moreover,	only	deal	with	numbers	in	the	millions
or	trillions	at	maximum.	These	applications	have	been,	and	always	will	be,	perfectly	safe	to
use	numeric	operations	in	JS.
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What	if	we	did	need	to	compare	two		number	s,	like		0.1	+	0.2		to		0.3	,	knowing	that	the
simple	equality	test	fails?

The	most	commonly	accepted	practice	is	to	use	a	tiny	"rounding	error"	value	as	the
tolerance	for	comparison.	This	tiny	value	is	often	called	"machine	epsilon,"	which	is
commonly		2^-52		(	2.220446049250313e-16	)	for	the	kind	of		number	s	in	JavaScript.

As	of	ES6,		Number.EPSILON		is	predefined	with	this	tolerance	value,	so	you'd	want	to	use	it,
but	you	can	safely	polyfill	the	definition	for	pre-ES6:

if	(!Number.EPSILON)	{

				Number.EPSILON	=	Math.pow(2,-52);

}

We	can	use	this		Number.EPSILON		to	compare	two		number	s	for	"equality"	(within	the	rounding
error	tolerance):

function	numbersCloseEnoughToEqual(n1,n2)	{

				return	Math.abs(	n1	-	n2	)	<	Number.EPSILON;

}

var	a	=	0.1	+	0.2;

var	b	=	0.3;

numbersCloseEnoughToEqual(	a,	b	);																				//	true

numbersCloseEnoughToEqual(	0.0000001,	0.0000002	);				//	false

The	maximum	floating-point	value	that	can	be	represented	is	roughly		1.798e+308		(which	is
really,	really,	really	huge!),	predefined	for	you	as		Number.MAX_VALUE	.	On	the	small	end,
	Number.MIN_VALUE		is	roughly		5e-324	,	which	isn't	negative	but	is	really	close	to	zero!

Safe	Integer	Ranges

Because	of	how		number	s	are	represented,	there	is	a	range	of	"safe"	values	for	the	whole
	number		"integers",	and	it's	significantly	less	than		Number.MAX_VALUE	.

The	maximum	integer	that	can	"safely"	be	represented	(that	is,	there's	a	guarantee	that	the
requested	value	is	actually	representable	unambiguously)	is		2^53	-	1	,	which	is
	9007199254740991	.	If	you	insert	your	commas,	you'll	see	that	this	is	just	over	9	quadrillion.
So	that's	pretty	darn	big	for		number	s	to	range	up	to.

This	value	is	actually	automatically	predefined	in	ES6,	as		Number.MAX_SAFE_INTEGER	.
Unsurprisingly,	there's	a	minimum	value,		-9007199254740991	,	and	it's	defined	in	ES6	as
	Number.MIN_SAFE_INTEGER	.
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The	main	way	that	JS	programs	are	confronted	with	dealing	with	such	large	numbers	is
when	dealing	with	64-bit	IDs	from	databases,	etc.	64-bit	numbers	cannot	be	represented
accurately	with	the		number		type,	so	must	be	stored	in	(and	transmitted	to/from)	JavaScript
using		string		representation.

Numeric	operations	on	such	large	ID		number		values	(besides	comparison,	which	will	be	fine
with		string	s)	aren't	all	that	common,	thankfully.	But	if	you	do	need	to	perform	math	on
these	very	large	values,	for	now	you'll	need	to	use	a	big	number	utility.	Big	numbers	may	get
official	support	in	a	future	version	of	JavaScript.

Testing	for	Integers

To	test	if	a	value	is	an	integer,	you	can	use	the	ES6-specified		Number.isInteger(..)	:

Number.isInteger(	42	);								//	true

Number.isInteger(	42.000	);				//	true

Number.isInteger(	42.3	);				//	false

To	polyfill		Number.isInteger(..)		for	pre-ES6:

if	(!Number.isInteger)	{

				Number.isInteger	=	function(num)	{

								return	typeof	num	==	"number"	&&	num	%	1	==	0;

				};

}

To	test	if	a	value	is	a	safe	integer,	use	the	ES6-specified		Number.isSafeInteger(..)	:

Number.isSafeInteger(	Number.MAX_SAFE_INTEGER	);				//	true

Number.isSafeInteger(	Math.pow(	2,	53	)	);												//	false

Number.isSafeInteger(	Math.pow(	2,	53	)	-	1	);								//	true

To	polyfill		Number.isSafeInteger(..)		in	pre-ES6	browsers:

if	(!Number.isSafeInteger)	{

				Number.isSafeInteger	=	function(num)	{

								return	Number.isInteger(	num	)	&&

												Math.abs(	num	)	<=	Number.MAX_SAFE_INTEGER;

				};

}

32-bit	(Signed)	Integers
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While	integers	can	range	up	to	roughly	9	quadrillion	safely	(53	bits),	there	are	some	numeric
operations	(like	the	bitwise	operators)	that	are	only	defined	for	32-bit		number	s,	so	the	"safe
range"	for		number	s	used	in	that	way	must	be	much	smaller.

The	range	then	is		Math.pow(-2,31)		(	-2147483648	,	about	-2.1	billion)	up	to
	Math.pow(2,31)-1		(	2147483647	,	about	+2.1	billion).

To	force	a		number		value	in		a		to	a	32-bit	signed	integer	value,	use		a	|	0	.	This	works
because	the		|		bitwise	operator	only	works	for	32-bit	integer	values	(meaning	it	can	only
pay	attention	to	32	bits	and	any	other	bits	will	be	lost).	Then,	"or'ing"	with	zero	is	essentially
a	no-op	bitwise	speaking.

Note:	Certain	special	values	(which	we	will	cover	in	the	next	section)	such	as		NaN		and
	Infinity		are	not	"32-bit	safe,"	in	that	those	values	when	passed	to	a	bitwise	operator	will
pass	through	the	abstract	operation		ToInt32		(see	Chapter	4)	and	become	simply	the		+0	
value	for	the	purpose	of	that	bitwise	operation.

Special	Values
There	are	several	special	values	spread	across	the	various	types	that	the	alert	JS	developer
needs	to	be	aware	of,	and	use	properly.

The	Non-value	Values

For	the		undefined		type,	there	is	one	and	only	one	value:		undefined	.	For	the		null		type,
there	is	one	and	only	one	value:		null	.	So	for	both	of	them,	the	label	is	both	its	type	and	its
value.

Both		undefined		and		null		are	often	taken	to	be	interchangeable	as	either	"empty"	values
or	"non"	values.	Other	developers	prefer	to	distinguish	between	them	with	nuance.	For
example:

	null		is	an	empty	value
	undefined		is	a	missing	value

Or:

	undefined		hasn't	had	a	value	yet
	null		had	a	value	and	doesn't	anymore

Regardless	of	how	you	choose	to	"define"	and	use	these	two	values,		null		is	a	special
keyword,	not	an	identifier,	and	thus	you	cannot	treat	it	as	a	variable	to	assign	to	(why	would
you!?).	However,		undefined		is	(unfortunately)	an	identifier.	Uh	oh.
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Undefined

In	non-	strict		mode,	it's	actually	possible	(though	incredibly	ill-advised!)	to	assign	a	value
to	the	globally	provided		undefined		identifier:

function	foo()	{

				undefined	=	2;	//	really	bad	idea!

}

foo();

function	foo()	{

				"use	strict";

				undefined	=	2;	//	TypeError!

}

foo();

In	both	non-	strict		mode	and		strict		mode,	however,	you	can	create	a	local	variable	of
the	name		undefined	.	But	again,	this	is	a	terrible	idea!

function	foo()	{

				"use	strict";

				var	undefined	=	2;

				console.log(	undefined	);	//	2

}

foo();

Friends	don't	let	friends	override		undefined	.	Ever.

	void		Operator

While		undefined		is	a	built-in	identifier	that	holds	(unless	modified	--	see	above!)	the	built-in
	undefined		value,	another	way	to	get	this	value	is	the		void		operator.

The	expression		void	___		"voids"	out	any	value,	so	that	the	result	of	the	expression	is
always	the		undefined		value.	It	doesn't	modify	the	existing	value;	it	just	ensures	that	no
value	comes	back	from	the	operator	expression.

var	a	=	42;

console.log(	void	a,	a	);	//	undefined	42
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By	convention	(mostly	from	C-language	programming),	to	represent	the		undefined		value
stand-alone	by	using		void	,	you'd	use		void	0		(though	clearly	even		void	true		or	any
other		void		expression	does	the	same	thing).	There's	no	practical	difference	between		void
0	,		void	1	,	and		undefined	.

But	the		void		operator	can	be	useful	in	a	few	other	circumstances,	if	you	need	to	ensure
that	an	expression	has	no	result	value	(even	if	it	has	side	effects).

For	example:

function	doSomething()	{

				//	note:	`APP.ready`	is	provided	by	our	application

				if	(!APP.ready)	{

								//	try	again	later

								return	void	setTimeout(	doSomething,	100	);

				}

				var	result;

				//	do	some	other	stuff

				return	result;

}

//	were	we	able	to	do	it	right	away?

if	(doSomething())	{

				//	handle	next	tasks	right	away

}

Here,	the		setTimeout(..)		function	returns	a	numeric	value	(the	unique	identifier	of	the	timer
interval,	if	you	wanted	to	cancel	it),	but	we	want	to		void		that	out	so	that	the	return	value	of
our	function	doesn't	give	a	false-positive	with	the		if		statement.

Many	devs	prefer	to	just	do	these	actions	separately,	which	works	the	same	but	doesn't	use
the		void		operator:

if	(!APP.ready)	{

				//	try	again	later

				setTimeout(	doSomething,	100	);

				return;

}

In	general,	if	there's	ever	a	place	where	a	value	exists	(from	some	expression)	and	you'd
find	it	useful	for	the	value	to	be		undefined		instead,	use	the		void		operator.	That	probably
won't	be	terribly	common	in	your	programs,	but	in	the	rare	cases	you	do	need	it,	it	can	be
quite	helpful.
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Special	Numbers

The		number		type	includes	several	special	values.	We'll	take	a	look	at	each	in	detail.

The	Not	Number,	Number

Any	mathematic	operation	you	perform	without	both	operands	being		number	s	(or	values
that	can	be	interpreted	as	regular		number	s	in	base	10	or	base	16)	will	result	in	the	operation
failing	to	produce	a	valid		number	,	in	which	case	you	will	get	the		NaN		value.

	NaN		literally	stands	for	"not	a		number	",	though	this	label/description	is	very	poor	and
misleading,	as	we'll	see	shortly.	It	would	be	much	more	accurate	to	think	of		NaN		as	being
"invalid	number,"	"failed	number,"	or	even	"bad	number,"	than	to	think	of	it	as	"not	a	number."

For	example:

var	a	=	2	/	"foo";								//	NaN

typeof	a	===	"number";				//	true

In	other	words:	"the	type	of	not-a-number	is	'number'!"	Hooray	for	confusing	names	and
semantics.

	NaN		is	a	kind	of	"sentinel	value"	(an	otherwise	normal	value	that's	assigned	a	special
meaning)	that	represents	a	special	kind	of	error	condition	within	the		number		set.	The	error
condition	is,	in	essence:	"I	tried	to	perform	a	mathematic	operation	but	failed,	so	here's	the
failed		number		result	instead."

So,	if	you	have	a	value	in	some	variable	and	want	to	test	to	see	if	it's	this	special	failed-
number		NaN	,	you	might	think	you	could	directly	compare	to		NaN		itself,	as	you	can	with	any
other	value,	like		null		or		undefined	.	Nope.

var	a	=	2	/	"foo";

a	==	NaN;				//	false

a	===	NaN;				//	false

	NaN		is	a	very	special	value	in	that	it's	never	equal	to	another		NaN		value	(i.e.,	it's	never
equal	to	itself).	It's	the	only	value,	in	fact,	that	is	not	reflexive	(without	the	Identity
characteristic		x	===	x	).	So,		NaN	!==	NaN	.	A	bit	strange,	huh?

So	how	do	we	test	for	it,	if	we	can't	compare	to		NaN		(since	that	comparison	would	always
fail)?
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var	a	=	2	/	"foo";

isNaN(	a	);	//	true

Easy	enough,	right?	We	use	the	built-in	global	utility	called		isNaN(..)		and	it	tells	us	if	the
value	is		NaN		or	not.	Problem	solved!

Not	so	fast.

The		isNaN(..)		utility	has	a	fatal	flaw.	It	appears	it	tried	to	take	the	meaning	of		NaN		("Not	a
Number")	too	literally	--	that	its	job	is	basically:	"test	if	the	thing	passed	in	is	either	not	a
	number		or	is	a		number	."	But	that's	not	quite	accurate.

var	a	=	2	/	"foo";

var	b	=	"foo";

a;	//	NaN

b;	//	"foo"

window.isNaN(	a	);	//	true

window.isNaN(	b	);	//	true	--	ouch!

Clearly,		"foo"		is	literally	not	a		number	,	but	it's	definitely	not	the		NaN		value	either!	This	bug
has	been	in	JS	since	the	very	beginning	(over	19	years	of	ouch).

As	of	ES6,	finally	a	replacement	utility	has	been	provided:		Number.isNaN(..)	.	A	simple
polyfill	for	it	so	that	you	can	safely	check		NaN		values	now	even	in	pre-ES6	browsers	is:

if	(!Number.isNaN)	{

				Number.isNaN	=	function(n)	{

								return	(

												typeof	n	===	"number"	&&

												window.isNaN(	n	)

								);

				};

}

var	a	=	2	/	"foo";

var	b	=	"foo";

Number.isNaN(	a	);	//	true

Number.isNaN(	b	);	//	false	--	phew!

Actually,	we	can	implement	a		Number.isNaN(..)		polyfill	even	easier,	by	taking	advantage	of
that	peculiar	fact	that		NaN		isn't	equal	to	itself.		NaN		is	the	only	value	in	the	whole	language
where	that's	true;	every	other	value	is	always	equal	to	itself.
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So:

if	(!Number.isNaN)	{

				Number.isNaN	=	function(n)	{

								return	n	!==	n;

				};

}

Weird,	huh?	But	it	works!

	NaN	s	are	probably	a	reality	in	a	lot	of	real-world	JS	programs,	either	on	purpose	or	by
accident.	It's	a	really	good	idea	to	use	a	reliable	test,	like		Number.isNaN(..)		as	provided	(or
polyfilled),	to	recognize	them	properly.

If	you're	currently	using	just		isNaN(..)		in	a	program,	the	sad	reality	is	your	program	has	a
bug,	even	if	you	haven't	been	bitten	by	it	yet!

Infinities

Developers	from	traditional	compiled	languages	like	C	are	probably	used	to	seeing	either	a
compiler	error	or	runtime	exception,	like	"Divide	by	zero,"	for	an	operation	like:

var	a	=	1	/	0;

However,	in	JS,	this	operation	is	well-defined	and	results	in	the	value		Infinity		(aka
	Number.POSITIVE_INFINITY	).	Unsurprisingly:

var	a	=	1	/	0;				//	Infinity

var	b	=	-1	/	0;				//	-Infinity

As	you	can	see,		-Infinity		(aka		Number.NEGATIVE_INFINITY	)	results	from	a	divide-by-zero
where	either	(but	not	both!)	of	the	divide	operands	is	negative.

JS	uses	finite	numeric	representations	(IEEE	754	floating-point,	which	we	covered	earlier),
so	contrary	to	pure	mathematics,	it	seems	it	is	possible	to	overflow	even	with	an	operation
like	addition	or	subtraction,	in	which	case	you'd	get		Infinity		or		-Infinity	.

For	example:

var	a	=	Number.MAX_VALUE;				//	1.7976931348623157e+308

a	+	a;																								//	Infinity

a	+	Math.pow(	2,	970	);								//	Infinity

a	+	Math.pow(	2,	969	);								//	1.7976931348623157e+308
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According	to	the	specification,	if	an	operation	like	addition	results	in	a	value	that's	too	big	to
represent,	the	IEEE	754	"round-to-nearest"	mode	specifies	what	the	result	should	be.	So,	in
a	crude	sense,		Number.MAX_VALUE	+	Math.pow(	2,	969	)		is	closer	to		Number.MAX_VALUE		than
to		Infinity	,	so	it	"rounds	down,"	whereas		Number.MAX_VALUE	+	Math.pow(	2,	970	)		is	closer
to		Infinity		so	it	"rounds	up".

If	you	think	too	much	about	that,	it's	going	to	make	your	head	hurt.	So	don't.	Seriously,	stop!

Once	you	overflow	to	either	one	of	the	infinities,	however,	there's	no	going	back.	In	other
words,	in	an	almost	poetic	sense,	you	can	go	from	finite	to	infinite	but	not	from	infinite	back
to	finite.

It's	almost	philosophical	to	ask:	"What	is	infinity	divided	by	infinity".	Our	naive	brains	would
likely	say	"1"	or	maybe	"infinity."	Turns	out	neither	is	true.	Both	mathematically	and	in
JavaScript,		Infinity	/	Infinity		is	not	a	defined	operation.	In	JS,	this	results	in		NaN	.

But	what	about	any	positive	finite		number		divided	by		Infinity	?	That's	easy!		0	.	And	what
about	a	negative	finite		number		divided	by		Infinity	?	Keep	reading!

Zeros

While	it	may	confuse	the	mathematics-minded	reader,	JavaScript	has	both	a	normal	zero		0	
(otherwise	known	as	a	positive	zero		+0	)	and	a	negative	zero		-0	.	Before	we	explain	why
the		-0		exists,	we	should	examine	how	JS	handles	it,	because	it	can	be	quite	confusing.

Besides	being	specified	literally	as		-0	,	negative	zero	also	results	from	certain	mathematic
operations.	For	example:

var	a	=	0	/	-3;	//	-0

var	b	=	0	*	-3;	//	-0

Addition	and	subtraction	cannot	result	in	a	negative	zero.

A	negative	zero	when	examined	in	the	developer	console	will	usually	reveal		-0	,	though
that	was	not	the	common	case	until	fairly	recently,	so	some	older	browsers	you	encounter
may	still	report	it	as		0	.

However,	if	you	try	to	stringify	a	negative	zero	value,	it	will	always	be	reported	as		"0"	,
according	to	the	spec.
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var	a	=	0	/	-3;

//	(some	browser)	consoles	at	least	get	it	right

a;																												//	-0

//	but	the	spec	insists	on	lying	to	you!

a.toString();																//	"0"

a	+	"";																								//	"0"

String(	a	);																//	"0"

//	strangely,	even	JSON	gets	in	on	the	deception

JSON.stringify(	a	);								//	"0"

Interestingly,	the	reverse	operations	(going	from		string		to		number	)	don't	lie:

+"-0";																//	-0

Number(	"-0"	);								//	-0

JSON.parse(	"-0"	);				//	-0

Warning:	The		JSON.stringify(	-0	)		behavior	of		"0"		is	particularly	strange	when	you
observe	that	it's	inconsistent	with	the	reverse:		JSON.parse(	"-0"	)		reports		-0		as	you'd
correctly	expect.

In	addition	to	stringification	of	negative	zero	being	deceptive	to	hide	its	true	value,	the
comparison	operators	are	also	(intentionally)	configured	to	lie.

var	a	=	0;

var	b	=	0	/	-3;

a	==	b;								//	true

-0	==	0;				//	true

a	===	b;				//	true

-0	===	0;				//	true

0	>	-0;								//	false

a	>	b;								//	false

Clearly,	if	you	want	to	distinguish	a		-0		from	a		0		in	your	code,	you	can't	just	rely	on	what
the	developer	console	outputs,	so	you're	going	to	have	to	be	a	bit	more	clever:
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function	isNegZero(n)	{

				n	=	Number(	n	);

				return	(n	===	0)	&&	(1	/	n	===	-Infinity);

}

isNegZero(	-0	);								//	true

isNegZero(	0	/	-3	);				//	true

isNegZero(	0	);												//	false

Now,	why	do	we	need	a	negative	zero,	besides	academic	trivia?

There	are	certain	applications	where	developers	use	the	magnitude	of	a	value	to	represent
one	piece	of	information	(like	speed	of	movement	per	animation	frame)	and	the	sign	of	that
	number		to	represent	another	piece	of	information	(like	the	direction	of	that	movement).

In	those	applications,	as	one	example,	if	a	variable	arrives	at	zero	and	it	loses	its	sign,	then
you	would	lose	the	information	of	what	direction	it	was	moving	in	before	it	arrived	at	zero.
Preserving	the	sign	of	the	zero	prevents	potentially	unwanted	information	loss.

Special	Equality

As	we	saw	above,	the		NaN		value	and	the		-0		value	have	special	behavior	when	it	comes
to	equality	comparison.		NaN		is	never	equal	to	itself,	so	you	have	to	use	ES6's
	Number.isNaN(..)		(or	a	polyfill).	Similarly,		-0		lies	and	pretends	that	it's	equal	(even		===	
strict	equal	--	see	Chapter	4)	to	regular	positive		0	,	so	you	have	to	use	the	somewhat
hackish		isNegZero(..)		utility	we	suggested	above.

As	of	ES6,	there's	a	new	utility	that	can	be	used	to	test	two	values	for	absolute	equality,
without	any	of	these	exceptions.	It's	called		Object.is(..)	:

var	a	=	2	/	"foo";

var	b	=	-3	*	0;

Object.is(	a,	NaN	);				//	true

Object.is(	b,	-0	);								//	true

Object.is(	b,	0	);								//	false

There's	a	pretty	simple	polyfill	for		Object.is(..)		for	pre-ES6	environments:
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if	(!Object.is)	{

				Object.is	=	function(v1,	v2)	{

								//	test	for	`-0`

								if	(v1	===	0	&&	v2	===	0)	{

												return	1	/	v1	===	1	/	v2;

								}

								//	test	for	`NaN`

								if	(v1	!==	v1)	{

												return	v2	!==	v2;

								}

								//	everything	else

								return	v1	===	v2;

				};

}

	Object.is(..)		probably	shouldn't	be	used	in	cases	where		==		or		===		are	known	to	be
safe	(see	Chapter	4	"Coercion"),	as	the	operators	are	likely	much	more	efficient	and
certainly	are	more	idiomatic/common.		Object.is(..)		is	mostly	for	these	special	cases	of
equality.

Value	vs.	Reference
In	many	other	languages,	values	can	either	be	assigned/passed	by	value-copy	or	by
reference-copy	depending	on	the	syntax	you	use.

For	example,	in	C++	if	you	want	to	pass	a		number		variable	into	a	function	and	have	that
variable's	value	updated,	you	can	declare	the	function	parameter	like		int&	myNum	,	and
when	you	pass	in	a	variable	like		x	,		myNum		will	be	a	reference	to		x	;	references	are	like	a
special	form	of	pointers,	where	you	obtain	a	pointer	to	another	variable	(like	an	alias).	If	you
don't	declare	a	reference	parameter,	the	value	passed	in	will	always	be	copied,	even	if	it's	a
complex	object.

In	JavaScript,	there	are	no	pointers,	and	references	work	a	bit	differently.	You	cannot	have	a
reference	from	one	JS	variable	to	another	variable.	That's	just	not	possible.

A	reference	in	JS	points	at	a	(shared)	value,	so	if	you	have	10	different	references,	they	are
all	always	distinct	references	to	a	single	shared	value;	none	of	them	are
references/pointers	to	each	other.

Moreover,	in	JavaScript,	there	are	no	syntactic	hints	that	control	value	vs.	reference
assignment/passing.	Instead,	the	type	of	the	value	solely	controls	whether	that	value	will	be
assigned	by	value-copy	or	by	reference-copy.

Let's	illustrate:
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var	a	=	2;

var	b	=	a;	//	`b`	is	always	a	copy	of	the	value	in	`a`

b++;

a;	//	2

b;	//	3

var	c	=	[1,2,3];

var	d	=	c;	//	`d`	is	a	reference	to	the	shared	`[1,2,3]`	value

d.push(	4	);

c;	//	[1,2,3,4]

d;	//	[1,2,3,4]

Simple	values	(aka	scalar	primitives)	are	always	assigned/passed	by	value-copy:		null	,
	undefined	,		string	,		number	,		boolean	,	and	ES6's		symbol	.

Compound	values	--		object	s	(including		array	s,	and	all	boxed	object	wrappers	--	see
Chapter	3)	and		function	s	--	always	create	a	copy	of	the	reference	on	assignment	or
passing.

In	the	above	snippet,	because		2		is	a	scalar	primitive,		a		holds	one	initial	copy	of	that
value,	and		b		is	assigned	another	copy	of	the	value.	When	changing		b	,	you	are	in	no	way
changing	the	value	in		a	.

But	both		c		and		d		are	separate	references	to	the	same	shared	value		[1,2,3]	,	which	is	a
compound	value.	It's	important	to	note	that	neither		c		nor		d		more	"owns"	the		[1,2,3]	
value	--	both	are	just	equal	peer	references	to	the	value.	So,	when	using	either	reference	to
modify	(	.push(4)	)	the	actual	shared		array		value	itself,	it's	affecting	just	the	one	shared
value,	and	both	references	will	reference	the	newly	modified	value		[1,2,3,4]	.

Since	references	point	to	the	values	themselves	and	not	to	the	variables,	you	cannot	use
one	reference	to	change	where	another	reference	is	pointed:

var	a	=	[1,2,3];

var	b	=	a;

a;	//	[1,2,3]

b;	//	[1,2,3]

//	later

b	=	[4,5,6];

a;	//	[1,2,3]

b;	//	[4,5,6]

When	we	make	the	assignment		b	=	[4,5,6]	,	we	are	doing	absolutely	nothing	to	affect
where		a		is	still	referencing	(	[1,2,3]	).	To	do	that,		b		would	have	to	be	a	pointer	to		a	
rather	than	a	reference	to	the		array		--	but	no	such	capability	exists	in	JS!
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The	most	common	way	such	confusion	happens	is	with	function	parameters:

function	foo(x)	{

				x.push(	4	);

				x;	//	[1,2,3,4]

				//	later

				x	=	[4,5,6];

				x.push(	7	);

				x;	//	[4,5,6,7]

}

var	a	=	[1,2,3];

foo(	a	);

a;	//	[1,2,3,4]		not		[4,5,6,7]

When	we	pass	in	the	argument		a	,	it	assigns	a	copy	of	the		a		reference	to		x	.		x		and		a	
are	separate	references	pointing	at	the	same		[1,2,3]		value.	Now,	inside	the	function,	we
can	use	that	reference	to	mutate	the	value	itself	(	push(4)	).	But	when	we	make	the
assignment		x	=	[4,5,6]	,	this	is	in	no	way	affecting	where	the	initial	reference		a		is
pointing	--	still	points	at	the	(now	modified)		[1,2,3,4]		value.

There	is	no	way	to	use	the		x		reference	to	change	where		a		is	pointing.	We	could	only
modify	the	contents	of	the	shared	value	that	both		a		and		x		are	pointing	to.

To	accomplish	changing		a		to	have	the		[4,5,6,7]		value	contents,	you	can't	create	a	new
	array		and	assign	--	you	must	modify	the	existing		array		value:

function	foo(x)	{

				x.push(	4	);

				x;	//	[1,2,3,4]

				//	later

				x.length	=	0;	//	empty	existing	array	in-place

				x.push(	4,	5,	6,	7	);

				x;	//	[4,5,6,7]

}

var	a	=	[1,2,3];

foo(	a	);

a;	//	[4,5,6,7]		not		[1,2,3,4]
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As	you	can	see,		x.length	=	0		and		x.push(4,5,6,7)		were	not	creating	a	new		array	,	but
modifying	the	existing	shared		array	.	So	of	course,		a		references	the	new		[4,5,6,7]	
contents.

Remember:	you	cannot	directly	control/override	value-copy	vs.	reference	--	those	semantics
are	controlled	entirely	by	the	type	of	the	underlying	value.

To	effectively	pass	a	compound	value	(like	an		array	)	by	value-copy,	you	need	to	manually
make	a	copy	of	it,	so	that	the	reference	passed	doesn't	still	point	to	the	original.	For
example:

foo(	a.slice()	);

	slice(..)		with	no	parameters	by	default	makes	an	entirely	new	(shallow)	copy	of	the
	array	.	So,	we	pass	in	a	reference	only	to	the	copied		array	,	and	thus		foo(..)		cannot
affect	the	contents	of		a	.

To	do	the	reverse	--	pass	a	scalar	primitive	value	in	a	way	where	its	value	updates	can	be
seen,	kinda	like	a	reference	--	you	have	to	wrap	the	value	in	another	compound	value
(	object	,		array	,	etc)	that	can	be	passed	by	reference-copy:

function	foo(wrapper)	{

				wrapper.a	=	42;

}

var	obj	=	{

				a:	2

};

foo(	obj	);

obj.a;	//	42

Here,		obj		acts	as	a	wrapper	for	the	scalar	primitive	property		a	.	When	passed	to
	foo(..)	,	a	copy	of	the		obj		reference	is	passed	in	and	set	to	the		wrapper		parameter.	We
now	can	use	the		wrapper		reference	to	access	the	shared	object,	and	update	its	property.
After	the	function	finishes,		obj.a		will	see	the	updated	value		42	.

It	may	occur	to	you	that	if	you	wanted	to	pass	in	a	reference	to	a	scalar	primitive	value	like
	2	,	you	could	just	box	the	value	in	its		Number		object	wrapper	(see	Chapter	3).

It	is	true	a	copy	of	the	reference	to	this		Number		object	will	be	passed	to	the	function,	but
unfortunately,	having	a	reference	to	the	shared	object	is	not	going	to	give	you	the	ability	to
modify	the	shared	primitive	value,	like	you	may	expect:
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function	foo(x)	{

				x	=	x	+	1;

				x;	//	3

}

var	a	=	2;

var	b	=	new	Number(	a	);	//	or	equivalently	`Object(a)`

foo(	b	);

console.log(	b	);	//	2,	not	3

The	problem	is	that	the	underlying	scalar	primitive	value	is	not	mutable	(same	goes	for
	String		and		Boolean	).	If	a		Number		object	holds	the	scalar	primitive	value		2	,	that	exact
	Number		object	can	never	be	changed	to	hold	another	value;	you	can	only	create	a	whole
new		Number		object	with	a	different	value.

When		x		is	used	in	the	expression		x	+	1	,	the	underlying	scalar	primitive	value		2		is
unboxed	(extracted)	from	the		Number		object	automatically,	so	the	line		x	=	x	+	1		very
subtly	changes		x		from	being	a	shared	reference	to	the		Number		object,	to	just	holding	the
scalar	primitive	value		3		as	a	result	of	the	addition	operation		2	+	1	.	Therefore,		b		on	the
outside	still	references	the	original	unmodified/immutable		Number		object	holding	the	value
	2	.

You	can	add	properties	on	top	of	the		Number		object	(just	not	change	its	inner	primitive
value),	so	you	could	exchange	information	indirectly	via	those	additional	properties.

This	is	not	all	that	common,	however;	it	probably	would	not	be	considered	a	good	practice	by
most	developers.

Instead	of	using	the	wrapper	object		Number		in	this	way,	it's	probably	much	better	to	use	the
manual	object	wrapper	(	obj	)	approach	in	the	earlier	snippet.	That's	not	to	say	that	there's
no	clever	uses	for	the	boxed	object	wrappers	like		Number		--	just	that	you	should	probably
prefer	the	scalar	primitive	value	form	in	most	cases.

References	are	quite	powerful,	but	sometimes	they	get	in	your	way,	and	sometimes	you
need	them	where	they	don't	exist.	The	only	control	you	have	over	reference	vs.	value-copy
behavior	is	the	type	of	the	value	itself,	so	you	must	indirectly	influence	the
assignment/passing	behavior	by	which	value	types	you	choose	to	use.

Review
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In	JavaScript,		array	s	are	simply	numerically	indexed	collections	of	any	value-type.
	string	s	are	somewhat	"	array	-like",	but	they	have	distinct	behaviors	and	care	must	be
taken	if	you	want	to	treat	them	as		array	s.	Numbers	in	JavaScript	include	both	"integers"
and	floating-point	values.

Several	special	values	are	defined	within	the	primitive	types.

The		null		type	has	just	one	value:		null	,	and	likewise	the		undefined		type	has	just	the
	undefined		value.		undefined		is	basically	the	default	value	in	any	variable	or	property	if	no
other	value	is	present.	The		void		operator	lets	you	create	the		undefined		value	from	any
other	value.

	number	s	include	several	special	values,	like		NaN		(supposedly	"Not	a	Number",	but	really
more	appropriately	"invalid	number");		+Infinity		and		-Infinity	;	and		-0	.

Simple	scalar	primitives	(	string	s,		number	s,	etc.)	are	assigned/passed	by	value-copy,	but
compound	values	(	object	s,	etc.)	are	assigned/passed	by	reference-copy.	References	are
not	like	references/pointers	in	other	languages	--	they're	never	pointed	at	other
variables/references,	only	at	the	underlying	values.
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Chapter	3:	Natives
Several	times	in	Chapters	1	and	2,	we	alluded	to	various	built-ins,	usually	called	"natives,"
like		String		and		Number	.	Let's	examine	those	in	detail	now.

Here's	a	list	of	the	most	commonly	used	natives:

	String()	

	Number()	

	Boolean()	

	Array()	

	Object()	

	Function()	

	RegExp()	

	Date()	

	Error()	

	Symbol()		--	added	in	ES6!

As	you	can	see,	these	natives	are	actually	built-in	functions.

If	you're	coming	to	JS	from	a	language	like	Java,	JavaScript's		String()		will	look	like	the
	String(..)		constructor	you're	used	to	for	creating	string	values.	So,	you'll	quickly	observe
that	you	can	do	things	like:

var	s	=	new	String(	"Hello	World!"	);

console.log(	s.toString()	);	//	"Hello	World!"

It	is	true	that	each	of	these	natives	can	be	used	as	a	native	constructor.	But	what's	being
constructed	may	be	different	than	you	think.

var	a	=	new	String(	"abc"	);

typeof	a;	//	"object"	...	not	"String"

a	instanceof	String;	//	true

Object.prototype.toString.call(	a	);	//	"[object	String]"

The	result	of	the	constructor	form	of	value	creation	(	new	String("abc")	)	is	an	object
wrapper	around	the	primitive	(	"abc"	)	value.
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Importantly,		typeof		shows	that	these	objects	are	not	their	own	special	types,	but	more
appropriately	they	are	subtypes	of	the		object		type.

This	object	wrapper	can	further	be	observed	with:

console.log(	a	);

The	output	of	that	statement	varies	depending	on	your	browser,	as	developer	consoles	are
free	to	choose	however	they	feel	it's	appropriate	to	serialize	the	object	for	developer
inspection.

Note:	At	the	time	of	writing,	the	latest	Chrome	prints	something	like	this:		String	{0:	"a",	1:
"b",	2:	"c",	length:	3,	[[PrimitiveValue]]:	"abc"}	.	But	older	versions	of	Chrome	used	to
just	print	this:		String	{0:	"a",	1:	"b",	2:	"c"}	.	The	latest	Firefox	currently	prints		String
["a","b","c"]	,	but	used	to	print		"abc"		in	italics,	which	was	clickable	to	open	the	object
inspector.	Of	course,	these	results	are	subject	to	rapid	change	and	your	experience	may
vary.

The	point	is,		new	String("abc")		creates	a	string	wrapper	object	around		"abc"	,	not	just	the
primitive		"abc"		value	itself.

Internal		[[Class]]	
Values	that	are		typeof			"object"		(such	as	an	array)	are	additionally	tagged	with	an
internal		[[Class]]		property	(think	of	this	more	as	an	internal	classification	rather	than
related	to	classes	from	traditional	class-oriented	coding).	This	property	cannot	be	accessed
directly,	but	can	generally	be	revealed	indirectly	by	borrowing	the	default
	Object.prototype.toString(..)		method	called	against	the	value.	For	example:

Object.prototype.toString.call(	[1,2,3]	);												//	"[object	Array]"

Object.prototype.toString.call(	/regex-literal/i	);				//	"[object	RegExp]"

So,	for	the	array	in	this	example,	the	internal		[[Class]]		value	is		"Array"	,	and	for	the
regular	expression,	it's		"RegExp"	.	In	most	cases,	this	internal		[[Class]]		value	corresponds
to	the	built-in	native	constructor	(see	below)	that's	related	to	the	value,	but	that's	not	always
the	case.

What	about	primitive	values?	First,		null		and		undefined	:
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Object.prototype.toString.call(	null	);												//	"[object	Null]"

Object.prototype.toString.call(	undefined	);				//	"[object	Undefined]"

You'll	note	that	there	are	no		Null()		or		Undefined()		native	constructors,	but	nevertheless
the		"Null"		and		"Undefined"		are	the	internal		[[Class]]		values	exposed.

But	for	the	other	simple	primitives	like		string	,		number	,	and		boolean	,	another	behavior
actually	kicks	in,	which	is	usually	called	"boxing"	(see	"Boxing	Wrappers"	section	next):

Object.prototype.toString.call(	"abc"	);				//	"[object	String]"

Object.prototype.toString.call(	42	);								//	"[object	Number]"

Object.prototype.toString.call(	true	);								//	"[object	Boolean]"

In	this	snippet,	each	of	the	simple	primitives	are	automatically	boxed	by	their	respective
object	wrappers,	which	is	why		"String"	,		"Number"	,	and		"Boolean"		are	revealed	as	the
respective	internal		[[Class]]		values.

Note:	The	behavior	of		toString()		and		[[Class]]		as	illustrated	here	has	changed	a	bit
from	ES5	to	ES6,	but	we	cover	those	details	in	the	ES6	&	Beyond	title	of	this	series.

Boxing	Wrappers
These	object	wrappers	serve	a	very	important	purpose.	Primitive	values	don't	have
properties	or	methods,	so	to	access		.length		or		.toString()		you	need	an	object	wrapper
around	the	value.	Thankfully,	JS	will	automatically	box	(aka	wrap)	the	primitive	value	to	fulfill
such	accesses.

var	a	=	"abc";

a.length;	//	3

a.toUpperCase();	//	"ABC"

So,	if	you're	going	to	be	accessing	these	properties/methods	on	your	string	values	regularly,
like	a		i	<	a.length		condition	in	a		for		loop	for	instance,	it	might	seem	to	make	sense	to
just	have	the	object	form	of	the	value	from	the	start,	so	the	JS	engine	doesn't	need	to
implicitly	create	it	for	you.

But	it	turns	out	that's	a	bad	idea.	Browsers	long	ago	performance-optimized	the	common
cases	like		.length	,	which	means	your	program	will	actually	go	slower	if	you	try	to
"preoptimize"	by	directly	using	the	object	form	(which	isn't	on	the	optimized	path).
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In	general,	there's	basically	no	reason	to	use	the	object	form	directly.	It's	better	to	just	let	the
boxing	happen	implicitly	where	necessary.	In	other	words,	never	do	things	like		new
String("abc")	,		new	Number(42)	,	etc	--	always	prefer	using	the	literal	primitive	values		"abc"	
and		42	.

Object	Wrapper	Gotchas

There	are	some	gotchas	with	using	the	object	wrappers	directly	that	you	should	be	aware	of
if	you	do	choose	to	ever	use	them.

For	example,	consider		Boolean		wrapped	values:

var	a	=	new	Boolean(	false	);

if	(!a)	{

				console.log(	"Oops"	);	//	never	runs

}

The	problem	is	that	you've	created	an	object	wrapper	around	the		false		value,	but	objects
themselves	are	"truthy"	(see	Chapter	4),	so	using	the	object	behaves	oppositely	to	using	the
underlying		false		value	itself,	which	is	quite	contrary	to	normal	expectation.

If	you	want	to	manually	box	a	primitive	value,	you	can	use	the		Object(..)		function	(no		new	
keyword):

var	a	=	"abc";

var	b	=	new	String(	a	);

var	c	=	Object(	a	);

typeof	a;	//	"string"

typeof	b;	//	"object"

typeof	c;	//	"object"

b	instanceof	String;	//	true

c	instanceof	String;	//	true

Object.prototype.toString.call(	b	);	//	"[object	String]"

Object.prototype.toString.call(	c	);	//	"[object	String]"

Again,	using	the	boxed	object	wrapper	directly	(like		b		and		c		above)	is	usually
discouraged,	but	there	may	be	some	rare	occasions	you'll	run	into	where	they	may	be
useful.

Unboxing
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If	you	have	an	object	wrapper	and	you	want	to	get	the	underlying	primitive	value	out,	you
can	use	the		valueOf()		method:

var	a	=	new	String(	"abc"	);

var	b	=	new	Number(	42	);

var	c	=	new	Boolean(	true	);

a.valueOf();	//	"abc"

b.valueOf();	//	42

c.valueOf();	//	true

Unboxing	can	also	happen	implicitly,	when	using	an	object	wrapper	value	in	a	way	that
requires	the	primitive	value.	This	process	(coercion)	will	be	covered	in	more	detail	in	Chapter
4,	but	briefly:

var	a	=	new	String(	"abc"	);

var	b	=	a	+	"";	//	`b`	has	the	unboxed	primitive	value	"abc"

typeof	a;	//	"object"

typeof	b;	//	"string"

Natives	as	Constructors
For		array	,		object	,		function	,	and	regular-expression	values,	it's	almost	universally
preferred	that	you	use	the	literal	form	for	creating	the	values,	but	the	literal	form	creates	the
same	sort	of	object	as	the	constructor	form	does	(that	is,	there	is	no	nonwrapped	value).

Just	as	we've	seen	above	with	the	other	natives,	these	constructor	forms	should	generally
be	avoided,	unless	you	really	know	you	need	them,	mostly	because	they	introduce
exceptions	and	gotchas	that	you	probably	don't	really	want	to	deal	with.

	Array(..)	

var	a	=	new	Array(	1,	2,	3	);

a;	//	[1,	2,	3]

var	b	=	[1,	2,	3];

b;	//	[1,	2,	3]

Note:	The		Array(..)		constructor	does	not	require	the		new		keyword	in	front	of	it.	If	you
omit	it,	it	will	behave	as	if	you	have	used	it	anyway.	So		Array(1,2,3)		is	the	same	outcome
as		new	Array(1,2,3)	.
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The		Array		constructor	has	a	special	form	where	if	only	one		number		argument	is	passed,
instead	of	providing	that	value	as	contents	of	the	array,	it's	taken	as	a	length	to	"presize	the
array"	(well,	sorta).

This	is	a	terrible	idea.	Firstly,	you	can	trip	over	that	form	accidentally,	as	it's	easy	to	forget.

But	more	importantly,	there's	no	such	thing	as	actually	presizing	the	array.	Instead,	what
you're	creating	is	an	otherwise	empty	array,	but	setting	the		length		property	of	the	array	to
the	numeric	value	specified.

An	array	that	has	no	explicit	values	in	its	slots,	but	has	a		length		property	that	implies	the
slots	exist,	is	a	weird	exotic	type	of	data	structure	in	JS	with	some	very	strange	and
confusing	behavior.	The	capability	to	create	such	a	value	comes	purely	from	old,
deprecated,	historical	functionalities	("array-like	objects"	like	the		arguments		object).

Note:	An	array	with	at	least	one	"empty	slot"	in	it	is	often	called	a	"sparse	array."

It	doesn't	help	matters	that	this	is	yet	another	example	where	browser	developer	consoles
vary	on	how	they	represent	such	an	object,	which	breeds	more	confusion.

For	example:

var	a	=	new	Array(	3	);

a.length;	//	3

a;

The	serialization	of		a		in	Chrome	is	(at	the	time	of	writing):		[	undefined	x	3	]	.	This	is
really	unfortunate.	It	implies	that	there	are	three		undefined		values	in	the	slots	of	this	array,
when	in	fact	the	slots	do	not	exist	(so-called	"empty	slots"	--	also	a	bad	name!).

To	visualize	the	difference,	try	this:

var	a	=	new	Array(	3	);

var	b	=	[	undefined,	undefined,	undefined	];

var	c	=	[];

c.length	=	3;

a;

b;

c;

Note:	As	you	can	see	with		c		in	this	example,	empty	slots	in	an	array	can	happen	after
creation	of	the	array.	Changing	the		length		of	an	array	to	go	beyond	its	number	of	actually-
defined	slot	values,	you	implicitly	introduce	empty	slots.	In	fact,	you	could	even	call		delete
b[1]		in	the	above	snippet,	and	it	would	introduce	an	empty	slot	into	the	middle	of		b	.
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For		b		(in	Chrome,	currently),	you'll	find		[	undefined,	undefined,	undefined	]		as	the
serialization,	as	opposed	to		[	undefined	x	3	]		for		a		and		c	.	Confused?	Yeah,	so	is
everyone	else.

Worse	than	that,	at	the	time	of	writing,	Firefox	reports		[	,	,	,	]		for		a		and		c	.	Did	you
catch	why	that's	so	confusing?	Look	closely.	Three	commas	implies	four	slots,	not	three
slots	like	we'd	expect.

What!?	Firefox	puts	an	extra		,		on	the	end	of	their	serialization	here	because	as	of	ES5,
trailing	commas	in	lists	(array	values,	property	lists,	etc.)	are	allowed	(and	thus	dropped	and
ignored).	So	if	you	were	to	type	in	a		[	,	,	,	]		value	into	your	program	or	the	console,
you'd	actually	get	the	underlying	value	that's	like		[	,	,	]		(that	is,	an	array	with	three	empty
slots).	This	choice,	while	confusing	if	reading	the	developer	console,	is	defended	as	instead
making	copy-n-paste	behavior	accurate.

If	you're	shaking	your	head	or	rolling	your	eyes	about	now,	you're	not	alone!	Shrugs.

Unfortunately,	it	gets	worse.	More	than	just	confusing	console	output,		a		and		b		from	the
above	code	snippet	actually	behave	the	same	in	some	cases	but	differently	in	others:

a.join(	"-"	);	//	"--"

b.join(	"-"	);	//	"--"

a.map(function(v,i){	return	i;	});	//	[	undefined	x	3	]

b.map(function(v,i){	return	i;	});	//	[	0,	1,	2	]

Ugh.

The		a.map(..)		call	fails	because	the	slots	don't	actually	exist,	so		map(..)		has	nothing	to
iterate	over.		join(..)		works	differently.	Basically,	we	can	think	of	it	implemented	sort	of	like
this:
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function	fakeJoin(arr,connector)	{

				var	str	=	"";

				for	(var	i	=	0;	i	<	arr.length;	i++)	{

								if	(i	>	0)	{

												str	+=	connector;

								}

								if	(arr[i]	!==	undefined)	{

												str	+=	arr[i];

								}

				}

				return	str;

}

var	a	=	new	Array(	3	);

fakeJoin(	a,	"-"	);	//	"--"

As	you	can	see,		join(..)		works	by	just	assuming	the	slots	exist	and	looping	up	to	the
	length		value.	Whatever		map(..)		does	internally,	it	(apparently)	doesn't	make	such	an
assumption,	so	the	result	from	the	strange	"empty	slots"	array	is	unexpected	and	likely	to
cause	failure.

So,	if	you	wanted	to	actually	create	an	array	of	actual		undefined		values	(not	just	"empty
slots"),	how	could	you	do	it	(besides	manually)?

var	a	=	Array.apply(	null,	{	length:	3	}	);

a;	//	[	undefined,	undefined,	undefined	]

Confused?	Yeah.	Here's	roughly	how	it	works.

	apply(..)		is	a	utility	available	to	all	functions,	which	calls	the	function	it's	used	with	but	in	a
special	way.

The	first	argument	is	a		this		object	binding	(covered	in	the	this	&	Object	Prototypes	title	of
this	series),	which	we	don't	care	about	here,	so	we	set	it	to		null	.	The	second	argument	is
supposed	to	be	an	array	(or	something	like	an	array	--	aka	an	"array-like	object").	The
contents	of	this	"array"	are	"spread"	out	as	arguments	to	the	function	in	question.

So,		Array.apply(..)		is	calling	the		Array(..)		function	and	spreading	out	the	values	(of	the
	{	length:	3	}		object	value)	as	its	arguments.

Inside	of		apply(..)	,	we	can	envision	there's	another		for		loop	(kinda	like		join(..)		from
above)	that	goes	from		0		up	to,	but	not	including,		length		(	3		in	our	case).

For	each	index,	it	retrieves	that	key	from	the	object.	So	if	the	array-object	parameter	was
named		arr		internally	inside	of	the		apply(..)		function,	the	property	access	would
effectively	be		arr[0]	,		arr[1]	,	and		arr[2]	.	Of	course,	none	of	those	properties	exist	on
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the		{	length:	3	}		object	value,	so	all	three	of	those	property	accesses	would	return	the
value		undefined	.

In	other	words,	it	ends	up	calling		Array(..)		basically	like	this:
	Array(undefined,undefined,undefined)	,	which	is	how	we	end	up	with	an	array	filled	with
	undefined		values,	and	not	just	those	(crazy)	empty	slots.

While		Array.apply(	null,	{	length:	3	}	)		is	a	strange	and	verbose	way	to	create	an	array
filled	with		undefined		values,	it's	vastly	better	and	more	reliable	than	what	you	get	with	the
footgun'ish		Array(3)		empty	slots.

Bottom	line:	never	ever,	under	any	circumstances,	should	you	intentionally	create	and	use
these	exotic	empty-slot	arrays.	Just	don't	do	it.	They're	nuts.

	Object(..)	,		Function(..)	,	and		RegExp(..)	

The		Object(..)	/	Function(..)	/	RegExp(..)		constructors	are	also	generally	optional	(and
thus	should	usually	be	avoided	unless	specifically	called	for):

var	c	=	new	Object();

c.foo	=	"bar";

c;	//	{	foo:	"bar"	}

var	d	=	{	foo:	"bar"	};

d;	//	{	foo:	"bar"	}

var	e	=	new	Function(	"a",	"return	a	*	2;"	);

var	f	=	function(a)	{	return	a	*	2;	};

function	g(a)	{	return	a	*	2;	}

var	h	=	new	RegExp(	"^a*b+",	"g"	);

var	i	=	/^a*b+/g;

There's	practically	no	reason	to	ever	use	the		new	Object()		constructor	form,	especially
since	it	forces	you	to	add	properties	one-by-one	instead	of	many	at	once	in	the	object	literal
form.

The		Function		constructor	is	helpful	only	in	the	rarest	of	cases,	where	you	need	to
dynamically	define	a	function's	parameters	and/or	its	function	body.	Do	not	just	treat
	Function(..)		as	an	alternate	form	of		eval(..)	.	You	will	almost	never	need	to
dynamically	define	a	function	in	this	way.

Regular	expressions	defined	in	the	literal	form	(	/^a*b+/g	)	are	strongly	preferred,	not	just	for
ease	of	syntax	but	for	performance	reasons	--	the	JS	engine	precompiles	and	caches	them
before	code	execution.	Unlike	the	other	constructor	forms	we've	seen	so	far,		RegExp(..)	
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has	some	reasonable	utility:	to	dynamically	define	the	pattern	for	a	regular	expression.

var	name	=	"Kyle";

var	namePattern	=	new	RegExp(	"\\b(?:"	+	name	+	")+\\b",	"ig"	);

var	matches	=	someText.match(	namePattern	);

This	kind	of	scenario	legitimately	occurs	in	JS	programs	from	time	to	time,	so	you'd	need	to
use	the		new	RegExp("pattern","flags")		form.

	Date(..)		and		Error(..)	

The		Date(..)		and		Error(..)		native	constructors	are	much	more	useful	than	the	other
natives,	because	there	is	no	literal	form	for	either.

To	create	a	date	object	value,	you	must	use		new	Date()	.	The		Date(..)		constructor	accepts
optional	arguments	to	specify	the	date/time	to	use,	but	if	omitted,	the	current	date/time	is
assumed.

By	far	the	most	common	reason	you	construct	a	date	object	is	to	get	the	current	timestamp
value	(a	signed	integer	number	of	milliseconds	since	Jan	1,	1970).	You	can	do	this	by	calling
	getTime()		on	a	date	object	instance.

But	an	even	easier	way	is	to	just	call	the	static	helper	function	defined	as	of	ES5:
	Date.now()	.	And	to	polyfill	that	for	pre-ES5	is	pretty	easy:

if	(!Date.now)	{

				Date.now	=	function(){

								return	(new	Date()).getTime();

				};

}

Note:	If	you	call		Date()		without		new	,	you'll	get	back	a	string	representation	of	the
date/time	at	that	moment.	The	exact	form	of	this	representation	is	not	specified	in	the
language	spec,	though	browsers	tend	to	agree	on	something	close	to:		"Fri	Jul	18	2014
00:31:02	GMT-0500	(CDT)"	.

The		Error(..)		constructor	(much	like		Array()		above)	behaves	the	same	with	the		new	
keyword	present	or	omitted.

The	main	reason	you'd	want	to	create	an	error	object	is	that	it	captures	the	current	execution
stack	context	into	the	object	(in	most	JS	engines,	revealed	as	a	read-only		.stack		property
once	constructed).	This	stack	context	includes	the	function	call-stack	and	the	line-number
where	the	error	object	was	created,	which	makes	debugging	that	error	much	easier.
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You	would	typically	use	such	an	error	object	with	the		throw		operator:

function	foo(x)	{

				if	(!x)	{

								throw	new	Error(	"x	wasn't	provided"	);

				}

				//	..

}

Error	object	instances	generally	have	at	least	a		message		property,	and	sometimes	other
properties	(which	you	should	treat	as	read-only),	like		type	.	However,	other	than	inspecting
the	above-mentioned		stack		property,	it's	usually	best	to	just	call		toString()		on	the	error
object	(either	explicitly,	or	implicitly	through	coercion	--	see	Chapter	4)	to	get	a	friendly-
formatted	error	message.

Tip:	Technically,	in	addition	to	the	general		Error(..)		native,	there	are	several	other
specific-error-type	natives:		EvalError(..)	,		RangeError(..)	,		ReferenceError(..)	,
	SyntaxError(..)	,		TypeError(..)	,	and		URIError(..)	.	But	it's	very	rare	to	manually	use
these	specific	error	natives.	They	are	automatically	used	if	your	program	actually	suffers
from	a	real	exception	(such	as	referencing	an	undeclared	variable	and	getting	a
	ReferenceError		error).

	Symbol(..)	

New	as	of	ES6,	an	additional	primitive	value	type	has	been	added,	called	"Symbol".
Symbols	are	special	"unique"	(not	strictly	guaranteed!)	values	that	can	be	used	as	properties
on	objects	with	little	fear	of	any	collision.	They're	primarily	designed	for	special	built-in
behaviors	of	ES6	constructs,	but	you	can	also	define	your	own	symbols.

Symbols	can	be	used	as	property	names,	but	you	cannot	see	or	access	the	actual	value	of	a
symbol	from	your	program,	nor	from	the	developer	console.	If	you	evaluate	a	symbol	in	the
developer	console,	what's	shown	looks	like		Symbol(Symbol.create)	,	for	example.

There	are	several	predefined	symbols	in	ES6,	accessed	as	static	properties	of	the		Symbol	
function	object,	like		Symbol.create	,		Symbol.iterator	,	etc.	To	use	them,	do	something	like:

obj[Symbol.iterator]	=	function(){	/*..*/	};

To	define	your	own	custom	symbols,	use	the		Symbol(..)		native.	The		Symbol(..)		native
"constructor"	is	unique	in	that	you're	not	allowed	to	use		new		with	it,	as	doing	so	will	throw
an	error.
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var	mysym	=	Symbol(	"my	own	symbol"	);

mysym;																//	Symbol(my	own	symbol)

mysym.toString();				//	"Symbol(my	own	symbol)"

typeof	mysym;									//	"symbol"

var	a	=	{	};

a[mysym]	=	"foobar";

Object.getOwnPropertySymbols(	a	);

//	[	Symbol(my	own	symbol)	]

While	symbols	are	not	actually	private	(	Object.getOwnPropertySymbols(..)		reflects	on	the
object	and	reveals	the	symbols	quite	publicly),	using	them	for	private	or	special	properties	is
likely	their	primary	use-case.	For	most	developers,	they	may	take	the	place	of	property
names	with		_		underscore	prefixes,	which	are	almost	always	by	convention	signals	to	say,
"hey,	this	is	a	private/special/internal	property,	so	leave	it	alone!"

Note:		Symbol	s	are	not		object	s,	they	are	simple	scalar	primitives.

Native	Prototypes

Each	of	the	built-in	native	constructors	has	its	own		.prototype		object	--		Array.prototype	,
	String.prototype	,	etc.

These	objects	contain	behavior	unique	to	their	particular	object	subtype.

For	example,	all	string	objects,	and	by	extension	(via	boxing)		string		primitives,	have
access	to	default	behavior	as	methods	defined	on	the		String.prototype		object.

Note:	By	documentation	convention,		String.prototype.XYZ		is	shortened	to		String#XYZ	,
and	likewise	for	all	the	other		.prototype	s.

	String#indexOf(..)	:	find	the	position	in	the	string	of	another	substring
	String#charAt(..)	:	access	the	character	at	a	position	in	the	string
	String#substr(..)	,		String#substring(..)	,	and		String#slice(..)	:	extract	a	portion	of
the	string	as	a	new	string
	String#toUpperCase()		and		String#toLowerCase()	:	create	a	new	string	that's	converted
to	either	uppercase	or	lowercase
	String#trim()	:	create	a	new	string	that's	stripped	of	any	trailing	or	leading	whitespace

None	of	the	methods	modify	the	string	in	place.	Modifications	(like	case	conversion	or
trimming)	create	a	new	value	from	the	existing	value.

By	virtue	of	prototype	delegation	(see	the	this	&	Object	Prototypes	title	in	this	series),	any
string	value	can	access	these	methods:
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var	a	=	"	abc	";

a.indexOf(	"c"	);	//	3

a.toUpperCase();	//	"	ABC	"

a.trim();	//	"abc"

The	other	constructor	prototypes	contain	behaviors	appropriate	to	their	types,	such	as
	Number#toFixed(..)		(stringifying	a	number	with	a	fixed	number	of	decimal	digits)	and
	Array#concat(..)		(merging	arrays).	All	functions	have	access	to		apply(..)	,		call(..)	,
and		bind(..)		because		Function.prototype		defines	them.

But,	some	of	the	native	prototypes	aren't	just	plain	objects:

typeof	Function.prototype;												//	"function"

Function.prototype();																//	it's	an	empty	function!

RegExp.prototype.toString();								//	"/(?:)/"	--	empty	regex

"abc".match(	RegExp.prototype	);				//	[""]

A	particularly	bad	idea,	you	can	even	modify	these	native	prototypes	(not	just	adding
properties	as	you're	probably	familiar	with):

Array.isArray(	Array.prototype	);				//	true

Array.prototype.push(	1,	2,	3	);				//	3

Array.prototype;																				//	[1,2,3]

//	don't	leave	it	that	way,	though,	or	expect	weirdness!

//	reset	the	`Array.prototype`	to	empty

Array.prototype.length	=	0;

As	you	can	see,		Function.prototype		is	a	function,		RegExp.prototype		is	a	regular
expression,	and		Array.prototype		is	an	array.	Interesting	and	cool,	huh?

Prototypes	As	Defaults

	Function.prototype		being	an	empty	function,		RegExp.prototype		being	an	"empty"	(e.g.,
non-matching)	regex,	and		Array.prototype		being	an	empty	array,	make	them	all	nice
"default"	values	to	assign	to	variables	if	those	variables	wouldn't	already	have	had	a	value	of
the	proper	type.

For	example:
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function	isThisCool(vals,fn,rx)	{

				vals	=	vals	||	Array.prototype;

				fn	=	fn	||	Function.prototype;

				rx	=	rx	||	RegExp.prototype;

				return	rx.test(

								vals.map(	fn	).join(	""	)

				);

}

isThisCool();								//	true

isThisCool(

				["a","b","c"],

				function(v){	return	v.toUpperCase();	},

				/D/

);																				//	false

Note:	As	of	ES6,	we	don't	need	to	use	the		vals	=	vals	||	..		default	value	syntax	trick	(see
Chapter	4)	anymore,	because	default	values	can	be	set	for	parameters	via	native	syntax	in
the	function	declaration	(see	Chapter	5).

One	minor	side-benefit	of	this	approach	is	that	the		.prototype	s	are	already	created	and
built-in,	thus	created	only	once.	By	contrast,	using		[]	,		function(){}	,	and		/(?:)/		values
themselves	for	those	defaults	would	(likely,	depending	on	engine	implementations)	be
recreating	those	values	(and	probably	garbage-collecting	them	later)	for	each	call	of
	isThisCool(..)	.	That	could	be	memory/CPU	wasteful.

Also,	be	very	careful	not	to	use		Array.prototype		as	a	default	value	that	will	subsequently
be	modified.	In	this	example,		vals		is	used	read-only,	but	if	you	were	to	instead	make	in-
place	changes	to		vals	,	you	would	actually	be	modifying		Array.prototype		itself,	which
would	lead	to	the	gotchas	mentioned	earlier!

Note:	While	we're	pointing	out	these	native	prototypes	and	some	usefulness,	be	cautious	of
relying	on	them	and	even	more	wary	of	modifying	them	in	any	way.	See	Appendix	A	"Native
Prototypes"	for	more	discussion.

Review
JavaScript	provides	object	wrappers	around	primitive	values,	known	as	natives	(	String	,
	Number	,		Boolean	,	etc).	These	object	wrappers	give	the	values	access	to	behaviors
appropriate	for	each	object	subtype	(	String#trim()		and		Array#concat(..)	).
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If	you	have	a	simple	scalar	primitive	value	like		"abc"		and	you	access	its		length		property
or	some		String.prototype		method,	JS	automatically	"boxes"	the	value	(wraps	it	in	its
respective	object	wrapper)	so	that	the	property/method	accesses	can	be	fulfilled.
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Chapter	4:	Coercion
Now	that	we	much	more	fully	understand	JavaScript's	types	and	values,	we	turn	our
attention	to	a	very	controversial	topic:	coercion.

As	we	mentioned	in	Chapter	1,	the	debates	over	whether	coercion	is	a	useful	feature	or	a
flaw	in	the	design	of	the	language	(or	somewhere	in	between!)	have	raged	since	day	one.	If
you've	read	other	popular	books	on	JS,	you	know	that	the	overwhelmingly	prevalent
message	out	there	is	that	coercion	is	magical,	evil,	confusing,	and	just	downright	a	bad	idea.

In	the	same	overall	spirit	of	this	book	series,	rather	than	running	away	from	coercion
because	everyone	else	does,	or	because	you	get	bitten	by	some	quirk,	I	think	you	should
run	toward	that	which	you	don't	understand	and	seek	to	get	it	more	fully.

Our	goal	is	to	fully	explore	the	pros	and	cons	(yes,	there	are	pros!)	of	coercion,	so	that	you
can	make	an	informed	decision	on	its	appropriateness	in	your	program.

Converting	Values
Converting	a	value	from	one	type	to	another	is	often	called	"type	casting,"	when	done
explicitly,	and	"coercion"	when	done	implicitly	(forced	by	the	rules	of	how	a	value	is	used).

Note:	It	may	not	be	obvious,	but	JavaScript	coercions	always	result	in	one	of	the	scalar
primitive	(see	Chapter	2)	values,	like		string	,		number	,	or		boolean	.	There	is	no	coercion
that	results	in	a	complex	value	like		object		or		function	.	Chapter	3	covers	"boxing,"	which
wraps	scalar	primitive	values	in	their		object		counterparts,	but	this	is	not	really	coercion	in
an	accurate	sense.

Another	way	these	terms	are	often	distinguished	is	as	follows:	"type	casting"	(or	"type
conversion")	occur	in	statically	typed	languages	at	compile	time,	while	"type	coercion"	is	a
runtime	conversion	for	dynamically	typed	languages.

However,	in	JavaScript,	most	people	refer	to	all	these	types	of	conversions	as	coercion,	so
the	way	I	prefer	to	distinguish	is	to	say	"implicit	coercion"	vs.	"explicit	coercion."

The	difference	should	be	obvious:	"explicit	coercion"	is	when	it	is	obvious	from	looking	at	the
code	that	a	type	conversion	is	intentionally	occurring,	whereas	"implicit	coercion"	is	when	the
type	conversion	will	occur	as	a	less	obvious	side	effect	of	some	other	intentional	operation.

For	example,	consider	these	two	approaches	to	coercion:
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var	a	=	42;

var	b	=	a	+	"";												//	implicit	coercion

var	c	=	String(	a	);				//	explicit	coercion

For		b	,	the	coercion	that	occurs	happens	implicitly,	because	the		+		operator	combined	with
one	of	the	operands	being	a		string		value	(	""	)	will	insist	on	the	operation	being	a		string	
concatenation	(adding	two	strings	together),	which	as	a	(hidden)	side	effect	will	force	the
	42		value	in		a		to	be	coerced	to	its		string		equivalent:		"42"	.

By	contrast,	the		String(..)		function	makes	it	pretty	obvious	that	it's	explicitly	taking	the
value	in		a		and	coercing	it	to	a		string		representation.

Both	approaches	accomplish	the	same	effect:		"42"		comes	from		42	.	But	it's	the	how	that
is	at	the	heart	of	the	heated	debates	over	JavaScript	coercion.

Note:	Technically,	there's	some	nuanced	behavioral	difference	here	beyond	the	stylistic
difference.	We	cover	that	in	more	detail	later	in	the	chapter,	in	the	"Implicitly:	Strings	<-->
Numbers"	section.

The	terms	"explicit"	and	"implicit,"	or	"obvious"	and	"hidden	side	effect,"	are	relative.

If	you	know	exactly	what		a	+	""		is	doing	and	you're	intentionally	doing	that	to	coerce	to	a
	string	,	you	might	feel	the	operation	is	sufficiently	"explicit."	Conversely,	if	you've	never
seen	the		String(..)		function	used	for		string		coercion,	its	behavior	might	seem	hidden
enough	as	to	feel	"implicit"	to	you.

But	we're	having	this	discussion	of	"explicit"	vs.	"implicit"	based	on	the	likely	opinions	of	an
average,	reasonably	informed,	but	not	expert	or	JS	specification	devotee	developer.	To
whatever	extent	you	do	or	do	not	find	yourself	fitting	neatly	in	that	bucket,	you	will	need	to
adjust	your	perspective	on	our	observations	here	accordingly.

Just	remember:	it's	often	rare	that	we	write	our	code	and	are	the	only	ones	who	ever	read	it.
Even	if	you're	an	expert	on	all	the	ins	and	outs	of	JS,	consider	how	a	less	experienced
teammate	of	yours	will	feel	when	they	read	your	code.	Will	it	be	"explicit"	or	"implicit"	to	them
in	the	same	way	it	is	for	you?

Abstract	Value	Operations
Before	we	can	explore	explicit	vs	implicit	coercion,	we	need	to	learn	the	basic	rules	that
govern	how	values	become	either	a		string	,		number	,	or		boolean	.	The	ES5	spec	in	section
9	defines	several	"abstract	operations"	(fancy	spec-speak	for	"internal-only	operation")	with
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the	rules	of	value	conversion.	We	will	specifically	pay	attention	to:		ToString	,		ToNumber	,
and		ToBoolean	,	and	to	a	lesser	extent,		ToPrimitive	.

	ToString	

When	any	non-	string		value	is	coerced	to	a		string		representation,	the	conversion	is
handled	by	the		ToString		abstract	operation	in	section	9.8	of	the	specification.

Built-in	primitive	values	have	natural	stringification:		null		becomes		"null"	,		undefined	
becomes		"undefined"		and		true		becomes		"true"	.		number	s	are	generally	expressed	in
the	natural	way	you'd	expect,	but	as	we	discussed	in	Chapter	2,	very	small	or	very	large
	numbers		are	represented	in	exponent	form:

//	multiplying	`1.07`	by	`1000`,	seven	times	over

var	a	=	1.07	*	1000	*	1000	*	1000	*	1000	*	1000	*	1000	*	1000;

//	seven	times	three	digits	=>	21	digits

a.toString();	//	"1.07e21"

For	regular	objects,	unless	you	specify	your	own,	the	default		toString()		(located	in
	Object.prototype.toString()	)	will	return	the	internal		[[Class]]		(see	Chapter	3),	like	for
instance		"[object	Object]"	.

But	as	shown	earlier,	if	an	object	has	its	own		toString()		method	on	it,	and	you	use	that
object	in	a		string	-like	way,	its		toString()		will	automatically	be	called,	and	the		string	
result	of	that	call	will	be	used	instead.

Note:	The	way	an	object	is	coerced	to	a		string		technically	goes	through	the		ToPrimitive	
abstract	operation	(ES5	spec,	section	9.1),	but	those	nuanced	details	are	covered	in	more
detail	in	the		ToNumber		section	later	in	this	chapter,	so	we	will	skip	over	them	here.

Arrays	have	an	overridden	default		toString()		that	stringifies	as	the	(string)	concatenation
of	all	its	values	(each	stringified	themselves),	with		","		in	between	each	value:

var	a	=	[1,2,3];

a.toString();	//	"1,2,3"

Again,		toString()		can	either	be	called	explicitly,	or	it	will	automatically	be	called	if	a
non-	string		is	used	in	a		string		context.

JSON	Stringification
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Another	task	that	seems	awfully	related	to		ToString		is	when	you	use	the
	JSON.stringify(..)		utility	to	serialize	a	value	to	a	JSON-compatible		string		value.

It's	important	to	note	that	this	stringification	is	not	exactly	the	same	thing	as	coercion.	But
since	it's	related	to	the		ToString		rules	above,	we'll	take	a	slight	diversion	to	cover	JSON
stringification	behaviors	here.

For	most	simple	values,	JSON	stringification	behaves	basically	the	same	as		toString()	
conversions,	except	that	the	serialization	result	is	always	a		string	:

JSON.stringify(	42	);				//	"42"

JSON.stringify(	"42"	);				//	""42""	(a	string	with	a	quoted	string	value	in	it)

JSON.stringify(	null	);				//	"null"

JSON.stringify(	true	);				//	"true"

Any	JSON-safe	value	can	be	stringified	by		JSON.stringify(..)	.	But	what	is	JSON-safe?
Any	value	that	can	be	represented	validly	in	a	JSON	representation.

It	may	be	easier	to	consider	values	that	are	not	JSON-safe.	Some	examples:		undefined	s,
	function	s,	(ES6+)		symbol	s,	and		object	s	with	circular	references	(where	property
references	in	an	object	structure	create	a	never-ending	cycle	through	each	other).	These	are
all	illegal	values	for	a	standard	JSON	structure,	mostly	because	they	aren't	portable	to	other
languages	that	consume	JSON	values.

The		JSON.stringify(..)		utility	will	automatically	omit		undefined	,		function	,	and		symbol	
values	when	it	comes	across	them.	If	such	a	value	is	found	in	an		array	,	that	value	is
replaced	by		null		(so	that	the	array	position	information	isn't	altered).	If	found	as	a	property
of	an		object	,	that	property	will	simply	be	excluded.

Consider:

JSON.stringify(	undefined	);																				//	undefined

JSON.stringify(	function(){}	);																				//	undefined

JSON.stringify(	[1,undefined,function(){},4]	);				//	"[1,null,null,4]"

JSON.stringify(	{	a:2,	b:function(){}	}	);								//	"{"a":2}"

But	if	you	try	to		JSON.stringify(..)		an		object		with	circular	reference(s)	in	it,	an	error	will
be	thrown.

JSON	stringification	has	the	special	behavior	that	if	an		object		value	has	a		toJSON()	
method	defined,	this	method	will	be	called	first	to	get	a	value	to	use	for	serialization.
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If	you	intend	to	JSON	stringify	an	object	that	may	contain	illegal	JSON	value(s),	or	if	you	just
have	values	in	the		object		that	aren't	appropriate	for	the	serialization,	you	should	define	a
	toJSON()		method	for	it	that	returns	a	JSON-safe	version	of	the		object	.

For	example:

var	o	=	{	};

var	a	=	{

				b:	42,

				c:	o,

				d:	function(){}

};

//	create	a	circular	reference	inside	`a`

o.e	=	a;

//	would	throw	an	error	on	the	circular	reference

//	JSON.stringify(	a	);

//	define	a	custom	JSON	value	serialization

a.toJSON	=	function()	{

				//	only	include	the	`b`	property	for	serialization

				return	{	b:	this.b	};

};

JSON.stringify(	a	);	//	"{"b":42}"

It's	a	very	common	misconception	that		toJSON()		should	return	a	JSON	stringification
representation.	That's	probably	incorrect,	unless	you're	wanting	to	actually	stringify	the
	string		itself	(usually	not!).		toJSON()		should	return	the	actual	regular	value	(of	whatever
type)	that's	appropriate,	and		JSON.stringify(..)		itself	will	handle	the	stringification.

In	other	words,		toJSON()		should	be	interpreted	as	"to	a	JSON-safe	value	suitable	for
stringification,"	not	"to	a	JSON	string"	as	many	developers	mistakenly	assume.

Consider:
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var	a	=	{

				val:	[1,2,3],

				//	probably	correct!

				toJSON:	function(){

								return	this.val.slice(	1	);

				}

};

var	b	=	{

				val:	[1,2,3],

				//	probably	incorrect!

				toJSON:	function(){

								return	"["	+

												this.val.slice(	1	).join()	+

								"]";

				}

};

JSON.stringify(	a	);	//	"[2,3]"

JSON.stringify(	b	);	//	""[2,3]""

In	the	second	call,	we	stringified	the	returned		string		rather	than	the		array		itself,	which
was	probably	not	what	we	wanted	to	do.

While	we're	talking	about		JSON.stringify(..)	,	let's	discuss	some	lesser-known
functionalities	that	can	still	be	very	useful.

An	optional	second	argument	can	be	passed	to		JSON.stringify(..)		that	is	called	replacer.
This	argument	can	either	be	an		array		or	a		function	.	It's	used	to	customize	the	recursive
serialization	of	an		object		by	providing	a	filtering	mechanism	for	which	properties	should
and	should	not	be	included,	in	a	similar	way	to	how		toJSON()		can	prepare	a	value	for
serialization.

If	replacer	is	an		array	,	it	should	be	an		array		of		string	s,	each	of	which	will	specify	a
property	name	that	is	allowed	to	be	included	in	the	serialization	of	the		object	.	If	a	property
exists	that	isn't	in	this	list,	it	will	be	skipped.

If	replacer	is	a		function	,	it	will	be	called	once	for	the		object		itself,	and	then	once	for	each
property	in	the		object	,	and	each	time	is	passed	two	arguments,	key	and	value.	To	skip	a
key	in	the	serialization,	return		undefined	.	Otherwise,	return	the	value	provided.
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var	a	=	{

				b:	42,

				c:	"42",

				d:	[1,2,3]

};

JSON.stringify(	a,	["b","c"]	);	//	"{"b":42,"c":"42"}"

JSON.stringify(	a,	function(k,v){

				if	(k	!==	"c")	return	v;

}	);

//	"{"b":42,"d":[1,2,3]}"

Note:	In	the		function		replacer	case,	the	key	argument		k		is		undefined		for	the	first	call
(where	the		a		object	itself	is	being	passed	in).	The		if		statement	filters	out	the	property
named		"c"	.	Stringification	is	recursive,	so	the		[1,2,3]		array	has	each	of	its	values	(	1	,
	2	,	and		3	)	passed	as		v		to	replacer,	with	indexes	(	0	,		1	,	and		2	)	as		k	.

A	third	optional	argument	can	also	be	passed	to		JSON.stringify(..)	,	called	space,	which	is
used	as	indentation	for	prettier	human-friendly	output.	space	can	be	a	positive	integer	to
indicate	how	many	space	characters	should	be	used	at	each	indentation	level.	Or,	space
can	be	a		string	,	in	which	case	up	to	the	first	ten	characters	of	its	value	will	be	used	for
each	indentation	level.
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var	a	=	{

				b:	42,

				c:	"42",

				d:	[1,2,3]

};

JSON.stringify(	a,	null,	3	);

//	"{

//				"b":	42,

//				"c":	"42",

//				"d":	[

//							1,

//							2,

//							3

//				]

//	}"

JSON.stringify(	a,	null,	"-----"	);

//	"{

//	-----"b":	42,

//	-----"c":	"42",

//	-----"d":	[

//	----------1,

//	----------2,

//	----------3

//	-----]

//	}"

Remember,		JSON.stringify(..)		is	not	directly	a	form	of	coercion.	We	covered	it	here,
however,	for	two	reasons	that	relate	its	behavior	to		ToString		coercion:

1.	 	string	,		number	,		boolean	,	and		null		values	all	stringify	for	JSON	basically	the	same
as	how	they	coerce	to		string		values	via	the	rules	of	the		ToString		abstract	operation.

2.	 If	you	pass	an		object		value	to		JSON.stringify(..)	,	and	that		object		has	a		toJSON()	
method	on	it,		toJSON()		is	automatically	called	to	(sort	of)	"coerce"	the	value	to	be
JSON-safe	before	stringification.

	ToNumber	

If	any	non-	number		value	is	used	in	a	way	that	requires	it	to	be	a		number	,	such	as	a
mathematical	operation,	the	ES5	spec	defines	the		ToNumber		abstract	operation	in	section
9.3.

For	example,		true		becomes		1		and		false		becomes		0	.		undefined		becomes		NaN	,	but
(curiously)		null		becomes		0	.
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	ToNumber		for	a		string		value	essentially	works	for	the	most	part	like	the	rules/syntax	for
numeric	literals	(see	Chapter	3).	If	it	fails,	the	result	is		NaN		(instead	of	a	syntax	error	as	with
	number		literals).	One	example	difference	is	that		0	-prefixed	octal	numbers	are	not	handled
as	octals	(just	as	normal	base-10	decimals)	in	this	operation,	though	such	octals	are	valid	as
	number		literals	(see	Chapter	2).

Note:	The	differences	between		number		literal	grammar	and		ToNumber		on	a		string		value
are	subtle	and	highly	nuanced,	and	thus	will	not	be	covered	further	here.	Consult	section
9.3.1	of	the	ES5	spec	for	more	information.

Objects	(and	arrays)	will	first	be	converted	to	their	primitive	value	equivalent,	and	the
resulting	value	(if	a	primitive	but	not	already	a		number	)	is	coerced	to	a		number		according	to
the		ToNumber		rules	just	mentioned.

To	convert	to	this	primitive	value	equivalent,	the		ToPrimitive		abstract	operation	(ES5	spec,
section	9.1)	will	consult	the	value	(using	the	internal		DefaultValue		operation	--	ES5	spec,
section	8.12.8)	in	question	to	see	if	it	has	a		valueOf()		method.	If		valueOf()		is	available
and	it	returns	a	primitive	value,	that	value	is	used	for	the	coercion.	If	not,	but		toString()		is
available,	it	will	provide	the	value	for	the	coercion.

If	neither	operation	can	provide	a	primitive	value,	a		TypeError		is	thrown.

As	of	ES5,	you	can	create	such	a	noncoercible	object	--	one	without		valueOf()		and
	toString()		--	if	it	has	a		null		value	for	its		[[Prototype]]	,	typically	created	with
	Object.create(null)	.	See	the	this	&	Object	Prototypes	title	of	this	series	for	more
information	on		[[Prototype]]	s.

Note:	We	cover	how	to	coerce	to		number	s	later	in	this	chapter	in	detail,	but	for	this	next
code	snippet,	just	assume	the		Number(..)		function	does	so.

Consider:
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var	a	=	{

				valueOf:	function(){

								return	"42";

				}

};

var	b	=	{

				toString:	function(){

								return	"42";

				}

};

var	c	=	[4,2];

c.toString	=	function(){

				return	this.join(	""	);				//	"42"

};

Number(	a	);												//	42

Number(	b	);												//	42

Number(	c	);												//	42

Number(	""	);												//	0

Number(	[]	);												//	0

Number(	[	"abc"	]	);				//	NaN

	ToBoolean	

Next,	let's	have	a	little	chat	about	how		boolean	s	behave	in	JS.	There's	lots	of	confusion
and	misconception	floating	out	there	around	this	topic,	so	pay	close	attention!

First	and	foremost,	JS	has	actual	keywords		true		and		false	,	and	they	behave	exactly	as
you'd	expect	of		boolean		values.	It's	a	common	misconception	that	the	values		1		and		0	
are	identical	to		true	/	false	.	While	that	may	be	true	in	other	languages,	in	JS	the		number	s
are		number	s	and	the		boolean	s	are		boolean	s.	You	can	coerce		1		to		true		(and	vice
versa)	or		0		to		false		(and	vice	versa).	But	they're	not	the	same.

Falsy	Values

But	that's	not	the	end	of	the	story.	We	need	to	discuss	how	values	other	than	the	two
	boolean	s	behave	whenever	you	coerce	to	their		boolean		equivalent.

All	of	JavaScript's	values	can	be	divided	into	two	categories:

1.	 values	that	will	become		false		if	coerced	to		boolean	
2.	 everything	else	(which	will	obviously	become		true	)

I'm	not	just	being	facetious.	The	JS	spec	defines	a	specific,	narrow	list	of	values	that	will
coerce	to		false		when	coerced	to	a		boolean		value.
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How	do	we	know	what	the	list	of	values	is?	In	the	ES5	spec,	section	9.2	defines	a
	ToBoolean		abstract	operation,	which	says	exactly	what	happens	for	all	the	possible	values
when	you	try	to	coerce	them	"to	boolean."

From	that	table,	we	get	the	following	as	the	so-called	"falsy"	values	list:

	undefined	

	null	

	false	

	+0	,		-0	,	and		NaN	
	""	

That's	it.	If	a	value	is	on	that	list,	it's	a	"falsy"	value,	and	it	will	coerce	to		false		if	you	force	a
	boolean		coercion	on	it.

By	logical	conclusion,	if	a	value	is	not	on	that	list,	it	must	be	on	another	list,	which	we	call	the
"truthy"	values	list.	But	JS	doesn't	really	define	a	"truthy"	list	per	se.	It	gives	some	examples,
such	as	saying	explicitly	that	all	objects	are	truthy,	but	mostly	the	spec	just	implies:	anything
not	explicitly	on	the	falsy	list	is	therefore	truthy.

Falsy	Objects

Wait	a	minute,	that	section	title	even	sounds	contradictory.	I	literally	just	said	the	spec	calls
all	objects	truthy,	right?	There	should	be	no	such	thing	as	a	"falsy	object."

What	could	that	possibly	even	mean?

You	might	be	tempted	to	think	it	means	an	object	wrapper	(see	Chapter	3)	around	a	falsy
value	(such	as		""	,		0		or		false	).	But	don't	fall	into	that	trap.

Note:	That's	a	subtle	specification	joke	some	of	you	may	get.

Consider:

var	a	=	new	Boolean(	false	);

var	b	=	new	Number(	0	);

var	c	=	new	String(	""	);

We	know	all	three	values	here	are	objects	(see	Chapter	3)	wrapped	around	obviously	falsy
values.	But	do	these	objects	behave	as		true		or	as		false	?	That's	easy	to	answer:

var	d	=	Boolean(	a	&&	b	&&	c	);

d;	//	true
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So,	all	three	behave	as		true	,	as	that's	the	only	way		d		could	end	up	as		true	.

Tip:	Notice	the		Boolean(	..	)		wrapped	around	the		a	&&	b	&&	c		expression	--	you	might
wonder	why	that's	there.	We'll	come	back	to	that	later	in	this	chapter,	so	make	a	mental	note
of	it.	For	a	sneak-peek	(trivia-wise),	try	for	yourself	what		d		will	be	if	you	just	do		d	=	a	&&	b
&&	c		without	the		Boolean(	..	)		call!

So,	if	"falsy	objects"	are	not	just	objects	wrapped	around	falsy	values,	what	the	heck	are
they?

The	tricky	part	is	that	they	can	show	up	in	your	JS	program,	but	they're	not	actually	part	of
JavaScript	itself.

What!?

There	are	certain	cases	where	browsers	have	created	their	own	sort	of	exotic	values
behavior,	namely	this	idea	of	"falsy	objects,"	on	top	of	regular	JS	semantics.

A	"falsy	object"	is	a	value	that	looks	and	acts	like	a	normal	object	(properties,	etc.),	but	when
you	coerce	it	to	a		boolean	,	it	coerces	to	a		false		value.

Why!?

The	most	well-known	case	is		document.all	:	an	array-like	(object)	provided	to	your	JS
program	by	the	DOM	(not	the	JS	engine	itself),	which	exposes	elements	in	your	page	to	your
JS	program.	It	used	to	behave	like	a	normal	object--it	would	act	truthy.	But	not	anymore.

	document.all		itself	was	never	really	"standard"	and	has	long	since	been
deprecated/abandoned.

"Can't	they	just	remove	it,	then?"	Sorry,	nice	try.	Wish	they	could.	But	there's	far	too	many
legacy	JS	code	bases	out	there	that	rely	on	using	it.

So,	why	make	it	act	falsy?	Because	coercions	of		document.all		to		boolean		(like	in		if	
statements)	were	almost	always	used	as	a	means	of	detecting	old,	nonstandard	IE.

IE	has	long	since	come	up	to	standards	compliance,	and	in	many	cases	is	pushing	the	web
forward	as	much	or	more	than	any	other	browser.	But	all	that	old		if	(document.all)	{	/*
it's	IE	*/	}		code	is	still	out	there,	and	much	of	it	is	probably	never	going	away.	All	this
legacy	code	is	still	assuming	it's	running	in	decade-old	IE,	which	just	leads	to	bad	browsing
experience	for	IE	users.

So,	we	can't	remove		document.all		completely,	but	IE	doesn't	want		if	(document.all)	{	..
}		code	to	work	anymore,	so	that	users	in	modern	IE	get	new,	standards-compliant	code
logic.
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"What	should	we	do?"	**"I've	got	it!	Let's	bastardize	the	JS	type	system	and	pretend	that
	document.all		is	falsy!"

Ugh.	That	sucks.	It's	a	crazy	gotcha	that	most	JS	developers	don't	understand.	But	the
alternative	(doing	nothing	about	the	above	no-win	problems)	sucks	just	a	little	bit	more.

So...	that's	what	we've	got:	crazy,	nonstandard	"falsy	objects"	added	to	JavaScript	by	the
browsers.	Yay!

Truthy	Values

Back	to	the	truthy	list.	What	exactly	are	the	truthy	values?	Remember:	a	value	is	truthy	if
it's	not	on	the	falsy	list.

Consider:

var	a	=	"false";

var	b	=	"0";

var	c	=	"''";

var	d	=	Boolean(	a	&&	b	&&	c	);

d;

What	value	do	you	expect		d		to	have	here?	It's	gotta	be	either		true		or		false	.

It's		true	.	Why?	Because	despite	the	contents	of	those		string		values	looking	like	falsy
values,	the		string		values	themselves	are	all	truthy,	because		""		is	the	only		string		value
on	the	falsy	list.

What	about	these?

var	a	=	[];																//	empty	array	--	truthy	or	falsy?

var	b	=	{};																//	empty	object	--	truthy	or	falsy?

var	c	=	function(){};				//	empty	function	--	truthy	or	falsy?

var	d	=	Boolean(	a	&&	b	&&	c	);

d;

Yep,	you	guessed	it,		d		is	still		true		here.	Why?	Same	reason	as	before.	Despite	what	it
may	seem	like,		[]	,		{}	,	and		function(){}		are	not	on	the	falsy	list,	and	thus	are	truthy
values.

In	other	words,	the	truthy	list	is	infinitely	long.	It's	impossible	to	make	such	a	list.	You	can
only	make	a	finite	falsy	list	and	consult	it.

Coercion

205



Take	five	minutes,	write	the	falsy	list	on	a	post-it	note	for	your	computer	monitor,	or
memorize	it	if	you	prefer.	Either	way,	you'll	easily	be	able	to	construct	a	virtual	truthy	list
whenever	you	need	it	by	simply	asking	if	it's	on	the	falsy	list	or	not.

The	importance	of	truthy	and	falsy	is	in	understanding	how	a	value	will	behave	if	you	coerce
it	(either	explicitly	or	implicitly)	to	a		boolean		value.	Now	that	you	have	those	two	lists	in
mind,	we	can	dive	into	coercion	examples	themselves.

Explicit	Coercion
Explicit	coercion	refers	to	type	conversions	that	are	obvious	and	explicit.	There's	a	wide
range	of	type	conversion	usage	that	clearly	falls	under	the	explicit	coercion	category	for
most	developers.

The	goal	here	is	to	identify	patterns	in	our	code	where	we	can	make	it	clear	and	obvious	that
we're	converting	a	value	from	one	type	to	another,	so	as	to	not	leave	potholes	for	future
developers	to	trip	into.	The	more	explicit	we	are,	the	more	likely	someone	later	will	be	able	to
read	our	code	and	understand	without	undue	effort	what	our	intent	was.

It	would	be	hard	to	find	any	salient	disagreements	with	explicit	coercion,	as	it	most	closely
aligns	with	how	the	commonly	accepted	practice	of	type	conversion	works	in	statically	typed
languages.	As	such,	we'll	take	for	granted	(for	now)	that	explicit	coercion	can	be	agreed
upon	to	not	be	evil	or	controversial.	We'll	revisit	this	later,	though.

Explicitly:	Strings	<-->	Numbers

We'll	start	with	the	simplest	and	perhaps	most	common	coercion	operation:	coercing	values
between		string		and		number		representation.

To	coerce	between		string	s	and		number	s,	we	use	the	built-in		String(..)		and
	Number(..)		functions	(which	we	referred	to	as	"native	constructors"	in	Chapter	3),	but	very
importantly,	we	do	not	use	the		new		keyword	in	front	of	them.	As	such,	we're	not	creating
object	wrappers.

Instead,	we're	actually	explicitly	coercing	between	the	two	types:
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var	a	=	42;

var	b	=	String(	a	);

var	c	=	"3.14";

var	d	=	Number(	c	);

b;	//	"42"

d;	//	3.14

	String(..)		coerces	from	any	other	value	to	a	primitive		string		value,	using	the	rules	of	the
	ToString		operation	discussed	earlier.		Number(..)		coerces	from	any	other	value	to	a
primitive		number		value,	using	the	rules	of	the		ToNumber		operation	discussed	earlier.

I	call	this	explicit	coercion	because	in	general,	it's	pretty	obvious	to	most	developers	that	the
end	result	of	these	operations	is	the	applicable	type	conversion.

In	fact,	this	usage	actually	looks	a	lot	like	it	does	in	some	other	statically	typed	languages.

For	example,	in	C/C++,	you	can	say	either		(int)x		or		int(x)	,	and	both	will	convert	the
value	in		x		to	an	integer.	Both	forms	are	valid,	but	many	prefer	the	latter,	which	kinda	looks
like	a	function	call.	In	JavaScript,	when	you	say		Number(x)	,	it	looks	awfully	similar.	Does	it
matter	that	it's	actually	a	function	call	in	JS?	Not	really.

Besides		String(..)		and		Number(..)	,	there	are	other	ways	to	"explicitly"	convert	these
values	between		string		and		number	:

var	a	=	42;

var	b	=	a.toString();

var	c	=	"3.14";

var	d	=	+c;

b;	//	"42"

d;	//	3.14

Calling		a.toString()		is	ostensibly	explicit	(pretty	clear	that	"toString"	means	"to	a	string"),
but	there's	some	hidden	implicitness	here.		toString()		cannot	be	called	on	a	primitive	value
like		42	.	So	JS	automatically	"boxes"	(see	Chapter	3)		42		in	an	object	wrapper,	so	that
	toString()		can	be	called	against	the	object.	In	other	words,	you	might	call	it	"explicitly
implicit."

	+c		here	is	showing	the	unary	operator	form	(operator	with	only	one	operand)	of	the		+	
operator.	Instead	of	performing	mathematic	addition	(or	string	concatenation	--	see	below),
the	unary		+		explicitly	coerces	its	operand	(	c	)	to	a		number		value.
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Is		+c		explicit	coercion?	Depends	on	your	experience	and	perspective.	If	you	know	(which
you	do,	now!)	that	unary		+		is	explicitly	intended	for		number		coercion,	then	it's	pretty
explicit	and	obvious.	However,	if	you've	never	seen	it	before,	it	can	seem	awfully	confusing,
implicit,	with	hidden	side	effects,	etc.

Note:	The	generally	accepted	perspective	in	the	open-source	JS	community	is	that	unary
	+		is	an	accepted	form	of	explicit	coercion.

Even	if	you	really	like	the		+c		form,	there	are	definitely	places	where	it	can	look	awfully
confusing.	Consider:

var	c	=	"3.14";

var	d	=	5+	+c;

d;	//	8.14

The	unary		-		operator	also	coerces	like		+		does,	but	it	also	flips	the	sign	of	the	number.
However,	you	cannot	put	two		--		next	to	each	other	to	unflip	the	sign,	as	that's	parsed	as
the	decrement	operator.	Instead,	you	would	need	to	do:		-	-"3.14"		with	a	space	in	between,
and	that	would	result	in	coercion	to		3.14	.

You	can	probably	dream	up	all	sorts	of	hideous	combinations	of	binary	operators	(like		+		for
addition)	next	to	the	unary	form	of	an	operator.	Here's	another	crazy	example:

1	+	-	+	+	+	-	+	1;				//	2

You	should	strongly	consider	avoiding	unary		+		(or		-	)	coercion	when	it's	immediately
adjacent	to	other	operators.	While	the	above	works,	it	would	almost	universally	be
considered	a	bad	idea.	Even		d	=	+c		(or		d	=+	c		for	that	matter!)	can	far	too	easily	be
confused	for		d	+=	c	,	which	is	entirely	different!

Note:	Another	extremely	confusing	place	for	unary		+		to	be	used	adjacent	to	another
operator	would	be	the		++		increment	operator	and		--		decrement	operator.	For	example:		a
+++b	,		a	+	++b	,	and		a	+	+	+b	.	See	"Expression	Side-Effects"	in	Chapter	5	for	more	about
	++	.

Remember,	we're	trying	to	be	explicit	and	reduce	confusion,	not	make	it	much	worse!

	Date		To		number	

Another	common	usage	of	the	unary		+		operator	is	to	coerce	a		Date		object	into	a		number	,
because	the	result	is	the	unix	timestamp	(milliseconds	elapsed	since	1	January	1970
00:00:00	UTC)	representation	of	the	date/time	value:
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var	d	=	new	Date(	"Mon,	18	Aug	2014	08:53:06	CDT"	);

+d;	//	1408369986000

The	most	common	usage	of	this	idiom	is	to	get	the	current	now	moment	as	a	timestamp,
such	as:

var	timestamp	=	+new	Date();

Note:	Some	developers	are	aware	of	a	peculiar	syntactic	"trick"	in	JavaScript,	which	is	that
the		()		set	on	a	constructor	call	(a	function	called	with		new	)	is	optional	if	there	are	no
arguments	to	pass.	So	you	may	run	across	the		var	timestamp	=	+new	Date;		form.	However,
not	all	developers	agree	that	omitting	the		()		improves	readability,	as	it's	an	uncommon
syntax	exception	that	only	applies	to	the		new	fn()		call	form	and	not	the	regular		fn()		call
form.

But	coercion	is	not	the	only	way	to	get	the	timestamp	out	of	a		Date		object.	A	noncoercion
approach	is	perhaps	even	preferable,	as	it's	even	more	explicit:

var	timestamp	=	new	Date().getTime();

//	var	timestamp	=	(new	Date()).getTime();

//	var	timestamp	=	(new	Date).getTime();

But	an	even	more	preferable	noncoercion	option	is	to	use	the	ES5	added		Date.now()		static
function:

var	timestamp	=	Date.now();

And	if	you	want	to	polyfill		Date.now()		into	older	browsers,	it's	pretty	simple:

if	(!Date.now)	{

				Date.now	=	function()	{

								return	+new	Date();

				};

}

I'd	recommend	skipping	the	coercion	forms	related	to	dates.	Use		Date.now()		for	current
now	timestamps,	and		new	Date(	..	).getTime()		for	getting	a	timestamp	of	a	specific	non-
now	date/time	that	you	need	to	specify.

The	Curious	Case	of	the		~	
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One	coercive	JS	operator	that	is	often	overlooked	and	usually	very	confused	is	the	tilde		~	
operator	(aka	"bitwise	NOT").	Many	of	those	who	even	understand	what	it	does	will	often
times	still	want	to	avoid	it.	But	sticking	to	the	spirit	of	our	approach	in	this	book	and	series,
let's	dig	into	it	to	find	out	if		~		has	anything	useful	to	give	us.

In	the	"32-bit	(Signed)	Integers"	section	of	Chapter	2,	we	covered	how	bitwise	operators	in
JS	are	defined	only	for	32-bit	operations,	which	means	they	force	their	operands	to	conform
to	32-bit	value	representations.	The	rules	for	how	this	happens	are	controlled	by	the
	ToInt32		abstract	operation	(ES5	spec,	section	9.5).

	ToInt32		first	does	a		ToNumber		coercion,	which	means	if	the	value	is		"123"	,	it's	going	to
first	become		123		before	the		ToInt32		rules	are	applied.

While	not	technically	coercion	itself	(since	the	type	doesn't	change!),	using	bitwise	operators
(like		|		or		~	)	with	certain	special		number		values	produces	a	coercive	effect	that	results	in
a	different		number		value.

For	example,	let's	first	consider	the		|		"bitwise	OR"	operator	used	in	the	otherwise	no-op
idiom		0	|	x	,	which	(as	Chapter	2	showed)	essentially	only	does	the		ToInt32		conversion:

0	|	-0;												//	0

0	|	NaN;								//	0

0	|	Infinity;				//	0

0	|	-Infinity;				//	0

These	special	numbers	aren't	32-bit	representable	(since	they	come	from	the	64-bit	IEEE
754	standard	--	see	Chapter	2),	so		ToInt32		just	specifies		0		as	the	result	from	these
values.

It's	debatable	if		0	|	__		is	an	explicit	form	of	this	coercive		ToInt32		operation	or	if	it's	more
implicit.	From	the	spec	perspective,	it's	unquestionably	explicit,	but	if	you	don't	understand
bitwise	operations	at	this	level,	it	can	seem	a	bit	more	implicitly	magical.	Nevertheless,
consistent	with	other	assertions	in	this	chapter,	we	will	call	it	explicit.

So,	let's	turn	our	attention	back	to		~	.	The		~		operator	first	"coerces"	to	a	32-bit		number	
value,	and	then	performs	a	bitwise	negation	(flipping	each	bit's	parity).

Note:	This	is	very	similar	to	how		!		not	only	coerces	its	value	to		boolean		but	also	flips	its
parity	(see	discussion	of	the	"unary		!	"	later).

But...	what!?	Why	do	we	care	about	bits	being	flipped?	That's	some	pretty	specialized,
nuanced	stuff.	It's	pretty	rare	for	JS	developers	to	need	to	reason	about	individual	bits.
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Another	way	of	thinking	about	the	definition	of		~		comes	from	old-school	computer
science/discrete	Mathematics:		~		performs	two's-complement.	Great,	thanks,	that's	totally
clearer!

Let's	try	again:		~x		is	roughly	the	same	as		-(x+1)	.	That's	weird,	but	slightly	easier	to
reason	about.	So:

~42;				//	-(42+1)	==>	-43

You're	probably	still	wondering	what	the	heck	all	this		~		stuff	is	about,	or	why	it	really
matters	for	a	coercion	discussion.	Let's	quickly	get	to	the	point.

Consider		-(x+1)	.	What's	the	only	value	that	you	can	perform	that	operation	on	that	will
produce	a		0		(or		-0		technically!)	result?		-1	.	In	other	words,		~		used	with	a	range	of
	number		values	will	produce	a	falsy	(easily	coercible	to		false	)		0		value	for	the		-1		input
value,	and	any	other	truthy		number		otherwise.

Why	is	that	relevant?

	-1		is	commonly	called	a	"sentinel	value,"	which	basically	means	a	value	that's	given	an
arbitrary	semantic	meaning	within	the	greater	set	of	values	of	its	same	type	(	number	s).	The
C-language	uses		-1		sentinel	values	for	many	functions	that	return		>=	0		values	for
"success"	and		-1		for	"failure."

JavaScript	adopted	this	precedent	when	defining	the		string		operation		indexOf(..)	,	which
searches	for	a	substring	and	if	found	returns	its	zero-based	index	position,	or		-1		if	not
found.

It's	pretty	common	to	try	to	use		indexOf(..)		not	just	as	an	operation	to	get	the	position,	but
as	a		boolean		check	of	presence/absence	of	a	substring	in	another		string	.	Here's	how
developers	usually	perform	such	checks:
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var	a	=	"Hello	World";

if	(a.indexOf(	"lo"	)	>=	0)	{				//	true

				//	found	it!

}

if	(a.indexOf(	"lo"	)	!=	-1)	{				//	true

				//	found	it

}

if	(a.indexOf(	"ol"	)	<	0)	{				//	true

				//	not	found!

}

if	(a.indexOf(	"ol"	)	==	-1)	{				//	true

				//	not	found!

}

I	find	it	kind	of	gross	to	look	at		>=	0		or		==	-1	.	It's	basically	a	"leaky	abstraction,"	in	that	it's
leaking	underlying	implementation	behavior	--	the	usage	of	sentinel		-1		for	"failure"	--	into
my	code.	I	would	prefer	to	hide	such	a	detail.

And	now,	finally,	we	see	why		~		could	help	us!	Using		~		with		indexOf()		"coerces"	(actually
just	transforms)	the	value	to	be	appropriately		boolean	-coercible:

var	a	=	"Hello	World";

~a.indexOf(	"lo"	);												//	-4			<--	truthy!

if	(~a.indexOf(	"lo"	))	{				//	true

				//	found	it!

}

~a.indexOf(	"ol"	);												//	0				<--	falsy!

!~a.indexOf(	"ol"	);								//	true

if	(!~a.indexOf(	"ol"	))	{				//	true

				//	not	found!

}

	~		takes	the	return	value	of		indexOf(..)		and	transforms	it:	for	the	"failure"		-1		we	get	the
falsy		0	,	and	every	other	value	is	truthy.

Note:	The		-(x+1)		pseudo-algorithm	for		~		would	imply	that		~-1		is		-0	,	but	actually	it
produces		0		because	the	underlying	operation	is	actually	bitwise,	not	mathematic.

Technically,		if	(~a.indexOf(..))		is	still	relying	on	implicit	coercion	of	its	resultant		0		to
	false		or	nonzero	to		true	.	But	overall,		~		still	feels	to	me	more	like	an	explicit	coercion
mechanism,	as	long	as	you	know	what	it's	intended	to	do	in	this	idiom.

Coercion

212



I	find	this	to	be	cleaner	code	than	the	previous		>=	0		/		==	-1		clutter.

Truncating	Bits

There's	one	more	place		~		may	show	up	in	code	you	run	across:	some	developers	use	the
double	tilde		~~		to	truncate	the	decimal	part	of	a		number		(i.e.,	"coerce"	it	to	a	whole	number
"integer").	It's	commonly	(though	mistakingly)	said	this	is	the	same	result	as	calling
	Math.floor(..)	.

How		~~		works	is	that	the	first		~		applies	the		ToInt32		"coercion"	and	does	the	bitwise	flip,
and	then	the	second		~		does	another	bitwise	flip,	flipping	all	the	bits	back	to	the	original
state.	The	end	result	is	just	the		ToInt32		"coercion"	(aka	truncation).

Note:	The	bitwise	double-flip	of		~~		is	very	similar	to	the	parity	double-negate		!!		behavior,
explained	in	the	"Explicitly:	*	-->	Boolean"	section	later.

However,		~~		needs	some	caution/clarification.	First,	it	only	works	reliably	on	32-bit	values.
But	more	importantly,	it	doesn't	work	the	same	on	negative	numbers	as		Math.floor(..)	
does!

Math.floor(	-49.6	);				//	-50

~~-49.6;																//	-49

Setting	the		Math.floor(..)		difference	aside,		~~x		can	truncate	to	a	(32-bit)	integer.	But	so
does		x	|	0	,	and	seemingly	with	(slightly)	less	effort.

So,	why	might	you	choose		~~x		over		x	|	0	,	then?	Operator	precedence	(see	Chapter	5):

~~1E20	/	10;								//	166199296

1E20	|	0	/	10;								//	1661992960

(1E20	|	0)	/	10;				//	166199296

Just	as	with	all	other	advice	here,	use		~		and		~~		as	explicit	mechanisms	for	"coercion"
and	value	transformation	only	if	everyone	who	reads/writes	such	code	is	properly	aware	of
how	these	operators	work!

Explicitly:	Parsing	Numeric	Strings

A	similar	outcome	to	coercing	a		string		to	a		number		can	be	achieved	by	parsing	a		number	
out	of	a		string	's	character	contents.	There	are,	however,	distinct	differences	between	this
parsing	and	the	type	conversion	we	examined	above.

Consider:
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var	a	=	"42";

var	b	=	"42px";

Number(	a	);				//	42

parseInt(	a	);				//	42

Number(	b	);				//	NaN

parseInt(	b	);				//	42

Parsing	a	numeric	value	out	of	a	string	is	tolerant	of	non-numeric	characters	--	it	just	stops
parsing	left-to-right	when	encountered	--	whereas	coercion	is	not	tolerant	and	fails	resulting
in	the		NaN		value.

Parsing	should	not	be	seen	as	a	substitute	for	coercion.	These	two	tasks,	while	similar,	have
different	purposes.	Parse	a		string		as	a		number		when	you	don't	know/care	what	other	non-
numeric	characters	there	may	be	on	the	right-hand	side.	Coerce	a		string		(to	a		number	)
when	the	only	acceptable	values	are	numeric	and	something	like		"42px"		should	be	rejected
as	a		number	.

Tip:		parseInt(..)		has	a	twin,		parseFloat(..)	,	which	(as	it	sounds)	pulls	out	a	floating-
point	number	from	a	string.

Don't	forget	that		parseInt(..)		operates	on		string		values.	It	makes	absolutely	no	sense	to
pass	a		number		value	to		parseInt(..)	.	Nor	would	it	make	sense	to	pass	any	other	type	of
value,	like		true	,		function(){..}		or		[1,2,3]	.

If	you	pass	a	non-	string	,	the	value	you	pass	will	automatically	be	coerced	to	a		string	
first	(see	"	ToString	"	earlier),	which	would	clearly	be	a	kind	of	hidden	implicit	coercion.	It's	a
really	bad	idea	to	rely	upon	such	a	behavior	in	your	program,	so	never	use		parseInt(..)	
with	a	non-	string		value.

Prior	to	ES5,	another	gotcha	existed	with		parseInt(..)	,	which	was	the	source	of	many	JS
programs'	bugs.	If	you	didn't	pass	a	second	argument	to	indicate	which	numeric	base	(aka
radix)	to	use	for	interpreting	the	numeric		string		contents,		parseInt(..)		would	look	at	the
beginning	character(s)	to	make	a	guess.

If	the	first	two	characters	were		"0x"		or		"0X"	,	the	guess	(by	convention)	was	that	you
wanted	to	interpret	the		string		as	a	hexadecimal	(base-16)		number	.	Otherwise,	if	the	first
character	was		"0"	,	the	guess	(again,	by	convention)	was	that	you	wanted	to	interpret	the
	string		as	an	octal	(base-8)		number	.

Hexadecimal		string	s	(with	the	leading		0x		or		0X	)	aren't	terribly	easy	to	get	mixed	up.	But
the	octal	number	guessing	proved	devilishly	common.	For	example:
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var	hour	=	parseInt(	selectedHour.value	);

var	minute	=	parseInt(	selectedMinute.value	);

console.log(	"The	time	you	selected	was:	"	+	hour	+	":"	+	minute);

Seems	harmless,	right?	Try	selecting		08		for	the	hour	and		09		for	the	minute.	You'll	get
	0:0	.	Why?	because	neither		8		nor		9		are	valid	characters	in	octal	base-8.

The	pre-ES5	fix	was	simple,	but	so	easy	to	forget:	always	pass		10		as	the	second
argument.	This	was	totally	safe:

var	hour	=	parseInt(	selectedHour.value,	10	);

var	minute	=	parseInt(	selectedMiniute.value,	10	);

As	of	ES5,		parseInt(..)		no	longer	guesses	octal.	Unless	you	say	otherwise,	it	assumes
base-10	(or	base-16	for		"0x"		prefixes).	That's	much	nicer.	Just	be	careful	if	your	code	has
to	run	in	pre-ES5	environments,	in	which	case	you	still	need	to	pass		10		for	the	radix.

Parsing	Non-Strings

One	somewhat	infamous	example	of		parseInt(..)	's	behavior	is	highlighted	in	a	sarcastic
joke	post	a	few	years	ago,	poking	fun	at	this	JS	behavior:

parseInt(	1/0,	19	);	//	18

The	assumptive	(but	totally	invalid)	assertion	was,	"If	I	pass	in	Infinity,	and	parse	an	integer
out	of	that,	I	should	get	Infinity	back,	not	18."	Surely,	JS	must	be	crazy	for	this	outcome,
right?

Though	this	example	is	obviously	contrived	and	unreal,	let's	indulge	the	madness	for	a
moment	and	examine	whether	JS	really	is	that	crazy.

First	off,	the	most	obvious	sin	committed	here	is	to	pass	a	non-	string		to		parseInt(..)	.
That's	a	no-no.	Do	it	and	you're	asking	for	trouble.	But	even	if	you	do,	JS	politely	coerces
what	you	pass	in	into	a		string		that	it	can	try	to	parse.

Some	would	argue	that	this	is	unreasonable	behavior,	and	that		parseInt(..)		should	refuse
to	operate	on	a	non-	string		value.	Should	it	perhaps	throw	an	error?	That	would	be	very
Java-like,	frankly.	I	shudder	at	thinking	JS	should	start	throwing	errors	all	over	the	place	so
that		try..catch		is	needed	around	almost	every	line.

Should	it	return		NaN	?	Maybe.	But...	what	about:
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parseInt(	new	String(	"42")	);

Should	that	fail,	too?	It's	a	non-	string		value.	If	you	want	that		String		object	wrapper	to	be
unboxed	to		"42"	,	then	is	it	really	so	unusual	for		42		to	first	become		"42"		so	that		42		can
be	parsed	back	out?

I	would	argue	that	this	half-explicit,	half-implicit	coercion	that	can	occur	can	often	be	a	very
helpful	thing.	For	example:

var	a	=	{

				num:	21,

				toString:	function()	{	return	String(	this.num	*	2	);	}

};

parseInt(	a	);	//	42

The	fact	that		parseInt(..)		forcibly	coerces	its	value	to	a		string		to	perform	the	parse	on	is
quite	sensible.	If	you	pass	in	garbage,	and	you	get	garbage	back	out,	don't	blame	the	trash
can	--	it	just	did	its	job	faithfully.

So,	if	you	pass	in	a	value	like		Infinity		(the	result	of		1	/	0		obviously),	what	sort	of
	string		representation	would	make	the	most	sense	for	its	coercion?	Only	two	reasonable
choices	come	to	mind:		"Infinity"		and		"∞"	.	JS	chose		"Infinity"	.	I'm	glad	it	did.

I	think	it's	a	good	thing	that	all	values	in	JS	have	some	sort	of	default		string	
representation,	so	that	they	aren't	mysterious	black	boxes	that	we	can't	debug	and	reason
about.

Now,	what	about	base-19?	Obviously,	completely	bogus	and	contrived.	No	real	JS	programs
use	base-19.	It's	absurd.	But	again,	let's	indulge	the	ridiculousness.	In	base-19,	the	valid
numeric	characters	are		0		-		9		and		a		-		i		(case	insensitive).

So,	back	to	our		parseInt(	1/0,	19	)		example.	It's	essentially		parseInt(	"Infinity",	19	)	.
How	does	it	parse?	The	first	character	is		"I"	,	which	is	value		18		in	the	silly	base-19.	The
second	character		"n"		is	not	in	the	valid	set	of	numeric	characters,	and	as	such	the	parsing
simply	politely	stops,	just	like	when	it	ran	across		"p"		in		"42px"	.

The	result?		18	.	Exactly	like	it	sensibly	should	be.	The	behaviors	involved	to	get	us	there,
and	not	to	an	error	or	to		Infinity		itself,	are	very	important	to	JS,	and	should	not	be	so
easily	discarded.

Other	examples	of	this	behavior	with		parseInt(..)		that	may	be	surprising	but	are	quite
sensible	include:
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parseInt(	0.000008	);								//	0			("0"	from	"0.000008")

parseInt(	0.0000008	);								//	8			("8"	from	"8e-7")

parseInt(	false,	16	);								//	250	("fa"	from	"false")

parseInt(	parseInt,	16	);				//	15		("f"	from	"function..")

parseInt(	"0x10"	);												//	16

parseInt(	"103",	2	);								//	2

	parseInt(..)		is	actually	pretty	predictable	and	consistent	in	its	behavior.	If	you	use	it
correctly,	you'll	get	sensible	results.	If	you	use	it	incorrectly,	the	crazy	results	you	get	are	not
the	fault	of	JavaScript.

Explicitly:	*	-->	Boolean

Now,	let's	examine	coercing	from	any	non-	boolean		value	to	a		boolean	.

Just	like	with		String(..)		and		Number(..)		above,		Boolean(..)		(without	the		new	,	of
course!)	is	an	explicit	way	of	forcing	the		ToBoolean		coercion:

var	a	=	"0";

var	b	=	[];

var	c	=	{};

var	d	=	"";

var	e	=	0;

var	f	=	null;

var	g;

Boolean(	a	);	//	true

Boolean(	b	);	//	true

Boolean(	c	);	//	true

Boolean(	d	);	//	false

Boolean(	e	);	//	false

Boolean(	f	);	//	false

Boolean(	g	);	//	false

While		Boolean(..)		is	clearly	explicit,	it's	not	at	all	common	or	idiomatic.

Just	like	the	unary		+		operator	coerces	a	value	to	a		number		(see	above),	the	unary		!	
negate	operator	explicitly	coerces	a	value	to	a		boolean	.	The	problem	is	that	it	also	flips	the
value	from	truthy	to	falsy	or	vice	versa.	So,	the	most	common	way	JS	developers	explicitly
coerce	to		boolean		is	to	use	the		!!		double-negate	operator,	because	the	second		!		will
flip	the	parity	back	to	the	original:

Coercion

217



var	a	=	"0";

var	b	=	[];

var	c	=	{};

var	d	=	"";

var	e	=	0;

var	f	=	null;

var	g;

!!a;				//	true

!!b;				//	true

!!c;				//	true

!!d;				//	false

!!e;				//	false

!!f;				//	false

!!g;				//	false

Any	of	these		ToBoolean		coercions	would	happen	implicitly	without	the		Boolean(..)		or		!!	,
if	used	in	a		boolean		context	such	as	an		if	(..)	..		statement.	But	the	goal	here	is	to
explicitly	force	the	value	to	a		boolean		to	make	it	clearer	that	the		ToBoolean		coercion	is
intended.

Another	example	use-case	for	explicit		ToBoolean		coercion	is	if	you	want	to	force	a
	true	/	false		value	coercion	in	the	JSON	serialization	of	a	data	structure:

var	a	=	[

				1,

				function(){	/*..*/	},

				2,

				function(){	/*..*/	}

];

JSON.stringify(	a	);	//	"[1,null,2,null]"

JSON.stringify(	a,	function(key,val){

				if	(typeof	val	==	"function")	{

								//	force	`ToBoolean`	coercion	of	the	function

								return	!!val;

				}

				else	{

								return	val;

				}

}	);

//	"[1,true,2,true]"

If	you	come	to	JavaScript	from	Java,	you	may	recognize	this	idiom:
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var	a	=	42;

var	b	=	a	?	true	:	false;

The		?	:		ternary	operator	will	test		a		for	truthiness,	and	based	on	that	test	will	either	assign
	true		or		false		to		b	,	accordingly.

On	its	surface,	this	idiom	looks	like	a	form	of	explicit		ToBoolean	-type	coercion,	since	it's
obvious	that	only	either		true		or		false		come	out	of	the	operation.

However,	there's	a	hidden	implicit	coercion,	in	that	the		a		expression	has	to	first	be	coerced
to		boolean		to	perform	the	truthiness	test.	I'd	call	this	idiom	"explicitly	implicit."	Furthermore,
I'd	suggest	you	should	avoid	this	idiom	completely	in	JavaScript.	It	offers	no	real	benefit,
and	worse,	masquerades	as	something	it's	not.

	Boolean(a)		and		!!a		are	far	better	as	explicit	coercion	options.

Implicit	Coercion
Implicit	coercion	refers	to	type	conversions	that	are	hidden,	with	non-obvious	side-effects
that	implicitly	occur	from	other	actions.	In	other	words,	implicit	coercions	are	any	type
conversions	that	aren't	obvious	(to	you).

While	it's	clear	what	the	goal	of	explicit	coercion	is	(making	code	explicit	and	more
understandable),	it	might	be	too	obvious	that	implicit	coercion	has	the	opposite	goal:	making
code	harder	to	understand.

Taken	at	face	value,	I	believe	that's	where	much	of	the	ire	towards	coercion	comes	from.
The	majority	of	complaints	about	"JavaScript	coercion"	are	actually	aimed	(whether	they
realize	it	or	not)	at	implicit	coercion.

Note:	Douglas	Crockford,	author	of	"JavaScript:	The	Good	Parts",	has	claimed	in	many
conference	talks	and	writings	that	JavaScript	coercion	should	be	avoided.	But	what	he
seems	to	mean	is	that	implicit	coercion	is	bad	(in	his	opinion).	However,	if	you	read	his	own
code,	you'll	find	plenty	of	examples	of	coercion,	both	implicit	and	explicit!	In	truth,	his	angst
seems	to	primarily	be	directed	at	the		==		operation,	but	as	you'll	see	in	this	chapter,	that's
only	part	of	the	coercion	mechanism.

So,	is	implicit	coercion	evil?	Is	it	dangerous?	Is	it	a	flaw	in	JavaScript's	design?	Should	we
avoid	it	at	all	costs?

I	bet	most	of	you	readers	are	inclined	to	enthusiastically	cheer,	"Yes!"

Not	so	fast.	Hear	me	out.
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Let's	take	a	different	perspective	on	what	implicit	coercion	is,	and	can	be,	than	just	that	it's
"the	opposite	of	the	good	explicit	kind	of	coercion."	That's	far	too	narrow	and	misses	an
important	nuance.

Let's	define	the	goal	of	implicit	coercion	as:	to	reduce	verbosity,	boilerplate,	and/or
unnecessary	implementation	detail	that	clutters	up	our	code	with	noise	that	distracts	from
the	more	important	intent.

Simplifying	Implicitly

Before	we	even	get	to	JavaScript,	let	me	suggest	something	pseudo-code'ish	from	some
theoretical	strongly	typed	language	to	illustrate:

SomeType	x	=	SomeType(	AnotherType(	y	)	)

In	this	example,	I	have	some	arbitrary	type	of	value	in		y		that	I	want	to	convert	to	the
	SomeType		type.	The	problem	is,	this	language	can't	go	directly	from	whatever		y		currently	is
to		SomeType	.	It	needs	an	intermediate	step,	where	it	first	converts	to		AnotherType	,	and	then
from		AnotherType		to		SomeType	.

Now,	what	if	that	language	(or	definition	you	could	create	yourself	with	the	language)	did	just
let	you	say:

SomeType	x	=	SomeType(	y	)

Wouldn't	you	generally	agree	that	we	simplified	the	type	conversion	here	to	reduce	the
unnecessary	"noise"	of	the	intermediate	conversion	step?	I	mean,	is	it	really	all	that
important,	right	here	at	this	point	in	the	code,	to	see	and	deal	with	the	fact	that		y		goes	to
	AnotherType		first	before	then	going	to		SomeType	?

Some	would	argue,	at	least	in	some	circumstances,	yes.	But	I	think	an	equal	argument	can
be	made	of	many	other	circumstances	that	here,	the	simplification	actually	aids	in	the
readability	of	the	code	by	abstracting	or	hiding	away	such	details,	either	in	the	language
itself	or	in	our	own	abstractions.

Undoubtedly,	behind	the	scenes,	somewhere,	the	intermediate	conversion	step	is	still
happening.	But	if	that	detail	is	hidden	from	view	here,	we	can	just	reason	about	getting		y		to
type		SomeType		as	a	generic	operation	and	hide	the	messy	details.

While	not	a	perfect	analogy,	what	I'm	going	to	argue	throughout	the	rest	of	this	chapter	is
that	JS	implicit	coercion	can	be	thought	of	as	providing	a	similar	aid	to	your	code.
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But,	and	this	is	very	important,	that	is	not	an	unbounded,	absolute	statement.	There	are
definitely	plenty	of	evils	lurking	around	implicit	coercion,	that	will	harm	your	code	much	more
than	any	potential	readability	improvements.	Clearly,	we	have	to	learn	how	to	avoid	such
constructs	so	we	don't	poison	our	code	with	all	manner	of	bugs.

Many	developers	believe	that	if	a	mechanism	can	do	some	useful	thing	A	but	can	also	be
abused	or	misused	to	do	some	awful	thing	Z,	then	we	should	throw	out	that	mechanism
altogether,	just	to	be	safe.

My	encouragement	to	you	is:	don't	settle	for	that.	Don't	"throw	the	baby	out	with	the
bathwater."	Don't	assume	implicit	coercion	is	all	bad	because	all	you	think	you've	ever	seen
is	its	"bad	parts."	I	think	there	are	"good	parts"	here,	and	I	want	to	help	and	inspire	more	of
you	to	find	and	embrace	them!

Implicitly:	Strings	<-->	Numbers

Earlier	in	this	chapter,	we	explored	explicitly	coercing	between		string		and		number		values.
Now,	let's	explore	the	same	task	but	with	implicit	coercion	approaches.	But	before	we	do,	we
have	to	examine	some	nuances	of	operations	that	will	implicitly	force	coercion.

The		+		operator	is	overloaded	to	serve	the	purposes	of	both		number		addition	and		string	
concatenation.	So	how	does	JS	know	which	type	of	operation	you	want	to	use?	Consider:

var	a	=	"42";

var	b	=	"0";

var	c	=	42;

var	d	=	0;

a	+	b;	//	"420"

c	+	d;	//	42

What's	different	that	causes		"420"		vs		42	?	It's	a	common	misconception	that	the
difference	is	whether	one	or	both	of	the	operands	is	a		string	,	as	that	means		+		will
assume		string		concatenation.	While	that's	partially	true,	it's	more	complicated	than	that.

Consider:

var	a	=	[1,2];

var	b	=	[3,4];

a	+	b;	//	"1,23,4"
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Neither	of	these	operands	is	a		string	,	but	clearly	they	were	both	coerced	to		string	s	and
then	the		string		concatenation	kicked	in.	So	what's	really	going	on?

(Warning:	deeply	nitty	gritty	spec-speak	coming,	so	skip	the	next	two	paragraphs	if	that
intimidates	you!)

According	to	ES5	spec	section	11.6.1,	the		+		algorithm	(when	an		object		value	is	an
operand)	will	concatenate	if	either	operand	is	either	already	a		string	,	or	if	the	following
steps	produce	a		string		representation.	So,	when		+		receives	an		object		(including
	array	)	for	either	operand,	it	first	calls	the		ToPrimitive		abstract	operation	(section	9.1)	on
the	value,	which	then	calls	the		[[DefaultValue]]		algorithm	(section	8.12.8)	with	a	context
hint	of		number	.

If	you're	paying	close	attention,	you'll	notice	that	this	operation	is	now	identical	to	how	the
	ToNumber		abstract	operation	handles		object	s	(see	the	"	ToNumber	""	section	earlier).	The
	valueOf()		operation	on	the		array		will	fail	to	produce	a	simple	primitive,	so	it	then	falls	to	a
	toString()		representation.	The	two		array	s	thus	become		"1,2"		and		"3,4"	,	respectively.
Now,		+		concatenates	the	two		string	s	as	you'd	normally	expect:		"1,23,4"	.

Let's	set	aside	those	messy	details	and	go	back	to	an	earlier,	simplified	explanation:	if	either
operand	to		+		is	a		string		(or	becomes	one	with	the	above	steps!),	the	operation	will	be
	string		concatenation.	Otherwise,	it's	always	numeric	addition.

Note:	A	commonly	cited	coercion	gotcha	is		[]	+	{}		vs.		{}	+	[]	,	as	those	two
expressions	result,	respectively,	in		"[object	Object]"		and		0	.	There's	more	to	it,	though,
and	we	cover	those	details	in	"Blocks"	in	Chapter	5.

What's	that	mean	for	implicit	coercion?

You	can	coerce	a		number		to	a		string		simply	by	"adding"	the		number		and	the		""		empty
	string	:

var	a	=	42;

var	b	=	a	+	"";

b;	//	"42"

Tip:	Numeric	addition	with	the		+		operator	is	commutative,	which	means		2	+	3		is	the
same	as		3	+	2	.	String	concatenation	with		+		is	obviously	not	generally	commutative,	but
with	the	specific	case	of		""	,	it's	effectively	commutative,	as		a	+	""		and		""	+	a		will
produce	the	same	result.
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It's	extremely	common/idiomatic	to	(implicitly)	coerce		number		to		string		with	a		+	""	
operation.	In	fact,	interestingly,	even	some	of	the	most	vocal	critics	of	implicit	coercion	still
use	that	approach	in	their	own	code,	instead	of	one	of	its	explicit	alternatives.

I	think	this	is	a	great	example	of	a	useful	form	in	implicit	coercion,	despite	how	frequently
the	mechanism	gets	criticized!

Comparing	this	implicit	coercion	of		a	+	""		to	our	earlier	example	of		String(a)		explicit
coercion,	there's	one	additional	quirk	to	be	aware	of.	Because	of	how	the		ToPrimitive	
abstract	operation	works,		a	+	""		invokes		valueOf()		on	the		a		value,	whose	return	value
is	then	finally	converted	to	a		string		via	the	internal		ToString		abstract	operation.	But
	String(a)		just	invokes		toString()		directly.

Both	approaches	ultimately	result	in	a		string	,	but	if	you're	using	an		object		instead	of	a
regular	primitive		number		value,	you	may	not	necessarily	get	the	same		string		value!

Consider:

var	a	=	{

				valueOf:	function()	{	return	42;	},

				toString:	function()	{	return	4;	}

};

a	+	"";												//	"42"

String(	a	);				//	"4"

Generally,	this	sort	of	gotcha	won't	bite	you	unless	you're	really	trying	to	create	confusing
data	structures	and	operations,	but	you	should	be	careful	if	you're	defining	both	your	own
	valueOf()		and		toString()		methods	for	some		object	,	as	how	you	coerce	the	value	could
affect	the	outcome.

What	about	the	other	direction?	How	can	we	implicitly	coerce	from		string		to		number	?

var	a	=	"3.14";

var	b	=	a	-	0;

b;	//	3.14

The		-		operator	is	defined	only	for	numeric	subtraction,	so		a	-	0		forces		a	's	value	to	be
coerced	to	a		number	.	While	far	less	common,		a	*	1		or		a	/	1		would	accomplish	the	same
result,	as	those	operators	are	also	only	defined	for	numeric	operations.

What	about		object		values	with	the		-		operator?	Similar	story	as	for		+		above:
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var	a	=	[3];

var	b	=	[1];

a	-	b;	//	2

Both		array		values	have	to	become		number	s,	but	they	end	up	first	being	coerced	to
	strings		(using	the	expected		toString()		serialization),	and	then	are	coerced	to		number	s,
for	the		-		subtraction	to	perform	on.

So,	is	implicit	coercion	of		string		and		number		values	the	ugly	evil	you've	always	heard
horror	stories	about?	I	don't	personally	think	so.

Compare		b	=	String(a)		(explicit)	to		b	=	a	+	""		(implicit).	I	think	cases	can	be	made	for
both	approaches	being	useful	in	your	code.	Certainly		b	=	a	+	""		is	quite	a	bit	more
common	in	JS	programs,	proving	its	own	utility	regardless	of	feelings	about	the	merits	or
hazards	of	implicit	coercion	in	general.

Implicitly:	Booleans	-->	Numbers

I	think	a	case	where	implicit	coercion	can	really	shine	is	in	simplifying	certain	types	of
complicated		boolean		logic	into	simple	numeric	addition.	Of	course,	this	is	not	a	general-
purpose	technique,	but	a	specific	solution	for	specific	cases.

Consider:

function	onlyOne(a,b,c)	{

				return	!!((a	&&	!b	&&	!c)	||

								(!a	&&	b	&&	!c)	||	(!a	&&	!b	&&	c));

}

var	a	=	true;

var	b	=	false;

onlyOne(	a,	b,	b	);				//	true

onlyOne(	b,	a,	b	);				//	true

onlyOne(	a,	b,	a	);				//	false

This		onlyOne(..)		utility	should	only	return		true		if	exactly	one	of	the	arguments	is		true		/
truthy.	It's	using	implicit	coercion	on	the	truthy	checks	and	explicit	coercion	on	the	others,
including	the	final	return	value.

But	what	if	we	needed	that	utility	to	be	able	to	handle	four,	five,	or	twenty	flags	in	the	same
way?	It's	pretty	difficult	to	imagine	implementing	code	that	would	handle	all	those
permutations	of	comparisons.
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But	here's	where	coercing	the		boolean		values	to		number	s	(	0		or		1	,	obviously)	can
greatly	help:

function	onlyOne()	{

				var	sum	=	0;

				for	(var	i=0;	i	<	arguments.length;	i++)	{

								//	skip	falsy	values.	same	as	treating

								//	them	as	0's,	but	avoids	NaN's.

								if	(arguments[i])	{

												sum	+=	arguments[i];

								}

				}

				return	sum	==	1;

}

var	a	=	true;

var	b	=	false;

onlyOne(	b,	a	);								//	true

onlyOne(	b,	a,	b,	b,	b	);				//	true

onlyOne(	b,	b	);								//	false

onlyOne(	b,	a,	b,	b,	b,	a	);				//	false

Note:	Of	course,	instead	of	the		for		loop	in		onlyOne(..)	,	you	could	more	tersely	use	the
ES5		reduce(..)		utility,	but	I	didn't	want	to	obscure	the	concepts.

What	we're	doing	here	is	relying	on	the		1		for		true	/truthy	coercions,	and	numerically
adding	them	all	up.		sum	+=	arguments[i]		uses	implicit	coercion	to	make	that	happen.	If	one
and	only	one	value	in	the		arguments		list	is		true	,	then	the	numeric	sum	will	be		1	,
otherwise	the	sum	will	not	be		1		and	thus	the	desired	condition	is	not	met.

We	could	of	course	do	this	with	explicit	coercion	instead:

function	onlyOne()	{

				var	sum	=	0;

				for	(var	i=0;	i	<	arguments.length;	i++)	{

								sum	+=	Number(	!!arguments[i]	);

				}

				return	sum	===	1;

}

We	first	use		!!arguments[i]		to	force	the	coercion	of	the	value	to		true		or		false	.	That's	so
you	could	pass	non-	boolean		values	in,	like		onlyOne(	"42",	0	)	,	and	it	would	still	work	as
expected	(otherwise	you'd	end	up	with		string		concatenation	and	the	logic	would	be
incorrect).
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Once	we're	sure	it's	a		boolean	,	we	do	another	explicit	coercion	with		Number(..)		to	make
sure	the	value	is		0		or		1	.

Is	the	explicit	coercion	form	of	this	utility	"better"?	It	does	avoid	the		NaN		trap	as	explained	in
the	code	comments.	But,	ultimately,	it	depends	on	your	needs.	I	personally	think	the	former
version,	relying	on	implicit	coercion	is	more	elegant	(if	you	won't	be	passing		undefined		or
	NaN	),	and	the	explicit	version	is	needlessly	more	verbose.

But	as	with	almost	everything	we're	discussing	here,	it's	a	judgment	call.

Note:	Regardless	of	implicit	or	explicit	approaches,	you	could	easily	make		onlyTwo(..)		or
	onlyFive(..)		variations	by	simply	changing	the	final	comparison	from		1	,	to		2		or		5	,
respectively.	That's	drastically	easier	than	adding	a	bunch	of		&&		and		||		expressions.	So,
generally,	coercion	is	very	helpful	in	this	case.

Implicitly:	*	-->	Boolean

Now,	let's	turn	our	attention	to	implicit	coercion	to		boolean		values,	as	it's	by	far	the	most
common	and	also	by	far	the	most	potentially	troublesome.

Remember,	implicit	coercion	is	what	kicks	in	when	you	use	a	value	in	such	a	way	that	it
forces	the	value	to	be	converted.	For	numeric	and		string		operations,	it's	fairly	easy	to	see
how	the	coercions	can	occur.

But,	what	sort	of	expression	operations	require/force	(implicitly)	a		boolean		coercion?

1.	 The	test	expression	in	an		if	(..)		statement.
2.	 The	test	expression	(second	clause)	in	a		for	(	..	;	..	;	..	)		header.
3.	 The	test	expression	in		while	(..)		and		do..while(..)		loops.
4.	 The	test	expression	(first	clause)	in		?	:		ternary	expressions.
5.	 The	left-hand	operand	(which	serves	as	a	test	expression	--	see	below!)	to	the		||	

("logical	or")	and		&&		("logical	and")	operators.

Any	value	used	in	these	contexts	that	is	not	already	a		boolean		will	be	implicitly	coerced	to	a
	boolean		using	the	rules	of	the		ToBoolean		abstract	operation	covered	earlier	in	this	chapter.

Let's	look	at	some	examples:
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var	a	=	42;

var	b	=	"abc";

var	c;

var	d	=	null;

if	(a)	{

				console.log(	"yep"	);								//	yep

}

while	(c)	{

				console.log(	"nope,	never	runs"	);

}

c	=	d	?	a	:	b;

c;																				//	"abc"

if	((a	&&	d)	||	c)	{

				console.log(	"yep"	);								//	yep

}

In	all	these	contexts,	the	non-	boolean		values	are	implicitly	coerced	to	their		boolean	
equivalents	to	make	the	test	decisions.

Operators		||		and		&&	

It's	quite	likely	that	you	have	seen	the		||		("logical	or")	and		&&		("logical	and")	operators	in
most	or	all	other	languages	you've	used.	So	it'd	be	natural	to	assume	that	they	work
basically	the	same	in	JavaScript	as	in	other	similar	languages.

There's	some	very	little	known,	but	very	important,	nuance	here.

In	fact,	I	would	argue	these	operators	shouldn't	even	be	called	"logical	_	operators",	as	that
name	is	incomplete	in	describing	what	they	do.	If	I	were	to	give	them	a	more	accurate	(if
more	clumsy)	name,	I'd	call	them	"selector	operators,"	or	more	completely,	"operand
selector	operators."

Why?	Because	they	don't	actually	result	in	a	logic	value	(aka		boolean	)	in	JavaScript,	as
they	do	in	some	other	languages.

So	what	do	they	result	in?	They	result	in	the	value	of	one	(and	only	one)	of	their	two
operands.	In	other	words,	they	select	one	of	the	two	operand's	values.

Quoting	the	ES5	spec	from	section	11.11:

The	value	produced	by	a	&&	or	||	operator	is	not	necessarily	of	type	Boolean.	The	value
produced	will	always	be	the	value	of	one	of	the	two	operand	expressions.

Coercion

227



Let's	illustrate:

var	a	=	42;

var	b	=	"abc";

var	c	=	null;

a	||	b;								//	42

a	&&	b;								//	"abc"

c	||	b;								//	"abc"

c	&&	b;								//	null

Wait,	what!?	Think	about	that.	In	languages	like	C	and	PHP,	those	expressions	result	in
	true		or		false	,	but	in	JS	(and	Python	and	Ruby,	for	that	matter!),	the	result	comes	from
the	values	themselves.

Both		||		and		&&		operators	perform	a		boolean		test	on	the	first	operand	(	a		or		c	).	If	the
operand	is	not	already		boolean		(as	it's	not,	here),	a	normal		ToBoolean		coercion	occurs,	so
that	the	test	can	be	performed.

For	the		||		operator,	if	the	test	is		true	,	the		||		expression	results	in	the	value	of	the	first
operand	(	a		or		c	).	If	the	test	is		false	,	the		||		expression	results	in	the	value	of	the
second	operand	(	b	).

Inversely,	for	the		&&		operator,	if	the	test	is		true	,	the		&&		expression	results	in	the	value	of
the	second	operand	(	b	).	If	the	test	is		false	,	the		&&		expression	results	in	the	value	of	the
first	operand	(	a		or		c	).

The	result	of	a		||		or		&&		expression	is	always	the	underlying	value	of	one	of	the	operands,
not	the	(possibly	coerced)	result	of	the	test.	In		c	&&	b	,		c		is		null	,	and	thus	falsy.	But	the
	&&		expression	itself	results	in		null		(the	value	in		c	),	not	in	the	coerced		false		used	in
the	test.

Do	you	see	how	these	operators	act	as	"operand	selectors",	now?

Another	way	of	thinking	about	these	operators:

a	||	b;

//	roughly	equivalent	to:

a	?	a	:	b;

a	&&	b;

//	roughly	equivalent	to:

a	?	b	:	a;
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Note:	I	call		a	||	b		"roughly	equivalent"	to		a	?	a	:	b		because	the	outcome	is	identical,	but
there's	a	nuanced	difference.	In		a	?	a	:	b	,	if		a		was	a	more	complex	expression	(like	for
instance	one	that	might	have	side	effects	like	calling	a		function	,	etc.),	then	the		a	
expression	would	possibly	be	evaluated	twice	(if	the	first	evaluation	was	truthy).	By	contrast,
for		a	||	b	,	the		a		expression	is	evaluated	only	once,	and	that	value	is	used	both	for	the
coercive	test	as	well	as	the	result	value	(if	appropriate).	The	same	nuance	applies	to	the		a
&&	b		and		a	?	b	:	a		expressions.

An	extremely	common	and	helpful	usage	of	this	behavior,	which	there's	a	good	chance	you
may	have	used	before	and	not	fully	understood,	is:

function	foo(a,b)	{

				a	=	a	||	"hello";

				b	=	b	||	"world";

				console.log(	a	+	"	"	+	b	);

}

foo();																				//	"hello	world"

foo(	"yeah",	"yeah!"	);				//	"yeah	yeah!"

The		a	=	a	||	"hello"		idiom	(sometimes	said	to	be	JavaScript's	version	of	the	C#	"null
coalescing	operator")	acts	to	test		a		and	if	it	has	no	value	(or	only	an	undesired	falsy	value),
provides	a	backup	default	value	(	"hello"	).

Be	careful,	though!

foo(	"That's	it!",	""	);	//	"That's	it!	world"	<--	Oops!

See	the	problem?		""		as	the	second	argument	is	a	falsy	value	(see		ToBoolean		earlier	in
this	chapter),	so	the		b	=	b	||	"world"		test	fails,	and	the		"world"		default	value	is
substituted,	even	though	the	intent	probably	was	to	have	the	explicitly	passed		""		be	the
value	assigned	to		b	.

This		||		idiom	is	extremely	common,	and	quite	helpful,	but	you	have	to	use	it	only	in	cases
where	all	falsy	values	should	be	skipped.	Otherwise,	you'll	need	to	be	more	explicit	in	your
test,	and	probably	use	a		?	:		ternary	instead.

This	default	value	assignment	idiom	is	so	common	(and	useful!)	that	even	those	who
publicly	and	vehemently	decry	JavaScript	coercion	often	use	it	in	their	own	code!

What	about		&&	?
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There's	another	idiom	that	is	quite	a	bit	less	commonly	authored	manually,	but	which	is	used
by	JS	minifiers	frequently.	The		&&		operator	"selects"	the	second	operand	if	and	only	if	the
first	operand	tests	as	truthy,	and	this	usage	is	sometimes	called	the	"guard	operator"	(also
see	"Short	Circuited"	in	Chapter	5)	--	the	first	expression	test	"guards"	the	second
expression:

function	foo()	{

				console.log(	a	);

}

var	a	=	42;

a	&&	foo();	//	42

	foo()		gets	called	only	because		a		tests	as	truthy.	If	that	test	failed,	this		a	&&	foo()	
expression	statement	would	just	silently	stop	--	this	is	known	as	"short	circuiting"	--	and
never	call		foo()	.

Again,	it's	not	nearly	as	common	for	people	to	author	such	things.	Usually,	they'd	do		if	(a)
{	foo();	}		instead.	But	JS	minifiers	choose		a	&&	foo()		because	it's	much	shorter.	So,
now,	if	you	ever	have	to	decipher	such	code,	you'll	know	what	it's	doing	and	why.

OK,	so		||		and		&&		have	some	neat	tricks	up	their	sleeve,	as	long	as	you're	willing	to	allow
the	implicit	coercion	into	the	mix.

Note:	Both	the		a	=	b	||	"something"		and		a	&&	b()		idioms	rely	on	short	circuiting	behavior,
which	we	cover	in	more	detail	in	Chapter	5.

The	fact	that	these	operators	don't	actually	result	in		true		and		false		is	possibly	messing
with	your	head	a	little	bit	by	now.	You're	probably	wondering	how	all	your		if		statements
and		for		loops	have	been	working,	if	they've	included	compound	logical	expressions	like		a
&&	(b	||	c)	.

Don't	worry!	The	sky	is	not	falling.	Your	code	is	(probably)	just	fine.	It's	just	that	you	probably
never	realized	before	that	there	was	an	implicit	coercion	to		boolean		going	on	after	the
compound	expression	was	evaluated.

Consider:
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var	a	=	42;

var	b	=	null;

var	c	=	"foo";

if	(a	&&	(b	||	c))	{

				console.log(	"yep"	);

}

This	code	still	works	the	way	you	always	thought	it	did,	except	for	one	subtle	extra	detail.
The		a	&&	(b	||	c)		expression	actually	results	in		"foo"	,	not		true	.	So,	the		if		statement
then	forces	the		"foo"		value	to	coerce	to	a		boolean	,	which	of	course	will	be		true	.

See?	No	reason	to	panic.	Your	code	is	probably	still	safe.	But	now	you	know	more	about
how	it	does	what	it	does.

And	now	you	also	realize	that	such	code	is	using	implicit	coercion.	If	you're	in	the	"avoid
(implicit)	coercion	camp"	still,	you're	going	to	need	to	go	back	and	make	all	of	those	tests
explicit:

if	(!!a	&&	(!!b	||	!!c))	{

				console.log(	"yep"	);

}

Good	luck	with	that!	...	Sorry,	just	teasing.

Symbol	Coercion

Up	to	this	point,	there's	been	almost	no	observable	outcome	difference	between	explicit	and
implicit	coercion	--	only	the	readability	of	code	has	been	at	stake.

But	ES6	Symbols	introduce	a	gotcha	into	the	coercion	system	that	we	need	to	discuss
briefly.	For	reasons	that	go	well	beyond	the	scope	of	what	we'll	discuss	in	this	book,	explicit
coercion	of	a		symbol		to	a		string		is	allowed,	but	implicit	coercion	of	the	same	is	disallowed
and	throws	an	error.

Consider:

var	s1	=	Symbol(	"cool"	);

String(	s1	);																				//	"Symbol(cool)"

var	s2	=	Symbol(	"not	cool"	);

s2	+	"";																								//	TypeError
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	symbol		values	cannot	coerce	to		number		at	all	(throws	an	error	either	way),	but	strangely
they	can	both	explicitly	and	implicitly	coerce	to		boolean		(always		true	).

Consistency	is	always	easier	to	learn,	and	exceptions	are	never	fun	to	deal	with,	but	we	just
need	to	be	careful	around	the	new	ES6		symbol		values	and	how	we	coerce	them.

The	good	news:	it's	probably	going	to	be	exceedingly	rare	for	you	to	need	to	coerce	a
	symbol		value.	The	way	they're	typically	used	(see	Chapter	3)	will	probably	not	call	for
coercion	on	a	normal	basis.

Loose	Equals	vs.	Strict	Equals
Loose	equals	is	the		==		operator,	and	strict	equals	is	the		===		operator.	Both	operators	are
used	for	comparing	two	values	for	"equality,"	but	the	"loose"	vs.	"strict"	indicates	a	very
important	difference	in	behavior	between	the	two,	specifically	in	how	they	decide	"equality."

A	very	common	misconception	about	these	two	operators	is:	"	==		checks	values	for	equality
and		===		checks	both	values	and	types	for	equality."	While	that	sounds	nice	and
reasonable,	it's	inaccurate.	Countless	well-respected	JavaScript	books	and	blogs	have	said
exactly	that,	but	unfortunately	they're	all	wrong.

The	correct	description	is:	"	==		allows	coercion	in	the	equality	comparison	and		===	
disallows	coercion."

Equality	Performance

Stop	and	think	about	the	difference	between	the	first	(inaccurate)	explanation	and	this
second	(accurate)	one.

In	the	first	explanation,	it	seems	obvious	that		===		is	doing	more	work	than		==	,	because	it
has	to	also	check	the	type.	In	the	second	explanation,		==		is	the	one	doing	more	work
because	it	has	to	follow	through	the	steps	of	coercion	if	the	types	are	different.

Don't	fall	into	the	trap,	as	many	have,	of	thinking	this	has	anything	to	do	with	performance,
though,	as	if		==		is	going	to	be	slower	than		===		in	any	relevant	way.	While	it's	measurable
that	coercion	does	take	a	little	bit	of	processing	time,	it's	mere	microseconds	(yes,	that's
millionths	of	a	second!).

If	you're	comparing	two	values	of	the	same	types,		==		and		===		use	the	identical	algorithm,
and	so	other	than	minor	differences	in	engine	implementation,	they	should	do	the	same
work.
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If	you're	comparing	two	values	of	different	types,	the	performance	isn't	the	important	factor.
What	you	should	be	asking	yourself	is:	when	comparing	these	two	values,	do	I	want
coercion	or	not?

If	you	want	coercion,	use		==		loose	equality,	but	if	you	don't	want	coercion,	use		===		strict
equality.

Note:	The	implication	here	then	is	that	both		==		and		===		check	the	types	of	their
operands.	The	difference	is	in	how	they	respond	if	the	types	don't	match.

Abstract	Equality

The		==		operator's	behavior	is	defined	as	"The	Abstract	Equality	Comparison	Algorithm"	in
section	11.9.3	of	the	ES5	spec.	What's	listed	there	is	a	comprehensive	but	simple	algorithm
that	explicitly	states	every	possible	combination	of	types,	and	how	the	coercions	(if
necessary)	should	happen	for	each	combination.

Warning:	When	(implicit)	coercion	is	maligned	as	being	too	complicated	and	too	flawed	to
be	a	useful	good	part,	it	is	these	rules	of	"abstract	equality"	that	are	being	condemned.
Generally,	they	are	said	to	be	too	complex	and	too	unintuitive	for	developers	to	practically
learn	and	use,	and	that	they	are	prone	more	to	causing	bugs	in	JS	programs	than	to
enabling	greater	code	readability.	I	believe	this	is	a	flawed	premise	--	that	you	readers	are
competent	developers	who	write	(and	read	and	understand!)	algorithms	(aka	code)	all	day
long.	So,	what	follows	is	a	plain	exposition	of	the	"abstract	equality"	in	simple	terms.	But	I
implore	you	to	also	read	the	ES5	spec	section	11.9.3.	I	think	you'll	be	surprised	at	just	how
reasonable	it	is.

Basically,	the	first	clause	(11.9.3.1)	says,	if	the	two	values	being	compared	are	of	the	same
type,	they	are	simply	and	naturally	compared	via	Identity	as	you'd	expect.	For	example,		42	
is	only	equal	to		42	,	and		"abc"		is	only	equal	to		"abc"	.

Some	minor	exceptions	to	normal	expectation	to	be	aware	of:

	NaN		is	never	equal	to	itself	(see	Chapter	2)
	+0		and		-0		are	equal	to	each	other	(see	Chapter	2)

The	final	provision	in	clause	11.9.3.1	is	for		==		loose	equality	comparison	with		object	s
(including		function	s	and		array	s).	Two	such	values	are	only	equal	if	they	are	both
references	to	the	exact	same	value.	No	coercion	occurs	here.

Note:	The		===		strict	equality	comparison	is	defined	identically	to	11.9.3.1,	including	the
provision	about	two		object		values.	It's	a	very	little	known	fact	that		==		and		===		behave
identically	in	the	case	where	two		object	s	are	being	compared!
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The	rest	of	the	algorithm	in	11.9.3	specifies	that	if	you	use		==		loose	equality	to	compare
two	values	of	different	types,	one	or	both	of	the	values	will	need	to	be	implicitly	coerced.	This
coercion	happens	so	that	both	values	eventually	end	up	as	the	same	type,	which	can	then
directly	be	compared	for	equality	using	simple	value	Identity.

Note:	The		!=		loose	not-equality	operation	is	defined	exactly	as	you'd	expect,	in	that	it's
literally	the		==		operation	comparison	performed	in	its	entirety,	then	the	negation	of	the
result.	The	same	goes	for	the		!==		strict	not-equality	operation.

Comparing:		string	s	to		number	s

To	illustrate		==		coercion,	let's	first	build	off	the		string		and		number		examples	earlier	in
this	chapter:

var	a	=	42;

var	b	=	"42";

a	===	b;				//	false

a	==	b;								//	true

As	we'd	expect,		a	===	b		fails,	because	no	coercion	is	allowed,	and	indeed	the		42		and
	"42"		values	are	different.

However,	the	second	comparison		a	==	b		uses	loose	equality,	which	means	that	if	the	types
happen	to	be	different,	the	comparison	algorithm	will	perform	implicit	coercion	on	one	or
both	values.

But	exactly	what	kind	of	coercion	happens	here?	Does	the		a		value	of		42		become	a
	string	,	or	does	the		b		value	of		"42"		become	a		number	?

In	the	ES5	spec,	clauses	11.9.3.4-5	say:

1.	 If	Type(x)	is	Number	and	Type(y)	is	String,	return	the	result	of	the	comparison	x	==
ToNumber(y).

2.	 If	Type(x)	is	String	and	Type(y)	is	Number,	return	the	result	of	the	comparison
ToNumber(x)	==	y.

Warning:	The	spec	uses		Number		and		String		as	the	formal	names	for	the	types,	while	this
book	prefers		number		and		string		for	the	primitive	types.	Do	not	let	the	capitalization	of
	Number		in	the	spec	confuse	you	for	the		Number()		native	function.	For	our	purposes,	the
capitalization	of	the	type	name	is	irrelevant	--	they	have	basically	the	same	meaning.
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Clearly,	the	spec	says	the		"42"		value	is	coerced	to	a		number		for	the	comparison.	The	how
of	that	coercion	has	already	been	covered	earlier,	specifically	with	the		ToNumber		abstract
operation.	In	this	case,	it's	quite	obvious	then	that	the	resulting	two		42		values	are	equal.

Comparing:	anything	to		boolean	

One	of	the	biggest	gotchas	with	the	implicit	coercion	of		==		loose	equality	pops	up	when
you	try	to	compare	a	value	directly	to		true		or		false	.

Consider:

var	a	=	"42";

var	b	=	true;

a	==	b;				//	false

Wait,	what	happened	here!?	We	know	that		"42"		is	a	truthy	value	(see	earlier	in	this
chapter).	So,	how	come	it's	not		==		loose	equal	to		true	?

The	reason	is	both	simple	and	deceptively	tricky.	It's	so	easy	to	misunderstand,	many	JS
developers	never	pay	close	enough	attention	to	fully	grasp	it.

Let's	again	quote	the	spec,	clauses	11.9.3.6-7:

1.	 If	Type(x)	is	Boolean,	return	the	result	of	the	comparison	ToNumber(x)	==	y.
2.	 If	Type(y)	is	Boolean,	return	the	result	of	the	comparison	x	==	ToNumber(y).

Let's	break	that	down.	First:

var	x	=	true;

var	y	=	"42";

x	==	y;	//	false

The		Type(x)		is	indeed		Boolean	,	so	it	performs		ToNumber(x)	,	which	coerces		true		to		1	.
Now,		1	==	"42"		is	evaluated.	The	types	are	still	different,	so	(essentially	recursively)	we
reconsult	the	algorithm,	which	just	as	above	will	coerce		"42"		to		42	,	and		1	==	42		is
clearly		false	.

Reverse	it,	and	we	still	get	the	same	outcome:

var	x	=	"42";

var	y	=	false;

x	==	y;	//	false
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The		Type(y)		is		Boolean		this	time,	so		ToNumber(y)		yields		0	.		"42"	==	0		recursively
becomes		42	==	0	,	which	is	of	course		false	.

In	other	words,	the	value		"42"		is	neither		==	true		nor		==	false	.	At	first,	that	statement
might	seem	crazy.	How	can	a	value	be	neither	truthy	nor	falsy?

But	that's	the	problem!	You're	asking	the	wrong	question,	entirely.	It's	not	your	fault,	really.
Your	brain	is	tricking	you.

	"42"		is	indeed	truthy,	but		"42"	==	true		is	not	performing	a	boolean	test/coercion	at	all,
no	matter	what	your	brain	says.		"42"		is	not	being	coerced	to	a		boolean		(	true	),	but
instead		true		is	being	coerced	to	a		1	,	and	then		"42"		is	being	coerced	to		42	.

Whether	we	like	it	or	not,		ToBoolean		is	not	even	involved	here,	so	the	truthiness	or	falsiness
of		"42"		is	irrelevant	to	the		==		operation!

What	is	relevant	is	to	understand	how	the		==		comparison	algorithm	behaves	with	all	the
different	type	combinations.	As	it	regards	a		boolean		value	on	either	side	of	the		==	,	a
	boolean		always	coerces	to	a		number		first.

If	that	seems	strange	to	you,	you're	not	alone.	I	personally	would	recommend	to	never,	ever,
under	any	circumstances,	use		==	true		or		==	false	.	Ever.

But	remember,	I'm	only	talking	about		==		here.		===	true		and		===	false		wouldn't	allow	the
coercion,	so	they're	safe	from	this	hidden		ToNumber		coercion.

Consider:
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var	a	=	"42";

//	bad	(will	fail!):

if	(a	==	true)	{

				//	..

}

//	also	bad	(will	fail!):

if	(a	===	true)	{

				//	..

}

//	good	enough	(works	implicitly):

if	(a)	{

				//	..

}

//	better	(works	explicitly):

if	(!!a)	{

				//	..

}

//	also	great	(works	explicitly):

if	(Boolean(	a	))	{

				//	..

}

If	you	avoid	ever	using		==	true		or		==	false		(aka	loose	equality	with		boolean	s)	in	your
code,	you'll	never	have	to	worry	about	this	truthiness/falsiness	mental	gotcha.

Comparing:		null	s	to		undefined	s

Another	example	of	implicit	coercion	can	be	seen	with		==		loose	equality	between		null	
and		undefined		values.	Yet	again	quoting	the	ES5	spec,	clauses	11.9.3.2-3:

1.	 If	x	is	null	and	y	is	undefined,	return	true.
2.	 If	x	is	undefined	and	y	is	null,	return	true.

	null		and		undefined	,	when	compared	with		==		loose	equality,	equate	to	(aka	coerce	to)
each	other	(as	well	as	themselves,	obviously),	and	no	other	values	in	the	entire	language.

What	this	means	is	that		null		and		undefined		can	be	treated	as	indistinguishable	for
comparison	purposes,	if	you	use	the		==		loose	equality	operator	to	allow	their	mutual
implicit	coercion.
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var	a	=	null;

var	b;

a	==	b;								//	true

a	==	null;				//	true

b	==	null;				//	true

a	==	false;				//	false

b	==	false;				//	false

a	==	"";				//	false

b	==	"";				//	false

a	==	0;								//	false

b	==	0;								//	false

The	coercion	between		null		and		undefined		is	safe	and	predictable,	and	no	other	values
can	give	false	positives	in	such	a	check.	I	recommend	using	this	coercion	to	allow		null	
and		undefined		to	be	indistinguishable	and	thus	treated	as	the	same	value.

For	example:

var	a	=	doSomething();

if	(a	==	null)	{

				//	..

}

The		a	==	null		check	will	pass	only	if		doSomething()		returns	either		null		or		undefined	,
and	will	fail	with	any	other	value,	even	other	falsy	values	like		0	,		false	,	and		""	.

The	explicit	form	of	the	check,	which	disallows	any	such	coercion,	is	(I	think)	unnecessarily
much	uglier	(and	perhaps	a	tiny	bit	less	performant!):

var	a	=	doSomething();

if	(a	===	undefined	||	a	===	null)	{

				//	..

}

In	my	opinion,	the	form		a	==	null		is	yet	another	example	where	implicit	coercion	improves
code	readability,	but	does	so	in	a	reliably	safe	way.

Comparing:		object	s	to	non-	object	s

If	an		object	/	function	/	array		is	compared	to	a	simple	scalar	primitive	(	string	,		number	,
or		boolean	),	the	ES5	spec	says	in	clauses	11.9.3.8-9:
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1.	 If	Type(x)	is	either	String	or	Number	and	Type(y)	is	Object,	return	the	result	of	the
comparison	x	==	ToPrimitive(y).

2.	 If	Type(x)	is	Object	and	Type(y)	is	either	String	or	Number,	return	the	result	of	the
comparison	ToPrimitive(x)	==	y.

Note:	You	may	notice	that	these	clauses	only	mention		String		and		Number	,	but	not
	Boolean	.	That's	because,	as	quoted	earlier,	clauses	11.9.3.6-7	take	care	of	coercing	any
	Boolean		operand	presented	to	a		Number		first.

Consider:

var	a	=	42;

var	b	=	[	42	];

a	==	b;				//	true

The		[	42	]		value	has	its		ToPrimitive		abstract	operation	called	(see	the	"Abstract	Value
Operations"	section	earlier),	which	results	in	the		"42"		value.	From	there,	it's	just		42	==
"42"	,	which	as	we've	already	covered	becomes		42	==	42	,	so		a		and		b		are	found	to	be
coercively	equal.

Tip:	All	the	quirks	of	the		ToPrimitive		abstract	operation	that	we	discussed	earlier	in	this
chapter	(	toString()	,		valueOf()	)	apply	here	as	you'd	expect.	This	can	be	quite	useful	if
you	have	a	complex	data	structure	that	you	want	to	define	a	custom		valueOf()		method	on,
to	provide	a	simple	value	for	equality	comparison	purposes.

In	Chapter	3,	we	covered	"unboxing,"	where	an		object		wrapper	around	a	primitive	value
(like	from		new	String("abc")	,	for	instance)	is	unwrapped,	and	the	underlying	primitive	value
(	"abc"	)	is	returned.	This	behavior	is	related	to	the		ToPrimitive		coercion	in	the		==	
algorithm:

var	a	=	"abc";

var	b	=	Object(	a	);				//	same	as	`new	String(	a	)`

a	===	b;																//	false

a	==	b;																				//	true

	a	==	b		is		true		because		b		is	coerced	(aka	"unboxed,"	unwrapped)	via		ToPrimitive		to
its	underlying		"abc"		simple	scalar	primitive	value,	which	is	the	same	as	the	value	in		a	.

There	are	some	values	where	this	is	not	the	case,	though,	because	of	other	overriding	rules
in	the		==		algorithm.	Consider:
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var	a	=	null;

var	b	=	Object(	a	);				//	same	as	`Object()`

a	==	b;																				//	false

var	c	=	undefined;

var	d	=	Object(	c	);				//	same	as	`Object()`

c	==	d;																				//	false

var	e	=	NaN;

var	f	=	Object(	e	);				//	same	as	`new	Number(	e	)`

e	==	f;																				//	false

The		null		and		undefined		values	cannot	be	boxed	--	they	have	no	object	wrapper
equivalent	--	so		Object(null)		is	just	like		Object()		in	that	both	just	produce	a	normal
object.

	NaN		can	be	boxed	to	its		Number		object	wrapper	equivalent,	but	when		==		causes	an
unboxing,	the		NaN	==	NaN		comparison	fails	because		NaN		is	never	equal	to	itself	(see
Chapter	2).

Edge	Cases

Now	that	we've	thoroughly	examined	how	the	implicit	coercion	of		==		loose	equality	works
(in	both	sensible	and	surprising	ways),	let's	try	to	call	out	the	worst,	craziest	corner	cases	so
we	can	see	what	we	need	to	avoid	to	not	get	bitten	with	coercion	bugs.

First,	let's	examine	how	modifying	the	built-in	native	prototypes	can	produce	crazy	results:

A	Number	By	Any	Other	Value	Would...

Number.prototype.valueOf	=	function()	{

				return	3;

};

new	Number(	2	)	==	3;				//	true

Warning:		2	==	3		would	not	have	fallen	into	this	trap,	because	neither		2		nor		3		would
have	invoked	the	built-in		Number.prototype.valueOf()		method	because	both	are	already
primitive		number		values	and	can	be	compared	directly.	However,		new	Number(2)		must	go
through	the		ToPrimitive		coercion,	and	thus	invoke		valueOf()	.

Evil,	huh?	Of	course	it	is.	No	one	should	ever	do	such	a	thing.	The	fact	that	you	can	do	this
is	sometimes	used	as	a	criticism	of	coercion	and		==	.	But	that's	misdirected	frustration.
JavaScript	is	not	bad	because	you	can	do	such	things,	a	developer	is	bad	if	they	do	such
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things.	Don't	fall	into	the	"my	programming	language	should	protect	me	from	myself"	fallacy.

Next,	let's	consider	another	tricky	example,	which	takes	the	evil	from	the	previous	example
to	another	level:

if	(a	==	2	&&	a	==	3)	{

				//	..

}

You	might	think	this	would	be	impossible,	because		a		could	never	be	equal	to	both		2		and
	3		at	the	same	time.	But	"at	the	same	time"	is	inaccurate,	since	the	first	expression		a	==	2	
happens	strictly	before		a	==	3	.

So,	what	if	we	make		a.valueOf()		have	side	effects	each	time	it's	called,	such	that	the	first
time	it	returns		2		and	the	second	time	it's	called	it	returns		3	?	Pretty	easy:

var	i	=	2;

Number.prototype.valueOf	=	function()	{

				return	i++;

};

var	a	=	new	Number(	42	);

if	(a	==	2	&&	a	==	3)	{

				console.log(	"Yep,	this	happened."	);

}

Again,	these	are	evil	tricks.	Don't	do	them.	But	also	don't	use	them	as	complaints	against
coercion.	Potential	abuses	of	a	mechanism	are	not	sufficient	evidence	to	condemn	the
mechanism.	Just	avoid	these	crazy	tricks,	and	stick	only	with	valid	and	proper	usage	of
coercion.

False-y	Comparisons

The	most	common	complaint	against	implicit	coercion	in		==		comparisons	comes	from	how
falsy	values	behave	surprisingly	when	compared	to	each	other.

To	illustrate,	let's	look	at	a	list	of	the	corner-cases	around	falsy	value	comparisons,	to	see
which	ones	are	reasonable	and	which	are	troublesome:
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"0"	==	null;												//	false

"0"	==	undefined;								//	false

"0"	==	false;												//	true	--	UH	OH!

"0"	==	NaN;																//	false

"0"	==	0;																//	true

"0"	==	"";																//	false

false	==	null;												//	false

false	==	undefined;								//	false

false	==	NaN;												//	false

false	==	0;																//	true	--	UH	OH!

false	==	"";												//	true	--	UH	OH!

false	==	[];												//	true	--	UH	OH!

false	==	{};												//	false

""	==	null;																//	false

""	==	undefined;								//	false

""	==	NaN;																//	false

""	==	0;																//	true	--	UH	OH!

""	==	[];																//	true	--	UH	OH!

""	==	{};																//	false

0	==	null;																//	false

0	==	undefined;												//	false

0	==	NaN;																//	false

0	==	[];																//	true	--	UH	OH!

0	==	{};																//	false

In	this	list	of	24	comparisons,	17	of	them	are	quite	reasonable	and	predictable.	For	example,
we	know	that		""		and		NaN		are	not	at	all	equatable	values,	and	indeed	they	don't	coerce	to
be	loose	equals,	whereas		"0"		and		0		are	reasonably	equatable	and	do	coerce	as	loose
equals.

However,	seven	of	the	comparisons	are	marked	with	"UH	OH!"	because	as	false	positives,
they	are	much	more	likely	gotchas	that	could	trip	you	up.		""		and		0		are	definitely	distinctly
different	values,	and	it's	rare	you'd	want	to	treat	them	as	equatable,	so	their	mutual	coercion
is	troublesome.	Note	that	there	aren't	any	false	negatives	here.

The	Crazy	Ones

We	don't	have	to	stop	there,	though.	We	can	keep	looking	for	even	more	troublesome
coercions:

[]	==	![];								//	true
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Oooo,	that	seems	at	a	higher	level	of	crazy,	right!?	Your	brain	may	likely	trick	you	that	you're
comparing	a	truthy	to	a	falsy	value,	so	the		true		result	is	surprising,	as	we	know	a	value
can	never	be	truthy	and	falsy	at	the	same	time!

But	that's	not	what's	actually	happening.	Let's	break	it	down.	What	do	we	know	about	the		!	
unary	operator?	It	explicitly	coerces	to	a		boolean		using	the		ToBoolean		rules	(and	it	also
flips	the	parity).	So	before		[]	==	![]		is	even	processed,	it's	actually	already	translated	to
	[]	==	false	.	We	already	saw	that	form	in	our	above	list	(	false	==	[]	),	so	its	surprise
result	is	not	new	to	us.

How	about	other	corner	cases?

2	==	[2];								//	true

""	==	[null];				//	true

As	we	said	earlier	in	our		ToNumber		discussion,	the	right-hand	side		[2]		and		[null]		values
will	go	through	a		ToPrimitive		coercion	so	they	can	be	more	readily	compared	to	the	simple
primitives	(	2		and		""	,	respectively)	on	the	left-hand	side.	Since	the		valueOf()		for		array	
values	just	returns	the		array		itself,	coercion	falls	to	stringifying	the		array	.

	[2]		will	become		"2"	,	which	then	is		ToNumber		coerced	to		2		for	the	right-hand	side	value
in	the	first	comparison.		[null]		just	straight	becomes		""	.

So,		2	==	2		and		""	==	""		are	completely	understandable.

If	your	instinct	is	to	still	dislike	these	results,	your	frustration	is	not	actually	with	coercion	like
you	probably	think	it	is.	It's	actually	a	complaint	against	the	default		array		values'
	ToPrimitive		behavior	of	coercing	to	a		string		value.	More	likely,	you'd	just	wish	that
	[2].toString()		didn't	return		"2"	,	or	that		[null].toString()		didn't	return		""	.

But	what	exactly	should	these		string		coercions	result	in?	I	can't	really	think	of	any	other
appropriate		string		coercion	of		[2]		than		"2"	,	except	perhaps		"[2]"		--	but	that	could	be
very	strange	in	other	contexts!

You	could	rightly	make	the	case	that	since		String(null)		becomes		"null"	,	then
	String([null])		should	also	become		"null"	.	That's	a	reasonable	assertion.	So,	that's	the
real	culprit.

Implicit	coercion	itself	isn't	the	evil	here.	Even	an	explicit	coercion	of		[null]		to	a		string	
results	in		""	.	What's	at	odds	is	whether	it's	sensible	at	all	for		array		values	to	stringify	to
the	equivalent	of	their	contents,	and	exactly	how	that	happens.	So,	direct	your	frustration	at
the	rules	for		String(	[..]	)	,	because	that's	where	the	craziness	stems	from.	Perhaps	there
should	be	no	stringification	coercion	of		array	s	at	all?	But	that	would	have	lots	of	other
downsides	in	other	parts	of	the	language.
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Another	famously	cited	gotcha:

0	==	"\n";								//	true

As	we	discussed	earlier	with	empty		""	,		"\n"		(or		"	"		or	any	other	whitespace
combination)	is	coerced	via		ToNumber	,	and	the	result	is		0	.	What	other		number		value
would	you	expect	whitespace	to	coerce	to?	Does	it	bother	you	that	explicit		Number("	")	
yields		0	?

Really	the	only	other	reasonable		number		value	that	empty	strings	or	whitespace	strings
could	coerce	to	is	the		NaN	.	But	would	that	really	be	better?	The	comparison		"	"	==	NaN	
would	of	course	fail,	but	it's	unclear	that	we'd	have	really	fixed	any	of	the	underlying
concerns.

The	chances	that	a	real-world	JS	program	fails	because		0	==	"\n"		are	awfully	rare,	and
such	corner	cases	are	easy	to	avoid.

Type	conversions	always	have	corner	cases,	in	any	language	--	nothing	specific	to	coercion.
The	issues	here	are	about	second-guessing	a	certain	set	of	corner	cases	(and	perhaps
rightly	so!?),	but	that's	not	a	salient	argument	against	the	overall	coercion	mechanism.

Bottom	line:	almost	any	crazy	coercion	between	normal	values	that	you're	likely	to	run	into
(aside	from	intentionally	tricky		valueOf()		or		toString()		hacks	as	earlier)	will	boil	down	to
the	short	seven-item	list	of	gotcha	coercions	we've	identified	above.

To	contrast	against	these	24	likely	suspects	for	coercion	gotchas,	consider	another	list	like
this:

42	==	"43";																												//	false

"foo"	==	42;																								//	false

"true"	==	true;																								//	false

42	==	"42";																												//	true

"foo"	==	[	"foo"	];																				//	true

In	these	nonfalsy,	noncorner	cases	(and	there	are	literally	an	infinite	number	of	comparisons
we	could	put	on	this	list),	the	coercion	results	are	totally	safe,	reasonable,	and	explainable.

Sanity	Check

OK,	we've	definitely	found	some	crazy	stuff	when	we've	looked	deeply	into	implicit	coercion.
No	wonder	that	most	developers	claim	coercion	is	evil	and	should	be	avoided,	right!?

But	let's	take	a	step	back	and	do	a	sanity	check.
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By	way	of	magnitude	comparison,	we	have	a	list	of	seven	troublesome	gotcha	coercions,	but
we	have	another	list	of	(at	least	17,	but	actually	infinite)	coercions	that	are	totally	sane	and
explainable.

If	you're	looking	for	a	textbook	example	of	"throwing	the	baby	out	with	the	bathwater,"	this	is
it:	discarding	the	entirety	of	coercion	(the	infinitely	large	list	of	safe	and	useful	behaviors)
because	of	a	list	of	literally	just	seven	gotchas.

The	more	prudent	reaction	would	be	to	ask,	"how	can	I	use	the	countless	good	parts	of
coercion,	but	avoid	the	few	bad	parts?"

Let's	look	again	at	the	bad	list:

"0"	==	false;												//	true	--	UH	OH!

false	==	0;																//	true	--	UH	OH!

false	==	"";												//	true	--	UH	OH!

false	==	[];												//	true	--	UH	OH!

""	==	0;																//	true	--	UH	OH!

""	==	[];																//	true	--	UH	OH!

0	==	[];																//	true	--	UH	OH!

Four	of	the	seven	items	on	this	list	involve		==	false		comparison,	which	we	said	earlier	you
should	always,	always	avoid.	That's	a	pretty	easy	rule	to	remember.

Now	the	list	is	down	to	three.

""	==	0;																//	true	--	UH	OH!

""	==	[];																//	true	--	UH	OH!

0	==	[];																//	true	--	UH	OH!

Are	these	reasonable	coercions	you'd	do	in	a	normal	JavaScript	program?	Under	what
conditions	would	they	really	happen?

I	don't	think	it's	terribly	likely	that	you'd	literally	use		==	[]		in	a		boolean		test	in	your
program,	at	least	not	if	you	know	what	you're	doing.	You'd	probably	instead	be	doing		==	""	
or		==	0	,	like:

function	doSomething(a)	{

				if	(a	==	"")	{

								//	..

				}

}

You'd	have	an	oops	if	you	accidentally	called		doSomething(0)		or		doSomething([])	.	Another
scenario:
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function	doSomething(a,b)	{

				if	(a	==	b)	{

								//	..

				}

}

Again,	this	could	break	if	you	did	something	like		doSomething("",0)		or		doSomething([],"")	.

So,	while	the	situations	can	exist	where	these	coercions	will	bite	you,	and	you'll	want	to	be
careful	around	them,	they're	probably	not	super	common	on	the	whole	of	your	code	base.

Safely	Using	Implicit	Coercion

The	most	important	advice	I	can	give	you:	examine	your	program	and	reason	about	what
values	can	show	up	on	either	side	of	an		==		comparison.	To	effectively	avoid	issues	with
such	comparisons,	here's	some	heuristic	rules	to	follow:

1.	 If	either	side	of	the	comparison	can	have		true		or		false		values,	don't	ever,	EVER	use
	==	.

2.	 If	either	side	of	the	comparison	can	have		[]	,		""	,	or		0		values,	seriously	consider	not
using		==	.

In	these	scenarios,	it's	almost	certainly	better	to	use		===		instead	of		==	,	to	avoid	unwanted
coercion.	Follow	those	two	simple	rules	and	pretty	much	all	the	coercion	gotchas	that	could
reasonably	hurt	you	will	effectively	be	avoided.

Being	more	explicit/verbose	in	these	cases	will	save	you	from	a	lot	of	headaches.

The	question	of		==		vs.		===		is	really	appropriately	framed	as:	should	you	allow	coercion	for
a	comparison	or	not?

There's	lots	of	cases	where	such	coercion	can	be	helpful,	allowing	you	to	more	tersely
express	some	comparison	logic	(like	with		null		and		undefined	,	for	example).

In	the	overall	scheme	of	things,	there's	relatively	few	cases	where	implicit	coercion	is	truly
dangerous.	But	in	those	places,	for	safety	sake,	definitely	use		===	.

Tip:	Another	place	where	coercion	is	guaranteed	not	to	bite	you	is	with	the		typeof	
operator.		typeof		is	always	going	to	return	you	one	of	seven	strings	(see	Chapter	1),	and
none	of	them	are	the	empty		""		string.	As	such,	there's	no	case	where	checking	the	type	of
some	value	is	going	to	run	afoul	of	implicit	coercion.		typeof	x	==	"function"		is	100%	as
safe	and	reliable	as		typeof	x	===	"function"	.	Literally,	the	spec	says	the	algorithm	will	be
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identical	in	this	situation.	So,	don't	just	blindly	use		===		everywhere	simply	because	that's
what	your	code	tools	tell	you	to	do,	or	(worst	of	all)	because	you've	been	told	in	some	book
to	not	think	about	it.	You	own	the	quality	of	your	code.

Is	implicit	coercion	evil	and	dangerous?	In	a	few	cases,	yes,	but	overwhelmingly,	no.

Be	a	responsible	and	mature	developer.	Learn	how	to	use	the	power	of	coercion	(both
explicit	and	implicit)	effectively	and	safely.	And	teach	those	around	you	to	do	the	same.

Here's	a	handy	table	made	by	Alex	Dorey	(@dorey	on	GitHub)	to	visualize	a	variety	of
comparisons:

Source:	https://github.com/dorey/JavaScript-Equality-Table

Abstract	Relational	Comparison
While	this	part	of	implicit	coercion	often	gets	a	lot	less	attention,	it's	important	nonetheless	to
think	about	what	happens	with		a	<	b		comparisons	(similar	to	how	we	just	examined		a	==
b		in	depth).
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The	"Abstract	Relational	Comparison"	algorithm	in	ES5	section	11.8.5	essentially	divides
itself	into	two	parts:	what	to	do	if	the	comparison	involves	both		string		values	(second	half),
or	anything	else	(first	half).

Note:	The	algorithm	is	only	defined	for		a	<	b	.	So,		a	>	b		is	handled	as		b	<	a	.

The	algorithm	first	calls		ToPrimitive		coercion	on	both	values,	and	if	the	return	result	of
either	call	is	not	a		string	,	then	both	values	are	coerced	to		number		values	using	the
	ToNumber		operation	rules,	and	compared	numerically.

For	example:

var	a	=	[	42	];

var	b	=	[	"43"	];

a	<	b;				//	true

b	<	a;				//	false

Note:	Similar	caveats	for		-0		and		NaN		apply	here	as	they	did	in	the		==		algorithm
discussed	earlier.

However,	if	both	values	are		string	s	for	the		<		comparison,	simple	lexicographic	(natural
alphabetic)	comparison	on	the	characters	is	performed:

var	a	=	[	"42"	];

var	b	=	[	"043"	];

a	<	b;				//	false

	a		and		b		are	not	coerced	to		number	s,	because	both	of	them	end	up	as		string	s	after	the
	ToPrimitive		coercion	on	the	two		array	s.	So,		"42"		is	compared	character	by	character	to
	"043"	,	starting	with	the	first	characters		"4"		and		"0"	,	respectively.	Since		"0"		is
lexicographically	less	than	than		"4"	,	the	comparison	returns		false	.

The	exact	same	behavior	and	reasoning	goes	for:

var	a	=	[	4,	2	];

var	b	=	[	0,	4,	3	];

a	<	b;				//	false

Here,		a		becomes		"4,2"		and		b		becomes		"0,4,3"	,	and	those	lexicographically	compare
identically	to	the	previous	snippet.

What	about:
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var	a	=	{	b:	42	};

var	b	=	{	b:	43	};

a	<	b;				//	??

	a	<	b		is	also		false	,	because		a		becomes		[object	Object]		and		b		becomes		[object
Object]	,	and	so	clearly		a		is	not	lexicographically	less	than		b	.

But	strangely:

var	a	=	{	b:	42	};

var	b	=	{	b:	43	};

a	<	b;				//	false

a	==	b;				//	false

a	>	b;				//	false

a	<=	b;				//	true

a	>=	b;				//	true

Why	is		a	==	b		not		true	?	They're	the	same		string		value	(	"[object	Object]"	),	so	it
seems	they	should	be	equal,	right?	Nope.	Recall	the	previous	discussion	about	how		==	
works	with		object		references.

But	then	how	are		a	<=	b		and		a	>=	b		resulting	in		true	,	if		a	<	b		and		a	==	b		and		a	>
b		are	all		false	?

Because	the	spec	says	for		a	<=	b	,	it	will	actually	evaluate		b	<	a		first,	and	then	negate
that	result.	Since		b	<	a		is	also		false	,	the	result	of		a	<=	b		is		true	.

That's	probably	awfully	contrary	to	how	you	might	have	explained	what		<=		does	up	to	now,
which	would	likely	have	been	the	literal:	"less	than	or	equal	to."	JS	more	accurately
considers		<=		as	"not	greater	than"	(	!(a	>	b)	,	which	JS	treats	as		!(b	<	a)	).	Moreover,		a
>=	b		is	explained	by	first	considering	it	as		b	<=	a	,	and	then	applying	the	same	reasoning.

Unfortunately,	there	is	no	"strict	relational	comparison"	as	there	is	for	equality.	In	other
words,	there's	no	way	to	prevent	implicit	coercion	from	occurring	with	relational	comparisons
like		a	<	b	,	other	than	to	ensure	that		a		and		b		are	of	the	same	type	explicitly	before
making	the	comparison.

Use	the	same	reasoning	from	our	earlier		==		vs.		===		sanity	check	discussion.	If	coercion	is
helpful	and	reasonably	safe,	like	in	a		42	<	"43"		comparison,	use	it.	On	the	other	hand,	if
you	need	to	be	safe	about	a	relational	comparison,	explicitly	coerce	the	values	first,	before
using		<		(or	its	counterparts).
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var	a	=	[	42	];

var	b	=	"043";

a	<	b;																								//	false	--	string	comparison!

Number(	a	)	<	Number(	b	);				//	true	--	number	comparison!

Review
In	this	chapter,	we	turned	our	attention	to	how	JavaScript	type	conversions	happen,	called
coercion,	which	can	be	characterized	as	either	explicit	or	implicit.

Coercion	gets	a	bad	rap,	but	it's	actually	quite	useful	in	many	cases.	An	important	task	for
the	responsible	JS	developer	is	to	take	the	time	to	learn	all	the	ins	and	outs	of	coercion	to
decide	which	parts	will	help	improve	their	code,	and	which	parts	they	really	should	avoid.

Explicit	coercion	is	code	which	is	obvious	that	the	intent	is	to	convert	a	value	from	one	type
to	another.	The	benefit	is	improvement	in	readability	and	maintainability	of	code	by	reducing
confusion.

Implicit	coercion	is	coercion	that	is	"hidden"	as	a	side-effect	of	some	other	operation,	where
it's	not	as	obvious	that	the	type	conversion	will	occur.	While	it	may	seem	that	implicit
coercion	is	the	opposite	of	explicit	and	is	thus	bad	(and	indeed,	many	think	so!),	actually
implicit	coercion	is	also	about	improving	the	readability	of	code.

Especially	for	implicit,	coercion	must	be	used	responsibly	and	consciously.	Know	why	you're
writing	the	code	you're	writing,	and	how	it	works.	Strive	to	write	code	that	others	will	easily
be	able	to	learn	from	and	understand	as	well.
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Chapter	5:	Grammar
The	last	major	topic	we	want	to	tackle	is	how	JavaScript's	language	syntax	works	(aka	its
grammar).	You	may	think	you	know	how	to	write	JS,	but	there's	an	awful	lot	of	nuance	to
various	parts	of	the	language	grammar	that	lead	to	confusion	and	misconception,	so	we
want	to	dive	into	those	parts	and	clear	some	things	up.

Note:	The	term	"grammar"	may	be	a	little	less	familiar	to	readers	than	the	term	"syntax."	In
many	ways,	they	are	similar	terms,	describing	the	rules	for	how	the	language	works.	There
are	nuanced	differences,	but	they	mostly	don't	matter	for	our	discussion	here.	The	grammar
for	JavaScript	is	a	structured	way	to	describe	how	the	syntax	(operators,	keywords,	etc.)	fits
together	into	well-formed,	valid	programs.	In	other	words,	discussing	syntax	without
grammar	would	leave	out	a	lot	of	the	important	details.	So	our	focus	here	in	this	chapter	is
most	accurately	described	as	grammar,	even	though	the	raw	syntax	of	the	language	is	what
developers	directly	interact	with.

Statements	&	Expressions
It's	fairly	common	for	developers	to	assume	that	the	term	"statement"	and	"expression"	are
roughly	equivalent.	But	here	we	need	to	distinguish	between	the	two,	because	there	are
some	very	important	differences	in	our	JS	programs.

To	draw	the	distinction,	let's	borrow	from	terminology	you	may	be	more	familiar	with:	the
English	language.

A	"sentence"	is	one	complete	formation	of	words	that	expresses	a	thought.	It's	comprised	of
one	or	more	"phrases,"	each	of	which	can	be	connected	with	punctuation	marks	or
conjunction	words	("and,"	"or,"	etc).	A	phrase	can	itself	be	made	up	of	smaller	phrases.
Some	phrases	are	incomplete	and	don't	accomplish	much	by	themselves,	while	other
phrases	can	stand	on	their	own.	These	rules	are	collectively	called	the	grammar	of	the
English	language.

And	so	it	goes	with	JavaScript	grammar.	Statements	are	sentences,	expressions	are
phrases,	and	operators	are	conjunctions/punctuation.

Every	expression	in	JS	can	be	evaluated	down	to	a	single,	specific	value	result.	For
example:
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var	a	=	3	*	6;

var	b	=	a;

b;

In	this	snippet,		3	*	6		is	an	expression	(evaluates	to	the	value		18	).	But		a		on	the	second
line	is	also	an	expression,	as	is		b		on	the	third	line.	The		a		and		b		expressions	both
evaluate	to	the	values	stored	in	those	variables	at	that	moment,	which	also	happens	to	be
	18	.

Moreover,	each	of	the	three	lines	is	a	statement	containing	expressions.		var	a	=	3	*	6		and
	var	b	=	a		are	called	"declaration	statements"	because	they	each	declare	a	variable	(and
optionally	assign	a	value	to	it).	The		a	=	3	*	6		and		b	=	a		assignments	(minus	the		var	s)
are	called	assignment	expressions.

The	third	line	contains	just	the	expression		b	,	but	it's	also	a	statement	all	by	itself	(though
not	a	terribly	interesting	one!).	This	is	generally	referred	to	as	an	"expression	statement."

Statement	Completion	Values

It's	a	fairly	little	known	fact	that	statements	all	have	completion	values	(even	if	that	value	is
just		undefined	).

How	would	you	even	go	about	seeing	the	completion	value	of	a	statement?

The	most	obvious	answer	is	to	type	the	statement	into	your	browser's	developer	console,
because	when	you	execute	it,	the	console	by	default	reports	the	completion	value	of	the
most	recent	statement	it	executed.

Let's	consider		var	b	=	a	.	What's	the	completion	value	of	that	statement?

The		b	=	a		assignment	expression	results	in	the	value	that	was	assigned	(	18		above),	but
the		var		statement	itself	results	in		undefined	.	Why?	Because		var		statements	are	defined
that	way	in	the	spec.	If	you	put		var	a	=	42;		into	your	console,	you'll	see		undefined	
reported	back	instead	of		42	.

Note:	Technically,	it's	a	little	more	complex	than	that.	In	the	ES5	spec,	section	12.2	"Variable
Statement,"	the		VariableDeclaration		algorithm	actually	does	return	a	value	(a		string	
containing	the	name	of	the	variable	declared	--	weird,	huh!?),	but	that	value	is	basically
swallowed	up	(except	for	use	by	the		for..in		loop)	by	the		VariableStatement		algorithm,
which	forces	an	empty	(aka		undefined	)	completion	value.

In	fact,	if	you've	done	much	code	experimenting	in	your	console	(or	in	a	JavaScript
environment	REPL	--	read/evaluate/print/loop	tool),	you've	probably	seen		undefined	
reported	after	many	different	statements,	and	perhaps	never	realized	why	or	what	that	was.
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Put	simply,	the	console	is	just	reporting	the	statement's	completion	value.

But	what	the	console	prints	out	for	the	completion	value	isn't	something	we	can	use	inside
our	program.	So	how	can	we	capture	the	completion	value?

That's	a	much	more	complicated	task.	Before	we	explain	how,	let's	explore	why	you	would
want	to	do	that.

We	need	to	consider	other	types	of	statement	completion	values.	For	example,	any	regular
	{	..	}		block	has	a	completion	value	of	the	completion	value	of	its	last	contained
statement/expression.

Consider:

var	b;

if	(true)	{

				b	=	4	+	38;

}

If	you	typed	that	into	your	console/REPL,	you'd	probably	see		42		reported,	since		42		is	the
completion	value	of	the		if		block,	which	took	on	the	completion	value	of	its	last	assignment
expression	statement		b	=	4	+	38	.

In	other	words,	the	completion	value	of	a	block	is	like	an	implicit	return	of	the	last	statement
value	in	the	block.

Note:	This	is	conceptually	familiar	in	languages	like	CoffeeScript,	which	have	implicit
	return		values	from		function	s	that	are	the	same	as	the	last	statement	value	in	the
function.

But	there's	an	obvious	problem.	This	kind	of	code	doesn't	work:

var	a,	b;

a	=	if	(true)	{

				b	=	4	+	38;

};

We	can't	capture	the	completion	value	of	a	statement	and	assign	it	into	another	variable	in
any	easy	syntactic/grammatical	way	(at	least	not	yet!).

So,	what	can	we	do?

Warning:	For	demo	purposes	only	--	don't	actually	do	the	following	in	your	real	code!
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We	could	use	the	much	maligned		eval(..)		(sometimes	pronounced	"evil")	function	to
capture	this	completion	value.

var	a,	b;

a	=	eval(	"if	(true)	{	b	=	4	+	38;	}"	);

a;				//	42

Yeeeaaahhhh.	That's	terribly	ugly.	But	it	works!	And	it	illustrates	the	point	that	statement
completion	values	are	a	real	thing	that	can	be	captured	not	just	in	our	console	but	in	our
programs.

There's	a	proposal	for	ES7	called	"do	expression."	Here's	how	it	might	work:

var	a,	b;

a	=	do	{

				if	(true)	{

								b	=	4	+	38;

				}

};

a;				//	42

The		do	{	..	}		expression	executes	a	block	(with	one	or	many	statements	in	it),	and	the
final	statement	completion	value	inside	the	block	becomes	the	completion	value	of	the		do	
expression,	which	can	then	be	assigned	to		a		as	shown.

The	general	idea	is	to	be	able	to	treat	statements	as	expressions	--	they	can	show	up	inside
other	statements	--	without	needing	to	wrap	them	in	an	inline	function	expression	and
perform	an	explicit		return	..	.

For	now,	statement	completion	values	are	not	much	more	than	trivia.	But	they're	probably
going	to	take	on	more	significance	as	JS	evolves,	and	hopefully		do	{	..	}		expressions	will
reduce	the	temptation	to	use	stuff	like		eval(..)	.

Warning:	Repeating	my	earlier	admonition:	avoid		eval(..)	.	Seriously.	See	the	Scope	&
Closures	title	of	this	series	for	more	explanation.

Expression	Side	Effects

Most	expressions	don't	have	side	effects.	For	example:
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var	a	=	2;

var	b	=	a	+	3;

The	expression		a	+	3		did	not	itself	have	a	side	effect,	like	for	instance	changing		a	.	It	had
a	result,	which	is		5	,	and	that	result	was	assigned	to		b		in	the	statement		b	=	a	+	3	.

The	most	common	example	of	an	expression	with	(possible)	side	effects	is	a	function	call
expression:

function	foo()	{

				a	=	a	+	1;

}

var	a	=	1;

foo();								//	result:	`undefined`,	side	effect:	changed	`a`

There	are	other	side-effecting	expressions,	though.	For	example:

var	a	=	42;

var	b	=	a++;

The	expression		a++		has	two	separate	behaviors.	First,	it	returns	the	current	value	of		a	,
which	is		42		(which	then	gets	assigned	to		b	).	But	next,	it	changes	the	value	of		a		itself,
incrementing	it	by	one.

var	a	=	42;

var	b	=	a++;

a;				//	43

b;				//	42

Many	developers	would	mistakenly	believe	that		b		has	value		43		just	like		a		does.	But	the
confusion	comes	from	not	fully	considering	the	when	of	the	side	effects	of	the		++		operator.

The		++		increment	operator	and	the		--		decrement	operator	are	both	unary	operators	(see
Chapter	4),	which	can	be	used	in	either	a	postfix	("after")	position	or	prefix	("before")
position.
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var	a	=	42;

a++;				//	42

a;								//	43

++a;				//	44

a;								//	44

When		++		is	used	in	the	prefix	position	as		++a	,	its	side	effect	(incrementing		a	)	happens
before	the	value	is	returned	from	the	expression,	rather	than	after	as	with		a++	.

Note:	Would	you	think		++a++		was	legal	syntax?	If	you	try	it,	you'll	get	a		ReferenceError	
error,	but	why?	Because	side-effecting	operators	require	a	variable	reference	to	target
their	side	effects	to.	For		++a++	,	the		a++		part	is	evaluated	first	(because	of	operator
precedence	--	see	below),	which	gives	back	the	value	of		a		before	the	increment.	But	then
it	tries	to	evaluate		++42	,	which	(if	you	try	it)	gives	the	same		ReferenceError		error,	since
	++		can't	have	a	side	effect	directly	on	a	value	like		42	.

It	is	sometimes	mistakenly	thought	that	you	can	encapsulate	the	after	side	effect	of		a++		by
wrapping	it	in	a		(	)		pair,	like:

var	a	=	42;

var	b	=	(a++);

a;				//	43

b;				//	42

Unfortunately,		(	)		itself	doesn't	define	a	new	wrapped	expression	that	would	be	evaluated
after	the	after	side	effect	of	the		a++		expression,	as	we	might	have	hoped.	In	fact,	even	if	it
did,		a++		returns		42		first,	and	unless	you	have	another	expression	that	reevaluates		a	
after	the	side	effect	of		++	,	you're	not	going	to	get		43		from	that	expression,	so		b		will	not
be	assigned		43	.

There's	an	option,	though:	the		,		statement-series	comma	operator.	This	operator	allows
you	to	string	together	multiple	standalone	expression	statements	into	a	single	statement:

var	a	=	42,	b;

b	=	(	a++,	a	);

a;				//	43

b;				//	43

Note:	The		(	..	)		around		a++,	a		is	required	here.	The	reason	is	operator	precedence,
which	we'll	cover	later	in	this	chapter.
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The	expression		a++,	a		means	that	the	second		a		statement	expression	gets	evaluated
after	the	after	side	effects	of	the	first		a++		statement	expression,	which	means	it	returns	the
	43		value	for	assignment	to		b	.

Another	example	of	a	side-effecting	operator	is		delete	.	As	we	showed	in	Chapter	2,
	delete		is	used	to	remove	a	property	from	an		object		or	a	slot	from	an		array	.	But	it's
usually	just	called	as	a	standalone	statement:

var	obj	=	{

				a:	42

};

obj.a;												//	42

delete	obj.a;				//	true

obj.a;												//	undefined

The	result	value	of	the		delete		operator	is		true		if	the	requested	operation	is
valid/allowable,	or		false		otherwise.	But	the	side	effect	of	the	operator	is	that	it	removes	the
property	(or	array	slot).

Note:	What	do	we	mean	by	valid/allowable?	Nonexistent	properties,	or	properties	that	exist
and	are	configurable	(see	Chapter	3	of	the	this	&	Object	Prototypes	title	of	this	series)	will
return		true		from	the		delete		operator.	Otherwise,	the	result	will	be		false		or	an	error.

One	last	example	of	a	side-effecting	operator,	which	may	at	once	be	both	obvious	and
nonobvious,	is	the		=		assignment	operator.

Consider:

var	a;

a	=	42;								//	42

a;												//	42

It	may	not	seem	like		=		in		a	=	42		is	a	side-effecting	operator	for	the	expression.	But	if	we
examine	the	result	value	of	the		a	=	42		statement,	it's	the	value	that	was	just	assigned
(	42	),	so	the	assignment	of	that	same	value	into		a		is	essentially	a	side	effect.

Tip:	The	same	reasoning	about	side	effects	goes	for	the	compound-assignment	operators
like		+=	,		-=	,	etc.	For	example,		a	=	b	+=	2		is	processed	first	as		b	+=	2		(which	is		b	=	b	+
2	),	and	the	result	of	that		=		assignment	is	then	assigned	to		a	.

This	behavior	that	an	assignment	expression	(or	statement)	results	in	the	assigned	value	is
primarily	useful	for	chained	assignments,	such	as:
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var	a,	b,	c;

a	=	b	=	c	=	42;

Here,		c	=	42		is	evaluated	to		42		(with	the	side	effect	of	assigning		42		to		c	),	then		b	=
42		is	evaluated	to		42		(with	the	side	effect	of	assigning		42		to		b	),	and	finally		a	=	42		is
evaluated	(with	the	side	effect	of	assigning		42		to		a	).

Warning:	A	common	mistake	developers	make	with	chained	assignments	is	like		var	a	=	b
=	42	.	While	this	looks	like	the	same	thing,	it's	not.	If	that	statement	were	to	happen	without
there	also	being	a	separate		var	b		(somewhere	in	the	scope)	to	formally	declare		b	,	then
	var	a	=	b	=	42		would	not	declare		b		directly.	Depending	on		strict		mode,	that	would
either	throw	an	error	or	create	an	accidental	global	(see	the	Scope	&	Closures	title	of	this
series).

Another	scenario	to	consider:

function	vowels(str)	{

				var	matches;

				if	(str)	{

								//	pull	out	all	the	vowels

								matches	=	str.match(	/[aeiou]/g	);

								if	(matches)	{

												return	matches;

								}

				}

}

vowels(	"Hello	World"	);	//	["e","o","o"]

This	works,	and	many	developers	prefer	such.	But	using	an	idiom	where	we	take	advantage
of	the	assignment	side	effect,	we	can	simplify	by	combining	the	two		if		statements	into
one:

function	vowels(str)	{

				var	matches;

				//	pull	out	all	the	vowels

				if	(str	&&	(matches	=	str.match(	/[aeiou]/g	)))	{

								return	matches;

				}

}

vowels(	"Hello	World"	);	//	["e","o","o"]
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Note:	The		(	..	)		around		matches	=	str.match..		is	required.	The	reason	is	operator
precedence,	which	we'll	cover	in	the	"Operator	Precedence"	section	later	in	this	chapter.

I	prefer	this	shorter	style,	as	I	think	it	makes	it	clearer	that	the	two	conditionals	are	in	fact
related	rather	than	separate.	But	as	with	most	stylistic	choices	in	JS,	it's	purely	opinion
which	one	is	better.

Contextual	Rules

There	are	quite	a	few	places	in	the	JavaScript	grammar	rules	where	the	same	syntax	means
different	things	depending	on	where/how	it's	used.	This	kind	of	thing	can,	in	isolation,	cause
quite	a	bit	of	confusion.

We	won't	exhaustively	list	all	such	cases	here,	but	just	call	out	a	few	of	the	common	ones.

	{	..	}		Curly	Braces

There's	two	main	places	(and	more	coming	as	JS	evolves!)	that	a	pair	of		{	..	}		curly
braces	will	show	up	in	your	code.	Let's	take	a	look	at	each	of	them.

Object	Literals

First,	as	an		object		literal:

//	assume	there's	a	`bar()`	function	defined

var	a	=	{

				foo:	bar()

};

How	do	we	know	this	is	an		object		literal?	Because	the		{	..	}		pair	is	a	value	that's	getting
assigned	to		a	.

Note:	The		a		reference	is	called	an	"l-value"	(aka	left-hand	value)	since	it's	the	target	of	an
assignment.	The		{	..	}		pair	is	an	"r-value"	(aka	right-hand	value)	since	it's	used	just	as	a
value	(in	this	case	as	the	source	of	an	assignment).

Labels

What	happens	if	we	remove	the		var	a	=		part	of	the	above	snippet?
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//	assume	there's	a	`bar()`	function	defined

{

				foo:	bar()

}

A	lot	of	developers	assume	that	the		{	..	}		pair	is	just	a	standalone		object		literal	that
doesn't	get	assigned	anywhere.	But	it's	actually	entirely	different.

Here,		{	..	}		is	just	a	regular	code	block.	It's	not	very	idiomatic	in	JavaScript	(much	more
so	in	other	languages!)	to	have	a	standalone		{	..	}		block	like	that,	but	it's	perfectly	valid
JS	grammar.	It	can	be	especially	helpful	when	combined	with		let		block-scoping
declarations	(see	the	Scope	&	Closures	title	in	this	series).

The		{	..	}		code	block	here	is	functionally	pretty	much	identical	to	the	code	block	being
attached	to	some	statement,	like	a		for	/	while		loop,		if		conditional,	etc.

But	if	it's	a	normal	block	of	code,	what's	that	bizarre	looking		foo:	bar()		syntax,	and	how	is
that	legal?

It's	because	of	a	little	known	(and,	frankly,	discouraged)	feature	in	JavaScript	called	"labeled
statements."		foo		is	a	label	for	the	statement		bar()		(which	has	omitted	its	trailing		;		--
see	"Automatic	Semicolons"	later	in	this	chapter).	But	what's	the	point	of	a	labeled
statement?

If	JavaScript	had	a		goto		statement,	you'd	theoretically	be	able	to	say		goto	foo		and	have
execution	jump	to	that	location	in	code.		goto	s	are	usually	considered	terrible	coding	idioms
as	they	make	code	much	harder	to	understand	(aka	"spaghetti	code"),	so	it's	a	very	good
thing	that	JavaScript	doesn't	have	a	general		goto	.

However,	JS	does	support	a	limited,	special	form	of		goto	:	labeled	jumps.	Both	the
	continue		and		break		statements	can	optionally	accept	a	specified	label,	in	which	case	the
program	flow	"jumps"	kind	of	like	a		goto	.	Consider:
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//	`foo`	labeled-loop

foo:	for	(var	i=0;	i<4;	i++)	{

				for	(var	j=0;	j<4;	j++)	{

								//	whenever	the	loops	meet,	continue	outer	loop

								if	(j	==	i)	{

												//	jump	to	the	next	iteration	of

												//	the	`foo`	labeled-loop

												continue	foo;

								}

								//	skip	odd	multiples

								if	((j	*	i)	%	2	==	1)	{

												//	normal	(non-labeled)	`continue`	of	inner	loop

												continue;

								}

								console.log(	i,	j	);

				}

}

//	1	0

//	2	0

//	2	1

//	3	0

//	3	2

Note:		continue	foo		does	not	mean	"go	to	the	'foo'	labeled	position	to	continue",	but	rather,
"continue	the	loop	that	is	labeled	'foo'	with	its	next	iteration."	So,	it's	not	really	an	arbitrary
	goto	.

As	you	can	see,	we	skipped	over	the	odd-multiple		3	1		iteration,	but	the	labeled-loop	jump
also	skipped	iterations		1	1		and		2	2	.

Perhaps	a	slightly	more	useful	form	of	the	labeled	jump	is	with		break	__		from	inside	an
inner	loop	where	you	want	to	break	out	of	the	outer	loop.	Without	a	labeled		break	,	this
same	logic	could	sometimes	be	rather	awkward	to	write:
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//	`foo`	labeled-loop

foo:	for	(var	i=0;	i<4;	i++)	{

				for	(var	j=0;	j<4;	j++)	{

								if	((i	*	j)	>=	3)	{

												console.log(	"stopping!",	i,	j	);

												//	break	out	of	the	`foo`	labeled	loop

												break	foo;

								}

								console.log(	i,	j	);

				}

}

//	0	0

//	0	1

//	0	2

//	0	3

//	1	0

//	1	1

//	1	2

//	stopping!	1	3

Note:		break	foo		does	not	mean	"go	to	the	'foo'	labeled	position	to	continue,"	but	rather,
"break	out	of	the	loop/block	that	is	labeled	'foo'	and	continue	after	it."	Not	exactly	a		goto		in
the	traditional	sense,	huh?

The	nonlabeled		break		alternative	to	the	above	would	probably	need	to	involve	one	or	more
functions,	shared	scope	variable	access,	etc.	It	would	quite	likely	be	more	confusing	than
labeled		break	,	so	here	using	a	labeled		break		is	perhaps	the	better	option.

A	label	can	apply	to	a	non-loop	block,	but	only		break		can	reference	such	a	non-loop	label.
You	can	do	a	labeled		break	___		out	of	any	labeled	block,	but	you	cannot		continue	___		a
non-loop	label,	nor	can	you	do	a	non-labeled		break		out	of	a	block.

function	foo()	{

				//	`bar`	labeled-block

				bar:	{

								console.log(	"Hello"	);

								break	bar;

								console.log(	"never	runs"	);

				}

				console.log(	"World"	);

}

foo();

//	Hello

//	World
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Labeled	loops/blocks	are	extremely	uncommon,	and	often	frowned	upon.	It's	best	to	avoid
them	if	possible;	for	example	using	function	calls	instead	of	the	loop	jumps.	But	there	are
perhaps	some	limited	cases	where	they	might	be	useful.	If	you're	going	to	use	a	labeled
jump,	make	sure	to	document	what	you're	doing	with	plenty	of	comments!

It's	a	very	common	belief	that	JSON	is	a	proper	subset	of	JS,	so	a	string	of	JSON	(like
	{"a":42}		--	notice	the	quotes	around	the	property	name	as	JSON	requires!)	is	thought	to
be	a	valid	JavaScript	program.	Not	true!	Try	putting		{"a":42}		into	your	JS	console,	and
you'll	get	an	error.

That's	because	statement	labels	cannot	have	quotes	around	them,	so		"a"		is	not	a	valid
label,	and	thus		:		can't	come	right	after	it.

So,	JSON	is	truly	a	subset	of	JS	syntax,	but	JSON	is	not	valid	JS	grammar	by	itself.

One	extremely	common	misconception	along	these	lines	is	that	if	you	were	to	load	a	JS	file
into	a		<script	src=..>		tag	that	only	has	JSON	content	in	it	(like	from	an	API	call),	the	data
would	be	read	as	valid	JavaScript	but	just	be	inaccessible	to	the	program.	JSON-P	(the
practice	of	wrapping	the	JSON	data	in	a	function	call,	like		foo({"a":42})	)	is	usually	said	to
solve	this	inaccessibility	by	sending	the	value	to	one	of	your	program's	functions.

Not	true!	The	totally	valid	JSON	value		{"a":42}		by	itself	would	actually	throw	a	JS	error
because	it'd	be	interpreted	as	a	statement	block	with	an	invalid	label.	But		foo({"a":42})		is
valid	JS	because	in	it,		{"a":42}		is	an		object		literal	value	being	passed	to		foo(..)	.	So,
properly	said,	JSON-P	makes	JSON	into	valid	JS	grammar!

Blocks

Another	commonly	cited	JS	gotcha	(related	to	coercion	--	see	Chapter	4)	is:

[]	+	{};	//	"[object	Object]"

{}	+	[];	//	0

This	seems	to	imply	the		+		operator	gives	different	results	depending	on	whether	the	first
operand	is	the		[]		or	the		{}	.	But	that	actually	has	nothing	to	do	with	it!

On	the	first	line,		{}		appears	in	the		+		operator's	expression,	and	is	therefore	interpreted
as	an	actual	value	(an	empty		object	).	Chapter	4	explained	that		[]		is	coerced	to		""		and
thus		{}		is	coerced	to	a		string		value	as	well:		"[object	Object]"	.

But	on	the	second	line,		{}		is	interpreted	as	a	standalone		{}		empty	block	(which	does
nothing).	Blocks	don't	need	semicolons	to	terminate	them,	so	the	lack	of	one	here	isn't	a
problem.	Finally,		+	[]		is	an	expression	that	explicitly	coerces	(see	Chapter	4)	the		[]		to	a
	number	,	which	is	the		0		value.
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Object	Destructuring

Starting	with	ES6,	another	place	that	you'll	see		{	..	}		pairs	showing	up	is	with
"destructuring	assignments"	(see	the	ES6	&	Beyond	title	of	this	series	for	more	info),
specifically		object		destructuring.	Consider:

function	getData()	{

				//	..

				return	{

								a:	42,

								b:	"foo"

				};

}

var	{	a,	b	}	=	getData();

console.log(	a,	b	);	//	42	"foo"

As	you	can	probably	tell,		var	{	a	,	b	}	=	..		is	a	form	of	ES6	destructuring	assignment,
which	is	roughly	equivalent	to:

var	res	=	getData();

var	a	=	res.a;

var	b	=	res.b;

Note:		{	a,	b	}		is	actually	ES6	destructuring	shorthand	for		{	a:	a,	b:	b	}	,	so	either	will
work,	but	it's	expected	that	the	shorter		{	a,	b	}		will	become	the	preferred	form.

Object	destructuring	with	a		{	..	}		pair	can	also	be	used	for	named	function	arguments,
which	is	sugar	for	this	same	sort	of	implicit	object	property	assignment:

function	foo({	a,	b,	c	})	{

				//	no	need	for:

				//	var	a	=	obj.a,	b	=	obj.b,	c	=	obj.c

				console.log(	a,	b,	c	);

}

foo(	{

				c:	[1,2,3],

				a:	42,

				b:	"foo"

}	);				//	42	"foo"	[1,	2,	3]

So,	the	context	we	use		{	..	}		pairs	in	entirely	determines	what	they	mean,	which
illustrates	the	difference	between	syntax	and	grammar.	It's	very	important	to	understand
these	nuances	to	avoid	unexpected	interpretations	by	the	JS	engine.
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	else	if		And	Optional	Blocks

It's	a	common	misconception	that	JavaScript	has	an		else	if		clause,	because	you	can	do:

if	(a)	{

				//	..

}

else	if	(b)	{

				//	..

}

else	{

				//	..

}

But	there's	a	hidden	characteristic	of	the	JS	grammar	here:	there	is	no		else	if	.	But		if	
and		else		statements	are	allowed	to	omit	the		{	}		around	their	attached	block	if	they	only
contain	a	single	statement.	You've	seen	this	many	times	before,	undoubtedly:

if	(a)	doSomething(	a	);

Many	JS	style	guides	will	insist	that	you	always	use		{	}		around	a	single	statement	block,
like:

if	(a)	{	doSomething(	a	);	}

However,	the	exact	same	grammar	rule	applies	to	the		else		clause,	so	the		else	if		form
you've	likely	always	coded	is	actually	parsed	as:

if	(a)	{

				//	..

}

else	{

				if	(b)	{

								//	..

				}

				else	{

								//	..

				}

}

The		if	(b)	{	..	}	else	{	..	}		is	a	single	statement	that	follows	the		else	,	so	you	can
either	put	the	surrounding		{	}		in	or	not.	In	other	words,	when	you	use		else	if	,	you're
technically	breaking	that	common	style	guide	rule	and	just	defining	your		else		with	a	single
	if		statement.
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Of	course,	the		else	if		idiom	is	extremely	common	and	results	in	one	less	level	of
indentation,	so	it's	attractive.	Whichever	way	you	do	it,	just	call	out	explicitly	in	your	own
style	guide/rules	and	don't	assume	things	like		else	if		are	direct	grammar	rules.

Operator	Precedence
As	we	covered	in	Chapter	4,	JavaScript's	version	of		&&		and		||		are	interesting	in	that	they
select	and	return	one	of	their	operands,	rather	than	just	resulting	in		true		or		false	.	That's
easy	to	reason	about	if	there	are	only	two	operands	and	one	operator.

var	a	=	42;

var	b	=	"foo";

a	&&	b;				//	"foo"

a	||	b;				//	42

But	what	about	when	there's	two	operators	involved,	and	three	operands?

var	a	=	42;

var	b	=	"foo";

var	c	=	[1,2,3];

a	&&	b	||	c;	//	???

a	||	b	&&	c;	//	???

To	understand	what	those	expressions	result	in,	we're	going	to	need	to	understand	what
rules	govern	how	the	operators	are	processed	when	there's	more	than	one	present	in	an
expression.

These	rules	are	called	"operator	precedence."

I	bet	most	readers	feel	they	have	a	decent	grasp	on	operator	precedence.	But	as	with
everything	else	we've	covered	in	this	book	series,	we're	going	to	poke	and	prod	at	that
understanding	to	see	just	how	solid	it	really	is,	and	hopefully	learn	a	few	new	things	along
the	way.

Recall	the	example	from	above:

var	a	=	42,	b;

b	=	(	a++,	a	);

a;				//	43

b;				//	43
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But	what	would	happen	if	we	remove	the		(	)	?

var	a	=	42,	b;

b	=	a++,	a;

a;				//	43

b;				//	42

Wait!	Why	did	that	change	the	value	assigned	to		b	?

Because	the		,		operator	has	a	lower	precedence	than	the		=		operator.	So,		b	=	a++,	a		is
interpreted	as		(b	=	a++),	a	.	Because	(as	we	explained	earlier)		a++		has	after	side	effects,
the	assigned	value	to		b		is	the	value		42		before	the		++		changes		a	.

This	is	just	a	simple	matter	of	needing	to	understand	operator	precedence.	If	you're	going	to
use		,		as	a	statement-series	operator,	it's	important	to	know	that	it	actually	has	the	lowest
precedence.	Every	other	operator	will	more	tightly	bind	than		,		will.

Now,	recall	this	example	from	above:

if	(str	&&	(matches	=	str.match(	/[aeiou]/g	)))	{

				//	..

}

We	said	the		(	)		around	the	assignment	is	required,	but	why?	Because		&&		has	higher
precedence	than		=	,	so	without	the		(	)		to	force	the	binding,	the	expression	would	instead
be	treated	as		(str	&&	matches)	=	str.match..	.	But	this	would	be	an	error,	because	the
result	of		(str	&&	matches)		isn't	going	to	be	a	variable,	but	instead	a	value	(in	this	case
	undefined	),	and	so	it	can't	be	the	left-hand	side	of	an		=		assignment!

OK,	so	you	probably	think	you've	got	this	operator	precedence	thing	down.

Let's	move	on	to	a	more	complex	example	(which	we'll	carry	throughout	the	next	several
sections	of	this	chapter)	to	really	test	your	understanding:

var	a	=	42;

var	b	=	"foo";

var	c	=	false;

var	d	=	a	&&	b	||	c	?	c	||	b	?	a	:	c	&&	b	:	a;

d;								//	??
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OK,	evil,	I	admit	it.	No	one	would	write	a	string	of	expressions	like	that,	right?	Probably	not,
but	we're	going	to	use	it	to	examine	various	issues	around	chaining	multiple	operators
together,	which	is	a	very	common	task.

The	result	above	is		42	.	But	that's	not	nearly	as	interesting	as	how	we	can	figure	out	that
answer	without	just	plugging	it	into	a	JS	program	to	let	JavaScript	sort	it	out.

Let's	dig	in.

The	first	question	--	it	may	not	have	even	occurred	to	you	to	ask	--	is,	does	the	first	part	(	a
&&	b	||	c	)	behave	like		(a	&&	b)	||	c		or	like		a	&&	(b	||	c)	?	Do	you	know	for	certain?
Can	you	even	convince	yourself	they	are	actually	different?

(false	&&	true)	||	true;				//	true

false	&&	(true	||	true);				//	false

So,	there's	proof	they're	different.	But	still,	how	does		false	&&	true	||	true		behave?	The
answer:

false	&&	true	||	true;								//	true

(false	&&	true)	||	true;				//	true

So	we	have	our	answer.	The		&&		operator	is	evaluated	first	and	the		||		operator	is
evaluated	second.

But	is	that	just	because	of	left-to-right	processing?	Let's	reverse	the	order	of	operators:

true	||	false	&&	false;								//	true

(true	||	false)	&&	false;				//	false	--	nope

true	||	(false	&&	false);				//	true	--	winner,	winner!

Now	we've	proved	that		&&		is	evaluated	first	and	then		||	,	and	in	this	case	that	was
actually	counter	to	generally	expected	left-to-right	processing.

So	what	caused	the	behavior?	Operator	precedence.

Every	language	defines	its	own	operator	precedence	list.	It's	dismaying,	though,	just	how
uncommon	it	is	that	JS	developers	have	read	JS's	list.

If	you	knew	it	well,	the	above	examples	wouldn't	have	tripped	you	up	in	the	slightest,
because	you'd	already	know	that		&&		is	more	precedent	than		||	.	But	I	bet	a	fair	amount	of
readers	had	to	think	about	it	a	little	bit.
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Note:	Unfortunately,	the	JS	spec	doesn't	really	have	its	operator	precedence	list	in	a
convenient,	single	location.	You	have	to	parse	through	and	understand	all	the	grammar
rules.	So	we'll	try	to	lay	out	the	more	common	and	useful	bits	here	in	a	more	convenient
format.	For	a	complete	list	of	operator	precedence,	see	"Operator	Precedence"	on	the	MDN
site	(*	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence).

Short	Circuited

In	Chapter	4,	we	mentioned	in	a	side	note	the	"short	circuiting"	nature	of	operators	like		&&	
and		||	.	Let's	revisit	that	in	more	detail	now.

For	both		&&		and		||		operators,	the	right-hand	operand	will	not	be	evaluated	if	the	left-
hand	operand	is	sufficient	to	determine	the	outcome	of	the	operation.	Hence,	the	name
"short	circuited"	(in	that	if	possible,	it	will	take	an	early	shortcut	out).

For	example,	with		a	&&	b	,		b		is	not	evaluated	if		a		is	falsy,	because	the	result	of	the		&&	
operand	is	already	certain,	so	there's	no	point	in	bothering	to	check		b	.	Likewise,	with		a	||
b	,	if		a		is	truthy,	the	result	of	the	operand	is	already	certain,	so	there's	no	reason	to	check
	b	.

This	short	circuiting	can	be	very	helpful	and	is	commonly	used:

function	doSomething(opts)	{

				if	(opts	&&	opts.cool)	{

								//	..

				}

}

The		opts		part	of	the		opts	&&	opts.cool		test	acts	as	sort	of	a	guard,	because	if		opts		is
unset	(or	is	not	an		object	),	the	expression		opts.cool		would	throw	an	error.	The		opts		test
failing	plus	the	short	circuiting	means	that		opts.cool		won't	even	be	evaluated,	thus	no
error!

Similarly,	you	can	use		||		short	circuiting:

function	doSomething(opts)	{

				if	(opts.cache	||	primeCache())	{

								//	..

				}

}

Here,	we're	checking	for		opts.cache		first,	and	if	it's	present,	we	don't	call	the		primeCache()	
function,	thus	avoiding	potentially	unnecessary	work.
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Tighter	Binding

But	let's	turn	our	attention	back	to	that	earlier	complex	statement	example	with	all	the
chained	operators,	specifically	the		?	:		ternary	operator	parts.	Does	the		?	:		operator
have	more	or	less	precedence	than	the		&&		and		||		operators?

a	&&	b	||	c	?	c	||	b	?	a	:	c	&&	b	:	a

Is	that	more	like	this:

a	&&	b	||	(c	?	c	||	(b	?	a	:	c)	&&	b	:	a)

or	this?

(a	&&	b	||	c)	?	(c	||	b)	?	a	:	(c	&&	b)	:	a

The	answer	is	the	second	one.	But	why?

Because		&&		is	more	precedent	than		||	,	and		||		is	more	precedent	than		?	:	.

So,	the	expression		(a	&&	b	||	c)		is	evaluated	first	before	the		?	:		it	participates	in.
Another	way	this	is	commonly	explained	is	that		&&		and		||		"bind	more	tightly"	than		?	:	.
If	the	reverse	was	true,	then		c	?	c...		would	bind	more	tightly,	and	it	would	behave	(as	the
first	choice)	like		a	&&	b	||	(c	?	c..)	.

Associativity

So,	the		&&		and		||		operators	bind	first,	then	the		?	:		operator.	But	what	about	multiple
operators	of	the	same	precedence?	Do	they	always	process	left-to-right	or	right-to-left?

In	general,	operators	are	either	left-associative	or	right-associative,	referring	to	whether
grouping	happens	from	the	left	or	from	the	right.

It's	important	to	note	that	associativity	is	not	the	same	thing	as	left-to-right	or	right-to-left
processing.

But	why	does	it	matter	whether	processing	is	left-to-right	or	right-to-left?	Because
expressions	can	have	side	effects,	like	for	instance	with	function	calls:

var	a	=	foo()	&&	bar();
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Here,		foo()		is	evaluated	first,	and	then	possibly		bar()		depending	on	the	result	of	the
	foo()		expression.	That	definitely	could	result	in	different	program	behavior	than	if		bar()	
was	called	before		foo()	.

But	this	behavior	is	just	left-to-right	processing	(the	default	behavior	in	JavaScript!)	--	it	has
nothing	to	do	with	the	associativity	of		&&	.	In	that	example,	since	there's	only	one		&&		and
thus	no	relevant	grouping	here,	associativity	doesn't	even	come	into	play.

But	with	an	expression	like		a	&&	b	&&	c	,	grouping	will	happen	implicitly,	meaning	that	either
	a	&&	b		or		b	&&	c		will	be	evaluated	first.

Technically,		a	&&	b	&&	c		will	be	handled	as		(a	&&	b)	&&	c	,	because		&&		is	left-associative
(so	is		||	,	by	the	way).	However,	the	right-associative	alternative		a	&&	(b	&&	c)		behaves
observably	the	same	way.	For	the	same	values,	the	same	expressions	are	evaluated	in	the
same	order.

Note:	If	hypothetically		&&		was	right-associative,	it	would	be	processed	the	same	as	if	you
manually	used		(	)		to	create	grouping	like		a	&&	(b	&&	c)	.	But	that	still	doesn't	mean	that
	c		would	be	processed	before		b	.	Right-associativity	does	not	mean	right-to-left
evaluation,	it	means	right-to-left	grouping.	Either	way,	regardless	of	the
grouping/associativity,	the	strict	ordering	of	evaluation	will	be		a	,	then		b	,	then		c		(aka	left-
to-right).

So	it	doesn't	really	matter	that	much	that		&&		and		||		are	left-associative,	other	than	to	be
accurate	in	how	we	discuss	their	definitions.

But	that's	not	always	the	case.	Some	operators	would	behave	very	differently	depending	on
left-associativity	vs.	right-associativity.

Consider	the		?	:		("ternary"	or	"conditional")	operator:

a	?	b	:	c	?	d	:	e;

	?	:		is	right-associative,	so	which	grouping	represents	how	it	will	be	processed?

	a	?	b	:	(c	?	d	:	e)	

	(a	?	b	:	c)	?	d	:	e	

The	answer	is		a	?	b	:	(c	?	d	:	e)	.	Unlike	with		&&		and		||		above,	the	right-associativity
here	actually	matters,	as		(a	?	b	:	c)	?	d	:	e		will	behave	differently	for	some	(but	not	all!)
combinations	of	values.

One	such	example:
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true	?	false	:	true	?	true	:	true;								//	false

true	?	false	:	(true	?	true	:	true);				//	false

(true	?	false	:	true)	?	true	:	true;				//	true

Even	more	nuanced	differences	lurk	with	other	value	combinations,	even	if	the	end	result	is
the	same.	Consider:

true	?	false	:	true	?	true	:	false;								//	false

true	?	false	:	(true	?	true	:	false);				//	false

(true	?	false	:	true)	?	true	:	false;				//	false

From	that	scenario,	the	same	end	result	implies	that	the	grouping	is	moot.	However:

var	a	=	true,	b	=	false,	c	=	true,	d	=	true,	e	=	false;

a	?	b	:	(c	?	d	:	e);	//	false,	evaluates	only	`a`	and	`b`

(a	?	b	:	c)	?	d	:	e;	//	false,	evaluates	`a`,	`b`	AND	`e`

So,	we've	clearly	proved	that		?	:		is	right-associative,	and	that	it	actually	matters	with
respect	to	how	the	operator	behaves	if	chained	with	itself.

Another	example	of	right-associativity	(grouping)	is	the		=		operator.	Recall	the	chained
assignment	example	from	earlier	in	the	chapter:

var	a,	b,	c;

a	=	b	=	c	=	42;

We	asserted	earlier	that		a	=	b	=	c	=	42		is	processed	by	first	evaluating	the		c	=	42	
assignment,	then		b	=	..	,	and	finally		a	=	..	.	Why?	Because	of	the	right-associativity,
which	actually	treats	the	statement	like	this:		a	=	(b	=	(c	=	42))	.

Remember	our	running	complex	assignment	expression	example	from	earlier	in	the
chapter?

var	a	=	42;

var	b	=	"foo";

var	c	=	false;

var	d	=	a	&&	b	||	c	?	c	||	b	?	a	:	c	&&	b	:	a;

d;								//	42
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Armed	with	our	knowledge	of	precedence	and	associativity,	we	should	now	be	able	to	break
down	the	code	into	its	grouping	behavior	like	this:

((a	&&	b)	||	c)	?	((c	||	b)	?	a	:	(c	&&	b))	:	a

Or,	to	present	it	indented	if	that's	easier	to	understand:

(

		(a	&&	b)

				||

		c

)

		?

(

		(c	||	b)

				?

		a

				:

		(c	&&	b)

)

		:

a

Let's	solve	it	now:

1.	 	(a	&&	b)		is		"foo"	.
2.	 	"foo"	||	c		is		"foo"	.
3.	 For	the	first		?		test,		"foo"		is	truthy.
4.	 	(c	||	b)		is		"foo"	.
5.	 For	the	second		?		test,		"foo"		is	truthy.
6.	 	a		is		42	.

That's	it,	we're	done!	The	answer	is		42	,	just	as	we	saw	earlier.	That	actually	wasn't	so
hard,	was	it?

Disambiguation

You	should	now	have	a	much	better	grasp	on	operator	precedence	(and	associativity)	and
feel	much	more	comfortable	understanding	how	code	with	multiple	chained	operators	will
behave.

But	an	important	question	remains:	should	we	all	write	code	understanding	and	perfectly
relying	on	all	the	rules	of	operator	precedence/associativity?	Should	we	only	use		(	)	
manual	grouping	when	it's	necessary	to	force	a	different	processing	binding/order?
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Or,	on	the	other	hand,	should	we	recognize	that	even	though	such	rules	are	in	fact
learnable,	there's	enough	gotchas	to	warrant	ignoring	automatic	precedence/associativity?	If
so,	should	we	thus	always	use		(	)		manual	grouping	and	remove	all	reliance	on	these
automatic	behaviors?

This	debate	is	highly	subjective,	and	heavily	symmetrical	to	the	debate	in	Chapter	4	over
implicit	coercion.	Most	developers	feel	the	same	way	about	both	debates:	either	they	accept
both	behaviors	and	code	expecting	them,	or	they	discard	both	behaviors	and	stick	to
manual/explicit	idioms.

Of	course,	I	cannot	answer	this	question	definitively	for	the	reader	here	anymore	than	I	could
in	Chapter	4.	But	I've	presented	you	the	pros	and	cons,	and	hopefully	encouraged	enough
deeper	understanding	that	you	can	make	informed	rather	than	hype-driven	decisions.

In	my	opinion,	there's	an	important	middle	ground.	We	should	mix	both	operator
precedence/associativity	and		(	)		manual	grouping	into	our	programs	--	I	argue	the	same
way	in	Chapter	4	for	healthy/safe	usage	of	implicit	coercion,	but	certainly	don't	endorse	it
exclusively	without	bounds.

For	example,		if	(a	&&	b	&&	c)	..		is	perfectly	OK	to	me,	and	I	wouldn't	do		if	((a	&&	b)	&&
c)	..		just	to	explicitly	call	out	the	associativity,	because	I	think	it's	overly	verbose.

On	the	other	hand,	if	I	needed	to	chain	two		?	:		conditional	operators	together,	I'd	certainly
use		(	)		manual	grouping	to	make	it	absolutely	clear	what	my	intended	logic	is.

Thus,	my	advice	here	is	similar	to	that	of	Chapter	4:	use	operator
precedence/associativity	where	it	leads	to	shorter	and	cleaner	code,	but	use		(	)	
manual	grouping	in	places	where	it	helps	create	clarity	and	reduce	confusion.

Automatic	Semicolons
ASI	(Automatic	Semicolon	Insertion)	is	when	JavaScript	assumes	a		;		in	certain	places	in
your	JS	program	even	if	you	didn't	put	one	there.

Why	would	it	do	that?	Because	if	you	omit	even	a	single	required		;		your	program	would
fail.	Not	very	forgiving.	ASI	allows	JS	to	be	tolerant	of	certain	places	where		;		aren't
commonly	thought	to	be	necessary.

It's	important	to	note	that	ASI	will	only	take	effect	in	the	presence	of	a	newline	(aka	line
break).	Semicolons	are	not	inserted	in	the	middle	of	a	line.

Basically,	if	the	JS	parser	parses	a	line	where	a	parser	error	would	occur	(a	missing
expected		;	),	and	it	can	reasonably	insert	one,	it	does	so.	What's	reasonable	for	insertion?
Only	if	there's	nothing	but	whitespace	and/or	comments	between	the	end	of	some	statement
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and	that	line's	newline/line	break.

Consider:

var	a	=	42,	b

c;

Should	JS	treat	the		c		on	the	next	line	as	part	of	the		var		statement?	It	certainly	would	if	a
	,		had	come	anywhere	(even	another	line)	between		b		and		c	.	But	since	there	isn't	one,
JS	assumes	instead	that	there's	an	implied		;		(at	the	newline)	after		b	.	Thus,		c;		is	left	as
a	standalone	expression	statement.

Similarly:

var	a	=	42,	b	=	"foo";

a

b				//	"foo"

That's	still	a	valid	program	without	error,	because	expression	statements	also	accept	ASI.

There's	certain	places	where	ASI	is	helpful,	like	for	instance:

var	a	=	42;

do	{

				//	..

}	while	(a)				//	<--	;	expected	here!

a;

The	grammar	requires	a		;		after	a		do..while		loop,	but	not	after		while		or		for		loops.	But
most	developers	don't	remember	that!	So,	ASI	helpfully	steps	in	and	inserts	one.

As	we	said	earlier	in	the	chapter,	statement	blocks	do	not	require		;		termination,	so	ASI
isn't	necessary:

var	a	=	42;

while	(a)	{

				//	..

}	//	<--	no	;	expected	here

a;

The	other	major	case	where	ASI	kicks	in	is	with	the		break	,		continue	,		return	,	and	(ES6)
	yield		keywords:
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function	foo(a)	{

				if	(!a)	return

				a	*=	2;

				//	..

}

The		return		statement	doesn't	carry	across	the	newline	to	the		a	*=	2		expression,	as	ASI
assumes	the		;		terminating	the		return		statement.	Of	course,		return		statements	can
easily	break	across	multiple	lines,	just	not	when	there's	nothing	after		return		but	the
newline/line	break.

function	foo(a)	{

				return	(

								a	*	2	+	3	/	12

				);

}

Identical	reasoning	applies	to		break	,		continue	,	and		yield	.

Error	Correction

One	of	the	most	hotly	contested	religious	wars	in	the	JS	community	(besides	tabs	vs.
spaces)	is	whether	to	rely	heavily/exclusively	on	ASI	or	not.

Most,	but	not	all,	semicolons	are	optional,	but	the	two		;	s	in	the		for	(	..	)	..		loop
header	are	required.

On	the	pro	side	of	this	debate,	many	developers	believe	that	ASI	is	a	useful	mechanism	that
allows	them	to	write	more	terse	(and	more	"beautiful")	code	by	omitting	all	but	the	strictly
required		;	s	(which	are	very	few).	It	is	often	asserted	that	ASI	makes	many		;	s	optional,
so	a	correctly	written	program	without	them	is	no	different	than	a	correctly	written	program
with	them.

On	the	con	side	of	the	debate,	many	other	developers	will	assert	that	there	are	too	many
places	that	can	be	accidental	gotchas,	especially	for	newer,	less	experienced	developers,
where	unintended		;	s	being	magically	inserted	change	the	meaning.	Similarly,	some
developers	will	argue	that	if	they	omit	a	semicolon,	it's	a	flat-out	mistake,	and	they	want	their
tools	(linters,	etc.)	to	catch	it	before	the	JS	engine	corrects	the	mistake	under	the	covers.

Let	me	just	share	my	perspective.	A	strict	reading	of	the	spec	implies	that	ASI	is	an	"error
correction"	routine.	What	kind	of	error,	you	may	ask?	Specifically,	a	parser	error.	In	other
words,	in	an	attempt	to	have	the	parser	fail	less,	ASI	lets	it	be	more	tolerant.
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But	tolerant	of	what?	In	my	view,	the	only	way	a	parser	error	occurs	is	if	it's	given	an
incorrect/errored	program	to	parse.	So,	while	ASI	is	strictly	correcting	parser	errors,	the	only
way	it	can	get	such	errors	is	if	there	were	first	program	authoring	errors	--	omitting
semicolons	where	the	grammar	rules	require	them.

So,	to	put	it	more	bluntly,	when	I	hear	someone	claim	that	they	want	to	omit	"optional
semicolons,"	my	brain	translates	that	claim	to	"I	want	to	write	the	most	parser-broken
program	I	can	that	will	still	work."

I	find	that	to	be	a	ludicrous	position	to	take	and	the	arguments	of	saving	keystrokes	and
having	more	"beautiful	code"	to	be	weak	at	best.

Furthermore,	I	don't	agree	that	this	is	the	same	thing	as	the	spaces	vs	tabs	debate	--	that	it's
purely	cosmetic	--	but	rather	I	believe	it's	a	fundamental	question	of	writing	code	that
adheres	to	grammar	requirements	vs.	code	that	relies	on	grammar	exceptions	to	just	barely
skate	through.

Another	way	of	looking	at	it	is	that	relying	on	ASI	is	essentially	considering	newlines	to	be
significant	"whitespace."	Other	languages	like	Python	have	true	significant	whitespace.	But
is	it	really	appropriate	to	think	of	JavaScript	as	having	significant	newlines	as	it	stands
today?

My	take:	use	semicolons	wherever	you	know	they	are	"required,"	and	limit	your
assumptions	about	ASI	to	a	minimum.

But	don't	just	take	my	word	for	it.	Back	in	2012,	creator	of	JavaScript	Brendan	Eich	said
(http://brendaneich.com/2012/04/the-infernal-semicolon/)	the	following:

The	moral	of	this	story:	ASI	is	(formally	speaking)	a	syntactic	error	correction
procedure.	If	you	start	to	code	as	if	it	were	a	universal	significant-newline	rule,	you	will
get	into	trouble.	..	I	wish	I	had	made	newlines	more	significant	in	JS	back	in	those	ten
days	in	May,	1995.	..	Be	careful	not	to	use	ASI	as	if	it	gave	JS	significant	newlines.

Errors
Not	only	does	JavaScript	have	different	subtypes	of	errors	(	TypeError	,		ReferenceError	,
	SyntaxError	,	etc.),	but	also	the	grammar	defines	certain	errors	to	be	enforced	at	compile
time,	as	compared	to	all	other	errors	that	happen	during	runtime.

In	particular,	there	have	long	been	a	number	of	specific	conditions	that	should	be	caught	and
reported	as	"early	errors"	(during	compilation).	Any	straight-up	syntax	error	is	an	early	error
(e.g.,		a	=	,	),	but	also	the	grammar	defines	things	that	are	syntactically	valid	but	disallowed
nonetheless.
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Since	execution	of	your	code	has	not	begun	yet,	these	errors	are	not	catchable	with
	try..catch	;	they	will	just	fail	the	parsing/compilation	of	your	program.

Tip:	There's	no	requirement	in	the	spec	about	exactly	how	browsers	(and	developer	tools)
should	report	errors.	So	you	may	see	variations	across	browsers	in	the	following	error
examples,	in	what	specific	subtype	of	error	is	reported	or	what	the	included	error	message
text	will	be.

One	simple	example	is	with	syntax	inside	a	regular	expression	literal.	There's	nothing	wrong
with	the	JS	syntax	here,	but	the	invalid	regex	will	throw	an	early	error:

var	a	=	/+foo/;								//	Error!

The	target	of	an	assignment	must	be	an	identifier	(or	an	ES6	destructuring	expression	that
produces	one	or	more	identifiers),	so	a	value	like		42		in	that	position	is	illegal	and	can	be
reported	right	away:

var	a;

42	=	a;								//	Error!

ES5's		strict		mode	defines	even	more	early	errors.	For	example,	in		strict		mode,
function	parameter	names	cannot	be	duplicated:

function	foo(a,b,a)	{	}																				//	just	fine

function	bar(a,b,a)	{	"use	strict";	}				//	Error!

Another		strict		mode	early	error	is	an	object	literal	having	more	than	one	property	of	the
same	name:

(function(){

				"use	strict";

				var	a	=	{

								b:	42,

								b:	43

				};												//	Error!

})();

Note:	Semantically	speaking,	such	errors	aren't	technically	syntax	errors	but	more	grammar
errors	--	the	above	snippets	are	syntactically	valid.	But	since	there	is	no		GrammarError		type,
some	browsers	use		SyntaxError		instead.
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Using	Variables	Too	Early

ES6	defines	a	(frankly	confusingly	named)	new	concept	called	the	TDZ	("Temporal	Dead
Zone").

The	TDZ	refers	to	places	in	code	where	a	variable	reference	cannot	yet	be	made,	because	it
hasn't	reached	its	required	initialization.

The	most	clear	example	of	this	is	with	ES6		let		block-scoping:

{

				a	=	2;								//	ReferenceError!

				let	a;

}

The	assignment		a	=	2		is	accessing	the		a		variable	(which	is	indeed	block-scoped	to	the		{
..	}		block)	before	it's	been	initialized	by	the		let	a		declaration,	so	it's	in	the	TDZ	for		a	
and	throws	an	error.

Interestingly,	while		typeof		has	an	exception	to	be	safe	for	undeclared	variables	(see
Chapter	1),	no	such	safety	exception	is	made	for	TDZ	references:

{

				typeof	a;				//	undefined

				typeof	b;				//	ReferenceError!	(TDZ)

				let	b;

}

Function	Arguments
Another	example	of	a	TDZ	violation	can	be	seen	with	ES6	default	parameter	values	(see	the
ES6	&	Beyond	title	of	this	series):

var	b	=	3;

function	foo(	a	=	42,	b	=	a	+	b	+	5	)	{

				//	..

}

The		b		reference	in	the	assignment	would	happen	in	the	TDZ	for	the	parameter		b		(not	pull
in	the	outer		b		reference),	so	it	will	throw	an	error.	However,	the		a		in	the	assignment	is
fine	since	by	that	time	it's	past	the	TDZ	for	parameter		a	.
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When	using	ES6's	default	parameter	values,	the	default	value	is	applied	to	the	parameter	if
you	either	omit	an	argument,	or	you	pass	an		undefined		value	in	its	place:

function	foo(	a	=	42,	b	=	a	+	1	)	{

				console.log(	a,	b	);

}

foo();																				//	42	43

foo(	undefined	);								//	42	43

foo(	5	);																//	5	6

foo(	void	0,	7	);								//	42	7

foo(	null	);												//	null	1

Note:		null		is	coerced	to	a		0		value	in	the		a	+	1		expression.	See	Chapter	4	for	more
info.

From	the	ES6	default	parameter	values	perspective,	there's	no	difference	between	omitting
an	argument	and	passing	an		undefined		value.	However,	there	is	a	way	to	detect	the
difference	in	some	cases:

function	foo(	a	=	42,	b	=	a	+	1	)	{

				console.log(

								arguments.length,	a,	b,

								arguments[0],	arguments[1]

				);

}

foo();																				//	0	42	43	undefined	undefined

foo(	10	);																//	1	10	11	10	undefined

foo(	10,	undefined	);				//	2	10	11	10	undefined

foo(	10,	null	);								//	2	10	null	10	null

Even	though	the	default	parameter	values	are	applied	to	the		a		and		b		parameters,	if	no
arguments	were	passed	in	those	slots,	the		arguments		array	will	not	have	entries.

Conversely,	if	you	pass	an		undefined		argument	explicitly,	an	entry	will	exist	in	the
	arguments		array	for	that	argument,	but	it	will	be		undefined		and	not	(necessarily)	the	same
as	the	default	value	that	was	applied	to	the	named	parameter	for	that	same	slot.

While	ES6	default	parameter	values	can	create	divergence	between	the		arguments		array
slot	and	the	corresponding	named	parameter	variable,	this	same	disjointedness	can	also
occur	in	tricky	ways	in	ES5:
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function	foo(a)	{

				a	=	42;

				console.log(	arguments[0]	);

}

foo(	2	);				//	42	(linked)

foo();								//	undefined	(not	linked)

If	you	pass	an	argument,	the		arguments		slot	and	the	named	parameter	are	linked	to	always
have	the	same	value.	If	you	omit	the	argument,	no	such	linkage	occurs.

But	in		strict		mode,	the	linkage	doesn't	exist	regardless:

function	foo(a)	{

				"use	strict";

				a	=	42;

				console.log(	arguments[0]	);

}

foo(	2	);				//	2	(not	linked)

foo();								//	undefined	(not	linked)

It's	almost	certainly	a	bad	idea	to	ever	rely	on	any	such	linkage,	and	in	fact	the	linkage	itself
is	a	leaky	abstraction	that's	exposing	an	underlying	implementation	detail	of	the	engine,
rather	than	a	properly	designed	feature.

Use	of	the		arguments		array	has	been	deprecated	(especially	in	favor	of	ES6		...		rest
parameters	--	see	the	ES6	&	Beyond	title	of	this	series),	but	that	doesn't	mean	that	it's	all
bad.

Prior	to	ES6,		arguments		is	the	only	way	to	get	an	array	of	all	passed	arguments	to	pass
along	to	other	functions,	which	turns	out	to	be	quite	useful.	You	can	also	mix	named
parameters	with	the		arguments		array	and	be	safe,	as	long	as	you	follow	one	simple	rule:
never	refer	to	a	named	parameter	and	its	corresponding		arguments		slot	at	the	same
time.	If	you	avoid	that	bad	practice,	you'll	never	expose	the	leaky	linkage	behavior.

function	foo(a)	{

				console.log(	a	+	arguments[1]	);	//	safe!

}

foo(	10,	32	);				//	42

	try..finally	
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You're	probably	familiar	with	how	the		try..catch		block	works.	But	have	you	ever	stopped	to
consider	the		finally		clause	that	can	be	paired	with	it?	In	fact,	were	you	aware	that		try	
only	requires	either		catch		or		finally	,	though	both	can	be	present	if	needed.

The	code	in	the		finally		clause	always	runs	(no	matter	what),	and	it	always	runs	right	after
the		try		(and		catch		if	present)	finish,	before	any	other	code	runs.	In	one	sense,	you	can
kind	of	think	of	the	code	in	a		finally		clause	as	being	in	a	callback	function	that	will	always
be	called	regardless	of	how	the	rest	of	the	block	behaves.

So	what	happens	if	there's	a		return		statement	inside	a		try		clause?	It	obviously	will	return
a	value,	right?	But	does	the	calling	code	that	receives	that	value	run	before	or	after	the
	finally	?

function	foo()	{

				try	{

								return	42;

				}

				finally	{

								console.log(	"Hello"	);

				}

				console.log(	"never	runs"	);

}

console.log(	foo()	);

//	Hello

//	42

The		return	42		runs	right	away,	which	sets	up	the	completion	value	from	the		foo()		call.
This	action	completes	the		try		clause	and	the		finally		clause	immediately	runs	next.	Only
then	is	the		foo()		function	complete,	so	that	its	completion	value	is	returned	back	for	the
	console.log(..)		statement	to	use.

The	exact	same	behavior	is	true	of	a		throw		inside		try	:
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	function	foo()	{

				try	{

								throw	42;

				}

				finally	{

								console.log(	"Hello"	);

				}

				console.log(	"never	runs"	);

}

console.log(	foo()	);

//	Hello

//	Uncaught	Exception:	42

Now,	if	an	exception	is	thrown	(accidentally	or	intentionally)	inside	a		finally		clause,	it	will
override	as	the	primary	completion	of	that	function.	If	a	previous		return		in	the		try		block
had	set	a	completion	value	for	the	function,	that	value	will	be	abandoned.

function	foo()	{

				try	{

								return	42;

				}

				finally	{

								throw	"Oops!";

				}

				console.log(	"never	runs"	);

}

console.log(	foo()	);

//	Uncaught	Exception:	Oops!

It	shouldn't	be	surprising	that	other	nonlinear	control	statements	like		continue		and		break	
exhibit	similar	behavior	to		return		and		throw	:

for	(var	i=0;	i<10;	i++)	{

				try	{

								continue;

				}

				finally	{

								console.log(	i	);

				}

}

//	0	1	2	3	4	5	6	7	8	9
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The		console.log(i)		statement	runs	at	the	end	of	the	loop	iteration,	which	is	caused	by	the
	continue		statement.	However,	it	still	runs	before	the		i++		iteration	update	statement,	which
is	why	the	values	printed	are		0..9		instead	of		1..10	.

Note:	ES6	adds	a		yield		statement,	in	generators	(see	the	Async	&	Performance	title	of
this	series)	which	in	some	ways	can	be	seen	as	an	intermediate		return		statement.
However,	unlike	a		return	,	a		yield		isn't	complete	until	the	generator	is	resumed,	which
means	a		try	{	..	yield	..	}		has	not	completed.	So	an	attached		finally		clause	will	not
run	right	after	the		yield		like	it	does	with		return	.

A		return		inside	a		finally		has	the	special	ability	to	override	a	previous		return		from	the
	try		or		catch		clause,	but	only	if		return		is	explicitly	called:

function	foo()	{

				try	{

								return	42;

				}

				finally	{

								//	no	`return	..`	here,	so	no	override

				}

}

function	bar()	{

				try	{

								return	42;

				}

				finally	{

								//	override	previous	`return	42`

								return;

				}

}

function	baz()	{

				try	{

								return	42;

				}

				finally	{

								//	override	previous	`return	42`

								return	"Hello";

				}

}

foo();				//	42

bar();				//	undefined

baz();				//	"Hello"
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Normally,	the	omission	of		return		in	a	function	is	the	same	as		return;		or	even		return
undefined;	,	but	inside	a		finally		block	the	omission	of		return		does	not	act	like	an
overriding		return	undefined	;	it	just	lets	the	previous		return		stand.

In	fact,	we	can	really	up	the	craziness	if	we	combine		finally		with	labeled		break	
(discussed	earlier	in	the	chapter):

function	foo()	{

				bar:	{

								try	{

												return	42;

								}

								finally	{

												//	break	out	of	`bar`	labeled	block

												break	bar;

								}

				}

				console.log(	"Crazy"	);

				return	"Hello";

}

console.log(	foo()	);

//	Crazy

//	Hello

But...	don't	do	this.	Seriously.	Using	a		finally		+	labeled		break		to	effectively	cancel	a
	return		is	doing	your	best	to	create	the	most	confusing	code	possible.	I'd	wager	no	amount
of	comments	will	redeem	this	code.

	switch	

Let's	briefly	explore	the		switch		statement,	a	sort-of	syntactic	shorthand	for	an		if..else
if..else..		statement	chain.

switch	(a)	{

				case	2:

								//	do	something

								break;

				case	42:

								//	do	another	thing

								break;

				default:

								//	fallback	to	here

}
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As	you	can	see,	it	evaluates		a		once,	then	matches	the	resulting	value	to	each		case	
expression	(just	simple	value	expressions	here).	If	a	match	is	found,	execution	will	begin	in
that	matched		case	,	and	will	either	go	until	a		break		is	encountered	or	until	the	end	of	the
	switch		block	is	found.

That	much	may	not	surprise	you,	but	there	are	several	quirks	about		switch		you	may	not
have	noticed	before.

First,	the	matching	that	occurs	between	the		a		expression	and	each		case		expression	is
identical	to	the		===		algorithm	(see	Chapter	4).	Often	times		switch	es	are	used	with
absolute	values	in		case		statements,	as	shown	above,	so	strict	matching	is	appropriate.

However,	you	may	wish	to	allow	coercive	equality	(aka		==	,	see	Chapter	4),	and	to	do	so
you'll	need	to	sort	of	"hack"	the		switch		statement	a	bit:

var	a	=	"42";

switch	(true)	{

				case	a	==	10:

								console.log(	"10	or	'10'"	);

								break;

				case	a	==	42:

								console.log(	"42	or	'42'"	);

								break;

				default:

								//	never	gets	here

}

//	42	or	'42'

This	works	because	the		case		clause	can	have	any	expression	(not	just	simple	values),
which	means	it	will	strictly	match	that	expression's	result	to	the	test	expression	(	true	).
Since		a	==	42		results	in		true		here,	the	match	is	made.

Despite		==	,	the		switch		matching	itself	is	still	strict,	between		true		and		true		here.	If	the
	case		expression	resulted	in	something	that	was	truthy	but	not	strictly		true		(see	Chapter
4),	it	wouldn't	work.	This	can	bite	you	if	you're	for	instance	using	a	"logical	operator"	like		||	
or		&&		in	your	expression:
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var	a	=	"hello	world";

var	b	=	10;

switch	(true)	{

				case	(a	||	b	==	10):

								//	never	gets	here

								break;

				default:

								console.log(	"Oops"	);

}

//	Oops

Since	the	result	of		(a	||	b	==	10)		is		"hello	world"		and	not		true	,	the	strict	match	fails.	In
this	case,	the	fix	is	to	force	the	expression	explicitly	to	be	a		true		or		false	,	such	as		case
!!(a	||	b	==	10):		(see	Chapter	4).

Lastly,	the		default		clause	is	optional,	and	it	doesn't	necessarily	have	to	come	at	the	end
(although	that's	the	strong	convention).	Even	in	the		default		clause,	the	same	rules	apply
about	encountering	a		break		or	not:

var	a	=	10;

switch	(a)	{

				case	1:

				case	2:

								//	never	gets	here

				default:

								console.log(	"default"	);

				case	3:

								console.log(	"3"	);

								break;

				case	4:

								console.log(	"4"	);

}

//	default

//	3

Note:	As	discussed	previously	about	labeled		break	s,	the		break		inside	a		case		clause	can
also	be	labeled.

The	way	this	snippet	processes	is	that	it	passes	through	all	the		case		clause	matching	first,
finds	no	match,	then	goes	back	up	to	the		default		clause	and	starts	executing.	Since
there's	no		break		there,	it	continues	executing	in	the	already	skipped	over		case	3		block,
before	stopping	once	it	hits	that		break	.
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While	this	sort	of	round-about	logic	is	clearly	possible	in	JavaScript,	there's	almost	no
chance	that	it's	going	to	make	for	reasonable	or	understandable	code.	Be	very	skeptical	if
you	find	yourself	wanting	to	create	such	circular	logic	flow,	and	if	you	really	do,	make	sure
you	include	plenty	of	code	comments	to	explain	what	you're	up	to!

Review
JavaScript	grammar	has	plenty	of	nuance	that	we	as	developers	should	spend	a	little	more
time	paying	closer	attention	to	than	we	typically	do.	A	little	bit	of	effort	goes	a	long	way	to
solidifying	your	deeper	knowledge	of	the	language.

Statements	and	expressions	have	analogs	in	English	language	--	statements	are	like
sentences	and	expressions	are	like	phrases.	Expressions	can	be	pure/self-contained,	or
they	can	have	side	effects.

The	JavaScript	grammar	layers	semantic	usage	rules	(aka	context)	on	top	of	the	pure
syntax.	For	example,		{	}		pairs	used	in	various	places	in	your	program	can	mean
statement	blocks,		object		literals,	(ES6)	destructuring	assignments,	or	(ES6)	named
function	arguments.

JavaScript	operators	all	have	well-defined	rules	for	precedence	(which	ones	bind	first	before
others)	and	associativity	(how	multiple	operator	expressions	are	implicitly	grouped).	Once
you	learn	these	rules,	it's	up	to	you	to	decide	if	precedence/associativity	are	too	implicit	for
their	own	good,	or	if	they	will	aid	in	writing	shorter,	clearer	code.

ASI	(Automatic	Semicolon	Insertion)	is	a	parser-error-correction	mechanism	built	into	the	JS
engine,	which	allows	it	under	certain	circumstances	to	insert	an	assumed		;		in	places
where	it	is	required,	was	omitted,	and	where	insertion	fixes	the	parser	error.	The	debate
rages	over	whether	this	behavior	implies	that	most		;		are	optional	(and	can/should	be
omitted	for	cleaner	code)	or	whether	it	means	that	omitting	them	is	making	mistakes	that	the
JS	engine	merely	cleans	up	for	you.

JavaScript	has	several	types	of	errors,	but	it's	less	known	that	it	has	two	classifications	for
errors:	"early"	(compiler	thrown,	uncatchable)	and	"runtime"	(	try..catch	able).	All	syntax
errors	are	obviously	early	errors	that	stop	the	program	before	it	runs,	but	there	are	others,
too.

Function	arguments	have	an	interesting	relationship	to	their	formal	declared	named
parameters.	Specifically,	the		arguments		array	has	a	number	of	gotchas	of	leaky	abstraction
behavior	if	you're	not	careful.	Avoid		arguments		if	you	can,	but	if	you	must	use	it,	by	all
means	avoid	using	the	positional	slot	in		arguments		at	the	same	time	as	using	a	named
parameter	for	that	same	argument.
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The		finally		clause	attached	to	a		try		(or		try..catch	)	offers	some	very	interesting	quirks
in	terms	of	execution	processing	order.	Some	of	these	quirks	can	be	helpful,	but	it's	possible
to	create	lots	of	confusion,	especially	if	combined	with	labeled	blocks.	As	always,	use
	finally		to	make	code	better	and	clearer,	not	more	clever	or	confusing.

The		switch		offers	some	nice	shorthand	for		if..else	if..		statements,	but	beware	of	many
common	simplifying	assumptions	about	its	behavior.	There	are	several	quirks	that	can	trip
you	up	if	you're	not	careful,	but	there's	also	some	neat	hidden	tricks	that		switch		has	up	its
sleeve!
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Appendix	A:	Mixed	Environment
JavaScript
Beyond	the	core	language	mechanics	we've	fully	explored	in	this	book,	there	are	several
ways	that	your	JS	code	can	behave	differently	when	it	runs	in	the	real	world.	If	JS	was
executing	purely	inside	an	engine,	it'd	be	entirely	predictable	based	on	nothing	but	the	black-
and-white	of	the	spec.	But	JS	pretty	much	always	runs	in	the	context	of	a	hosting
environment,	which	exposes	your	code	to	some	degree	of	unpredictability.

For	example,	when	your	code	runs	alongside	code	from	other	sources,	or	when	your	code
runs	in	different	types	of	JS	engines	(not	just	browsers),	there	are	some	things	that	may
behave	differently.

We'll	briefly	explore	some	of	these	concerns.

Annex	B	(ECMAScript)
It's	a	little	known	fact	that	the	official	name	of	the	language	is	ECMAScript	(referring	to	the
ECMA	standards	body	that	manages	it).	What	then	is	"JavaScript"?	JavaScript	is	the
common	tradename	of	the	language,	of	course,	but	more	appropriately,	JavaScript	is
basically	the	browser	implementation	of	the	spec.

The	official	ECMAScript	specification	includes	"Annex	B,"	which	discusses	specific
deviations	from	the	official	spec	for	the	purposes	of	JS	compatibility	in	browsers.

The	proper	way	to	consider	these	deviations	is	that	they	are	only	reliably	present/valid	if	your
code	is	running	in	a	browser.	If	your	code	always	runs	in	browsers,	you	won't	see	any
observable	difference.	If	not	(like	if	it	can	run	in	node.js,	Rhino,	etc.),	or	you're	not	sure,	tread
carefully.

The	main	compatibility	differences:

Octal	number	literals	are	allowed,	such	as		0123		(decimal		83	)	in	non-	strict	mode	.
	window.escape(..)		and		window.unescape(..)		allow	you	to	escape	or	unescape	strings
with		%	-delimited	hexadecimal	escape	sequences.	For	example:		window.escape(	"?
foo=97%&bar=3%"	)		produces		"%3Ffoo%3D97%25%26bar%3D3%25"	.
	String.prototype.substr		is	quite	similar	to		String.prototype.substring	,	except	that
instead	of	the	second	parameter	being	the	ending	index	(noninclusive),	the	second
parameter	is	the		length		(number	of	characters	to	include).
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Web	ECMAScript

The	Web	ECMAScript	specification	(http://javascript.spec.whatwg.org/)	covers	the
differences	between	the	official	ECMAScript	specification	and	the	current	JavaScript
implementations	in	browsers.

In	other	words,	these	items	are	"required"	of	browsers	(to	be	compatible	with	each	other)	but
are	not	(as	of	the	time	of	writing)	listed	in	the	"Annex	B"	section	of	the	official	spec:

	<!--		and		-->		are	valid	single-line	comment	delimiters.
	String.prototype		additions	for	returning	HTML-formatted	strings:		anchor(..)	,
	big(..)	,		blink(..)	,		bold(..)	,		fixed(..)	,		fontcolor(..)	,		fontsize(..)	,
	italics(..)	,		link(..)	,		small(..)	,		strike(..)	,	and		sub(..)	.	Note:	These	are	very
rarely	used	in	practice,	and	are	generally	discouraged	in	favor	of	other	built-in	DOM
APIs	or	user-defined	utilities.
	RegExp		extensions:		RegExp.$1		..		RegExp.$9		(match-groups)	and
	RegExp.lastMatch	/	RegExp["$&"]		(most	recent	match).
	Function.prototype		additions:		Function.prototype.arguments		(aliases	internal
	arguments		object)	and		Function.caller		(aliases	internal		arguments.caller	).	Note:
	arguments		and	thus		arguments.caller		are	deprecated,	so	you	should	avoid	using
them	if	possible.	That	goes	doubly	so	for	these	aliases	--	don't	use	them!

Note:	Some	other	minor	and	rarely	used	deviations	are	not	included	in	our	list	here.	See	the
external	"Annex	B"	and	"Web	ECMAScript"	documents	for	more	detailed	information	as
needed.

Generally	speaking,	all	these	differences	are	rarely	used,	so	the	deviations	from	the
specification	are	not	significant	concerns.	Just	be	careful	if	you	rely	on	any	of	them.

Host	Objects
The	well-covered	rules	for	how	variables	behave	in	JS	have	exceptions	to	them	when	it
comes	to	variables	that	are	auto-defined,	or	otherwise	created	and	provided	to	JS	by	the
environment	that	hosts	your	code	(browser,	etc.)	--	so	called,	"host	objects"	(which	include
both	built-in		object	s	and		function	s).

For	example:
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var	a	=	document.createElement(	"div"	);

typeof	a;																																//	"object"	--	as	expected

Object.prototype.toString.call(	a	);				//	"[object	HTMLDivElement]"

a.tagName;																																//	"DIV"

	a		is	not	just	an		object	,	but	a	special	host	object	because	it's	a	DOM	element.	It	has	a
different	internal		[[Class]]		value	(	"HTMLDivElement"	)	and	comes	with	predefined	(and
often	unchangeable)	properties.

Another	such	quirk	has	already	been	covered,	in	the	"Falsy	Objects"	section	in	Chapter	4:
some	objects	can	exist	but	when	coerced	to		boolean		they	(confoundingly)	will	coerce	to
	false		instead	of	the	expected		true	.

Other	behavior	variations	with	host	objects	to	be	aware	of	can	include:

not	having	access	to	normal		object		built-ins	like		toString()	
not	being	overwritable
having	certain	predefined	read-only	properties
having	methods	that	cannot	be		this	-overriden	to	other	objects
and	more...

Host	objects	are	critical	to	making	our	JS	code	work	with	its	surrounding	environment.	But
it's	important	to	note	when	you're	interacting	with	a	host	object	and	be	careful	assuming	its
behaviors,	as	they	will	quite	often	not	conform	to	regular	JS		object	s.

One	notable	example	of	a	host	object	that	you	probably	interact	with	regularly	is	the
	console		object	and	its	various	functions	(	log(..)	,		error(..)	,	etc.).	The		console		object
is	provided	by	the	hosting	environment	specifically	so	your	code	can	interact	with	it	for
various	development-related	output	tasks.

In	browsers,		console		hooks	up	to	the	developer	tools'	console	display,	whereas	in	node.js
and	other	server-side	JS	environments,		console		is	generally	connected	to	the	standard-
output	(	stdout	)	and	standard-error	(	stderr	)	streams	of	the	JavaScript	environment
system	process.

Global	DOM	Variables
You're	probably	aware	that	declaring	a	variable	in	the	global	scope	(with	or	without		var	)
creates	not	only	a	global	variable,	but	also	its	mirror:	a	property	of	the	same	name	on	the
	global		object	(	window		in	the	browser).
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But	what	may	be	less	common	knowledge	is	that	(because	of	legacy	browser	behavior)
creating	DOM	elements	with		id		attributes	creates	global	variables	of	those	same	names.
For	example:

<div	id="foo"></div>

And:

if	(typeof	foo	==	"undefined")	{

				foo	=	42;								//	will	never	run

}

console.log(	foo	);				//	HTML	element

You're	perhaps	used	to	managing	global	variable	tests	(using		typeof		or		..	in	window	
checks)	under	the	assumption	that	only	JS	code	creates	such	variables,	but	as	you	can	see,
the	contents	of	your	hosting	HTML	page	can	also	create	them,	which	can	easily	throw	off
your	existence	check	logic	if	you're	not	careful.

This	is	yet	one	more	reason	why	you	should,	if	at	all	possible,	avoid	using	global	variables,
and	if	you	have	to,	use	variables	with	unique	names	that	won't	likely	collide.	But	you	also
need	to	make	sure	not	to	collide	with	the	HTML	content	as	well	as	any	other	code.

Native	Prototypes
One	of	the	most	widely	known	and	classic	pieces	of	JavaScript	best	practice	wisdom	is:
never	extend	native	prototypes.

Whatever	method	or	property	name	you	come	up	with	to	add	to		Array.prototype		that
doesn't	(yet)	exist,	if	it's	a	useful	addition	and	well-designed,	and	properly	named,	there's	a
strong	chance	it	could	eventually	end	up	being	added	to	the	spec	--	in	which	case	your
extension	is	now	in	conflict.

Here's	a	real	example	that	actually	happened	to	me	that	illustrates	this	point	well.

I	was	building	an	embeddable	widget	for	other	websites,	and	my	widget	relied	on	jQuery
(though	pretty	much	any	framework	would	have	suffered	this	gotcha).	It	worked	on	almost
every	site,	but	we	ran	across	one	where	it	was	totally	broken.

After	almost	a	week	of	analysis/debugging,	I	found	that	the	site	in	question	had,	buried	deep
in	one	of	its	legacy	files,	code	that	looked	like	this:
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//	Netscape	4	doesn't	have	Array.push

Array.prototype.push	=	function(item)	{

				this[this.length]	=	item;

};

Aside	from	the	crazy	comment	(who	cares	about	Netscape	4	anymore!?),	this	looks
reasonable,	right?

The	problem	is,		Array.prototype.push		was	added	to	the	spec	sometime	subsequent	to	this
Netscape	4	era	coding,	but	what	was	added	is	not	compatible	with	this	code.	The	standard
	push(..)		allows	multiple	items	to	be	pushed	at	once.	This	hacked	one	ignores	the
subsequent	items.

Basically	all	JS	frameworks	have	code	that	relies	on		push(..)		with	multiple	elements.	In	my
case,	it	was	code	around	the	CSS	selector	engine	that	was	completely	busted.	But	there
could	conceivably	be	dozens	of	other	places	susceptible.

The	developer	who	originally	wrote	that		push(..)		hack	had	the	right	instinct	to	call	it		push	,
but	didn't	foresee	pushing	multiple	elements.	They	were	certainly	acting	in	good	faith,	but
they	created	a	landmine	that	didn't	go	off	until	almost	10	years	later	when	I	unwittingly	came
along.

There's	multiple	lessons	to	take	away	on	all	sides.

First,	don't	extend	the	natives	unless	you're	absolutely	sure	your	code	is	the	only	code	that
will	ever	run	in	that	environment.	If	you	can't	say	that	100%,	then	extending	the	natives	is
dangerous.	You	must	weigh	the	risks.

Next,	don't	unconditionally	define	extensions	(because	you	can	overwrite	natives
accidentally).	In	this	particular	example,	had	the	code	said	this:

if	(!Array.prototype.push)	{

				//	Netscape	4	doesn't	have	Array.push

				Array.prototype.push	=	function(item)	{

								this[this.length]	=	item;

				};

}

The		if		statement	guard	would	have	only	defined	this	hacked		push()		for	JS	environments
where	it	didn't	exist.	In	my	case,	that	probably	would	have	been	OK.	But	even	this	approach
is	not	without	risk:

1.	 If	the	site's	code	(for	some	crazy	reason!)	was	relying	on	a		push(..)		that	ignored
multiple	items,	that	code	would	have	been	broken	years	ago	when	the	standard
	push(..)		was	rolled	out.
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2.	 If	any	other	library	had	come	in	and	hacked	in	a		push(..)		ahead	of	this		if		guard,
and	it	did	so	in	an	incompatible	way,	that	would	have	broken	the	site	at	that	time.

What	that	highlights	is	an	interesting	question	that,	frankly,	doesn't	get	enough	attention	from
JS	developers:	Should	you	EVER	rely	on	native	built-in	behavior	if	your	code	is	running
in	any	environment	where	it's	not	the	only	code	present?

The	strict	answer	is	no,	but	that's	awfully	impractical.	Your	code	usually	can't	redefine	its
own	private	untouchable	versions	of	all	built-in	behavior	relied	on.	Even	if	you	could,	that's
pretty	wasteful.

So,	should	you	feature-test	for	the	built-in	behavior	as	well	as	compliance-testing	that	it	does
what	you	expect?	And	what	if	that	test	fails	--	should	your	code	just	refuse	to	run?

//	don't	trust	Array.prototype.push

(function(){

				if	(Array.prototype.push)	{

								var	a	=	[];

								a.push(1,2);

								if	(a[0]	===	1	&&	a[1]	===	2)	{

												//	tests	passed,	safe	to	use!

												return;

								}

				}

				throw	Error(

								"Array#push()	is	missing/broken!"

				);

})();

In	theory,	that	sounds	plausible,	but	it's	also	pretty	impractical	to	design	tests	for	every	single
built-in	method.

So,	what	should	we	do?	Should	we	trust	but	verify	(feature-	and	compliance-test)
everything?	Should	we	just	assume	existence	is	compliance	and	let	breakage	(caused	by
others)	bubble	up	as	it	will?

There's	no	great	answer.	The	only	fact	that	can	be	observed	is	that	extending	native
prototypes	is	the	only	way	these	things	bite	you.

If	you	don't	do	it,	and	no	one	else	does	in	the	code	in	your	application,	you're	safe.
Otherwise,	you	should	build	in	at	least	a	little	bit	of	skepticism,	pessimism,	and	expectation
of	possible	breakage.

Having	a	full	set	of	unit/regression	tests	of	your	code	that	runs	in	all	known	environments	is
one	way	to	surface	some	of	these	issues	earlier,	but	it	doesn't	do	anything	to	actually	protect
you	from	these	conflicts.
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Shims/Polyfills

It's	usually	said	that	the	only	safe	place	to	extend	a	native	is	in	an	older	(non-spec-
compliant)	environment,	since	that's	unlikely	to	ever	change	--	new	browsers	with	new	spec
features	replace	older	browsers	rather	than	amending	them.

If	you	could	see	into	the	future,	and	know	for	sure	what	a	future	standard	was	going	to	be,
like	for		Array.prototype.foobar	,	it'd	be	totally	safe	to	make	your	own	compatible	version	of	it
to	use	now,	right?

if	(!Array.prototype.foobar)	{

				//	silly,	silly

				Array.prototype.foobar	=	function()	{

								this.push(	"foo",	"bar"	);

				};

}

If	there's	already	a	spec	for		Array.prototype.foobar	,	and	the	specified	behavior	is	equal	to
this	logic,	you're	pretty	safe	in	defining	such	a	snippet,	and	in	that	case	it's	generally	called	a
"polyfill"	(or	"shim").

Such	code	is	very	useful	to	include	in	your	code	base	to	"patch"	older	browser	environments
that	aren't	updated	to	the	newest	specs.	Using	polyfills	is	a	great	way	to	create	predictable
code	across	all	your	supported	environments.

Tip:	ES5-Shim	(https://github.com/es-shims/es5-shim)	is	a	comprehensive	collection	of
shims/polyfills	for	bringing	a	project	up	to	ES5	baseline,	and	similarly,	ES6-Shim
(https://github.com/es-shims/es6-shim)	provides	shims	for	new	APIs	added	as	of	ES6.	While
APIs	can	be	shimmed/polyfilled,	new	syntax	generally	cannot.	To	bridge	the	syntactic	divide,
you'll	want	to	also	use	an	ES6-to-ES5	transpiler	like	Traceur
(https://github.com/google/traceur-compiler/wiki/Getting-Started).

If	there's	likely	a	coming	standard,	and	most	discussions	agree	what	it's	going	to	be	called
and	how	it	will	operate,	creating	the	ahead-of-time	polyfill	for	future-facing	standards
compliance	is	called	"prollyfill"	(probably-fill).

The	real	catch	is	if	some	new	standard	behavior	can't	be	(fully)	polyfilled/prollyfilled.

There's	debate	in	the	community	if	a	partial-polyfill	for	the	common	cases	is	acceptable
(documenting	the	parts	that	cannot	be	polyfilled),	or	if	a	polyfill	should	be	avoided	if	it	purely
can't	be	100%	compliant	to	the	spec.

Many	developers	at	least	accept	some	common	partial	polyfills	(like	for	instance
	Object.create(..)	),	because	the	parts	that	aren't	covered	are	not	parts	they	intend	to	use
anyway.

Mixed	Environment	JavaScript

296

https://github.com/es-shims/es5-shim
https://github.com/es-shims/es6-shim
https://github.com/google/traceur-compiler/wiki/Getting-Started


Some	developers	believe	that	the		if		guard	around	a	polyfill/shim	should	include	some
form	of	conformance	test,	replacing	the	existing	method	either	if	it's	absent	or	fails	the	tests.
This	extra	layer	of	compliance	testing	is	sometimes	used	to	distinguish	"shim"	(compliance
tested)	from	"polyfill"	(existence	checked).

The	only	absolute	take-away	is	that	there	is	no	absolute	right	answer	here.	Extending
natives,	even	when	done	"safely"	in	older	environments,	is	not	100%	safe.	The	same	goes
for	relying	upon	(possibly	extended)	natives	in	the	presence	of	others'	code.

Either	should	always	be	done	with	caution,	defensive	code,	and	lots	of	obvious
documentation	about	the	risks.

	<script>	s
Most	browser-viewed	websites/applications	have	more	than	one	file	that	contains	their	code,
and	it's	common	to	have	a	few	or	several		<script	src=..></script>		elements	in	the	page
that	load	these	files	separately,	and	even	a	few	inline-code		<script>	..	</script>		elements
as	well.

But	do	these	separate	files/code	snippets	constitute	separate	programs	or	are	they
collectively	one	JS	program?

The	(perhaps	surprising)	reality	is	they	act	more	like	independent	JS	programs	in	most,	but
not	all,	respects.

The	one	thing	they	share	is	the	single		global		object	(	window		in	the	browser),	which	means
multiple	files	can	append	their	code	to	that	shared	namespace	and	they	can	all	interact.

So,	if	one		script		element	defines	a	global	function		foo()	,	when	a	second		script		later
runs,	it	can	access	and	call		foo()		just	as	if	it	had	defined	the	function	itself.

But	global	variable	scope	hoisting	(see	the	Scope	&	Closures	title	of	this	series)	does	not
occur	across	these	boundaries,	so	the	following	code	would	not	work	(because		foo()	's
declaration	isn't	yet	declared),	regardless	of	if	they	are	(as	shown)	inline		<script>	..
</script>		elements	or	externally	loaded		<script	src=..></script>		files:

<script>foo();</script>

<script>

		function	foo()	{	..	}

</script>

But	either	of	these	would	work	instead:
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<script>

		foo();

		function	foo()	{	..	}

</script>

Or:

<script>

		function	foo()	{	..	}

</script>

<script>foo();</script>

Also,	if	an	error	occurs	in	a		script		element	(inline	or	external),	as	a	separate	standalone
JS	program	it	will	fail	and	stop,	but	any	subsequent		script	s	will	run	(still	with	the	shared
	global	)	unimpeded.

You	can	create		script		elements	dynamically	from	your	code,	and	inject	them	into	the	DOM
of	the	page,	and	the	code	in	them	will	behave	basically	as	if	loaded	normally	in	a	separate
file:

var	greeting	=	"Hello	World";

var	el	=	document.createElement(	"script"	);

el.text	=	"function	foo(){	alert(	greeting	);\

	}	setTimeout(	foo,	1000	);";

document.body.appendChild(	el	);

Note:	Of	course,	if	you	tried	the	above	snippet	but	set		el.src		to	some	file	URL	instead	of
setting		el.text		to	the	code	contents,	you'd	be	dynamically	creating	an	externally	loaded
	<script	src=..></script>		element.

One	difference	between	code	in	an	inline	code	block	and	that	same	code	in	an	external	file
is	that	in	the	inline	code	block,	the	sequence	of	characters		</script>		cannot	appear
together,	as	(regardless	of	where	it	appears)	it	would	be	interpreted	as	the	end	of	the	code
block.	So,	beware	of	code	like:

<script>

		var	code	=	"<script>alert(	'Hello	World'	)</script>";

</script>
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It	looks	harmless,	but	the		</script>		appearing	inside	the		string		literal	will	terminate	the
script	block	abnormally,	causing	an	error.	The	most	common	workaround	is:

"</sc"	+	"ript>";

Also,	beware	that	code	inside	an	external	file	will	be	interpreted	in	the	character	set	(UTF-8,
ISO-8859-8,	etc.)	the	file	is	served	with	(or	the	default),	but	that	same	code	in	an	inline
	script		element	in	your	HTML	page	will	be	interpreted	by	the	character	set	of	the	page	(or
its	default).

Warning:	The		charset		attribute	will	not	work	on	inline	script	elements.

Another	deprecated	practice	with	inline		script		elements	is	including	HTML-style	or
X(HT)ML-style	comments	around	inline	code,	like:

<script>

<!--

alert(	"Hello"	);

//-->

</script>

<script>

<!--//--><![CDATA[//><!--

alert(	"World"	);

//--><!]]>

</script>

Both	of	these	are	totally	unnecessary	now,	so	if	you're	still	doing	that,	stop	it!

Note:	Both		<!--		and		-->		(HTML-style	comments)	are	actually	specified	as	valid	single-
line	comment	delimiters	(	var	x	=	2;	<!--	valid	comment		and		-->	another	valid	line
comment	)	in	JavaScript	(see	the	"Web	ECMAScript"	section	earlier),	purely	because	of	this
old	technique.	But	never	use	them.

Reserved	Words
The	ES5	spec	defines	a	set	of	"reserved	words"	in	Section	7.6.1	that	cannot	be	used	as
standalone	variable	names.	Technically,	there	are	four	categories:	"keywords",	"future
reserved	words",	the		null		literal,	and	the		true		/		false		boolean	literals.

Keywords	are	the	obvious	ones	like		function		and		switch	.	Future	reserved	words	include
things	like		enum	,	though	many	of	the	rest	of	them	(	class	,		extends	,	etc.)	are	all	now
actually	used	by	ES6;	there	are	other	strict-mode	only	reserved	words	like		interface	.
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StackOverflow	user	"art4theSould"	creatively	worked	all	these	reserved	words	into	a	fun	little
poem	(http://stackoverflow.com/questions/26255/reserved-keywords-in-
javascript/12114140#12114140):

Let	this	long	package	float,	Goto	private	class	if	short.	While	protected	with	debugger
case,	Continue	volatile	interface.	Instanceof	super	synchronized	throw,	Extends	final
export	throws.

Try	import	double	enum?

False,	boolean,	abstract	function,	Implements	typeof	transient	break!	Void	static,
default	do,	Switch	int	native	new.	Else,	delete	null	public	var	In	return	for	const,
true,	char	…Finally	catch	byte.

Note:	This	poem	includes	words	that	were	reserved	in	ES3	(	byte	,		long	,	etc.)	that	are	no
longer	reserved	as	of	ES5.

Prior	to	ES5,	the	reserved	words	also	could	not	be	property	names	or	keys	in	object	literals,
but	that	restriction	no	longer	exists.

So,	this	is	not	allowed:

var	import	=	"42";

But	this	is	allowed:

var	obj	=	{	import:	"42"	};

console.log(	obj.import	);

You	should	be	aware	though	that	some	older	browser	versions	(mainly	older	IE)	weren't
completely	consistent	on	applying	these	rules,	so	there	are	places	where	using	reserved
words	in	object	property	name	locations	can	still	cause	issues.	Carefully	test	all	supported
browser	environments.

Implementation	Limits
The	JavaScript	spec	does	not	place	arbitrary	limits	on	things	such	as	the	number	of
arguments	to	a	function	or	the	length	of	a	string	literal,	but	these	limits	exist	nonetheless,
because	of	implementation	details	in	different	engines.

For	example:
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function	addAll()	{

				var	sum	=	0;

				for	(var	i=0;	i	<	arguments.length;	i++)	{

								sum	+=	arguments[i];

				}

				return	sum;

}

var	nums	=	[];

for	(var	i=1;	i	<	100000;	i++)	{

				nums.push(i);

}

addAll(	2,	4,	6	);																//	12

addAll.apply(	null,	nums	);								//	should	be:	499950000

In	some	JS	engines,	you'll	get	the	correct		499950000		answer,	but	in	others	(like	Safari	6.x),
you'll	get	the	error:	"RangeError:	Maximum	call	stack	size	exceeded."

Examples	of	other	limits	known	to	exist:

maximum	number	of	characters	allowed	in	a	string	literal	(not	just	a	string	value)
size	(bytes)	of	data	that	can	be	sent	in	arguments	to	a	function	call	(aka	stack	size)
number	of	parameters	in	a	function	declaration
maximum	depth	of	non-optimized	call	stack	(i.e.,	with	recursion):	how	long	a	chain	of
function	calls	from	one	to	the	other	can	be
number	of	seconds	a	JS	program	can	run	continuously	blocking	the	browser
maximum	length	allowed	for	a	variable	name
...

It's	not	very	common	at	all	to	run	into	these	limits,	but	you	should	be	aware	that	limits	can
and	do	exist,	and	importantly	that	they	vary	between	engines.

Review
We	know	and	can	rely	upon	the	fact	that	the	JS	language	itself	has	one	standard	and	is
predictably	implemented	by	all	the	modern	browsers/engines.	This	is	a	very	good	thing!

But	JavaScript	rarely	runs	in	isolation.	It	runs	in	an	environment	mixed	in	with	code	from
third-party	libraries,	and	sometimes	it	even	runs	in	engines/environments	that	differ	from
those	found	in	browsers.

Paying	close	attention	to	these	issues	improves	the	reliability	and	robustness	of	your	code.
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Chapter	1:	 	this		Or	That?
One	of	the	most	confused	mechanisms	in	JavaScript	is	the		this		keyword.	It's	a	special
identifier	keyword	that's	automatically	defined	in	the	scope	of	every	function,	but	what
exactly	it	refers	to	bedevils	even	seasoned	JavaScript	developers.

Any	sufficiently	advanced	technology	is	indistinguishable	from	magic.	--	Arthur	C.
Clarke

JavaScript's		this		mechanism	isn't	actually	that	advanced,	but	developers	often	paraphrase
that	quote	in	their	own	mind	by	inserting	"complex"	or	"confusing",	and	there's	no	question
that	without	lack	of	clear	understanding,		this		can	seem	downright	magical	in	your
confusion.

Note:	The	word	"this"	is	a	terribly	common	pronoun	in	general	discourse.	So,	it	can	be	very
difficult,	especially	verbally,	to	determine	whether	we	are	using	"this"	as	a	pronoun	or	using	it
to	refer	to	the	actual	keyword	identifier.	For	clarity,	I	will	always	use		this		to	refer	to	the
special	keyword,	and	"this"	or	this	or	this	otherwise.

Why		this	?
If	the		this		mechanism	is	so	confusing,	even	to	seasoned	JavaScript	developers,	one	may
wonder	why	it's	even	useful?	Is	it	more	trouble	than	it's	worth?	Before	we	jump	into	the	how,
we	should	examine	the	why.

Let's	try	to	illustrate	the	motivation	and	utility	of		this	:
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function	identify()	{

				return	this.name.toUpperCase();

}

function	speak()	{

				var	greeting	=	"Hello,	I'm	"	+	identify.call(	this	);

				console.log(	greeting	);

}

var	me	=	{

				name:	"Kyle"

};

var	you	=	{

				name:	"Reader"

};

identify.call(	me	);	//	KYLE

identify.call(	you	);	//	READER

speak.call(	me	);	//	Hello,	I'm	KYLE

speak.call(	you	);	//	Hello,	I'm	READER

If	the	how	of	this	snippet	confuses	you,	don't	worry!	We'll	get	to	that	shortly.	Just	set	those
questions	aside	briefly	so	we	can	look	into	the	why	more	clearly.

This	code	snippet	allows	the		identify()		and		speak()		functions	to	be	re-used	against
multiple	context	(	me		and		you	)	objects,	rather	than	needing	a	separate	version	of	the
function	for	each	object.

Instead	of	relying	on		this	,	you	could	have	explicitly	passed	in	a	context	object	to	both
	identify()		and		speak()	.

function	identify(context)	{

				return	context.name.toUpperCase();

}

function	speak(context)	{

				var	greeting	=	"Hello,	I'm	"	+	identify(	context	);

				console.log(	greeting	);

}

identify(	you	);	//	READER

speak(	me	);	//	Hello,	I'm	KYLE

However,	the		this		mechanism	provides	a	more	elegant	way	of	implicitly	"passing	along"
an	object	reference,	leading	to	cleaner	API	design	and	easier	re-use.
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The	more	complex	your	usage	pattern	is,	the	more	clearly	you'll	see	that	passing	context
around	as	an	explicit	parameter	is	often	messier	than	passing	around	a		this		context.
When	we	explore	objects	and	prototypes,	you	will	see	the	helpfulness	of	a	collection	of
functions	being	able	to	automatically	reference	the	proper	context	object.

Confusions
We'll	soon	begin	to	explain	how		this		actually	works,	but	first	we	must	dispel	some
misconceptions	about	how	it	doesn't	actually	work.

The	name	"this"	creates	confusion	when	developers	try	to	think	about	it	too	literally.	There
are	two	meanings	often	assumed,	but	both	are	incorrect.

Itself

The	first	common	temptation	is	to	assume		this		refers	to	the	function	itself.	That's	a
reasonable	grammatical	inference,	at	least.

Why	would	you	want	to	refer	to	a	function	from	inside	itself?	The	most	common	reasons
would	be	things	like	recursion	(calling	a	function	from	inside	itself)	or	having	an	event
handler	that	can	unbind	itself	when	it's	first	called.

Developers	new	to	JS's	mechanisms	often	think	that	referencing	the	function	as	an	object
(all	functions	in	JavaScript	are	objects!)	lets	you	store	state	(values	in	properties)	between
function	calls.	While	this	is	certainly	possible	and	has	some	limited	uses,	the	rest	of	the	book
will	expound	on	many	other	patterns	for	better	places	to	store	state	besides	the	function
object.

But	for	just	a	moment,	we'll	explore	that	pattern,	to	illustrate	how		this		doesn't	let	a	function
get	a	reference	to	itself	like	we	might	have	assumed.

Consider	the	following	code,	where	we	attempt	to	track	how	many	times	a	function	(	foo	)
was	called:
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function	foo(num)	{

				console.log(	"foo:	"	+	num	);

				//	keep	track	of	how	many	times	`foo`	is	called

				this.count++;

}

foo.count	=	0;

var	i;

for	(i=0;	i<10;	i++)	{

				if	(i	>	5)	{

								foo(	i	);

				}

}

//	foo:	6

//	foo:	7

//	foo:	8

//	foo:	9

//	how	many	times	was	`foo`	called?

console.log(	foo.count	);	//	0	--	WTF?

	foo.count		is	still		0	,	even	though	the	four		console.log		statements	clearly	indicate
	foo(..)		was	in	fact	called	four	times.	The	frustration	stems	from	a	too	literal	interpretation
of	what		this		(in		this.count++	)	means.

When	the	code	executes		foo.count	=	0	,	indeed	it's	adding	a	property		count		to	the
function	object		foo	.	But	for	the		this.count		reference	inside	of	the	function,		this		is	not	in
fact	pointing	at	all	to	that	function	object,	and	so	even	though	the	property	names	are	the
same,	the	root	objects	are	different,	and	confusion	ensues.

Note:	A	responsible	developer	should	ask	at	this	point,	"If	I	was	incrementing	a		count	
property	but	it	wasn't	the	one	I	expected,	which		count		was	I	incrementing?"	In	fact,	were
she	to	dig	deeper,	she	would	find	that	she	had	accidentally	created	a	global	variable		count	
(see	Chapter	2	for	how	that	happened!),	and	it	currently	has	the	value		NaN	.	Of	course,	once
she	identifies	this	peculiar	outcome,	she	then	has	a	whole	other	set	of	questions:	"How	was
it	global,	and	why	did	it	end	up		NaN		instead	of	some	proper	count	value?"	(see	Chapter	2).

Instead	of	stopping	at	this	point	and	digging	into	why	the		this		reference	doesn't	seem	to
be	behaving	as	expected,	and	answering	those	tough	but	important	questions,	many
developers	simply	avoid	the	issue	altogether,	and	hack	toward	some	other	solution,	such	as
creating	another	object	to	hold	the		count		property:
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function	foo(num)	{

				console.log(	"foo:	"	+	num	);

				//	keep	track	of	how	many	times	`foo`	is	called

				data.count++;

}

var	data	=	{

				count:	0

};

var	i;

for	(i=0;	i<10;	i++)	{

				if	(i	>	5)	{

								foo(	i	);

				}

}

//	foo:	6

//	foo:	7

//	foo:	8

//	foo:	9

//	how	many	times	was	`foo`	called?

console.log(	data.count	);	//	4

While	it	is	true	that	this	approach	"solves"	the	problem,	unfortunately	it	simply	ignores	the
real	problem	--	lack	of	understanding	what		this		means	and	how	it	works	--	and	instead
falls	back	to	the	comfort	zone	of	a	more	familiar	mechanism:	lexical	scope.

Note:	Lexical	scope	is	a	perfectly	fine	and	useful	mechanism;	I	am	not	belittling	the	use	of	it,
by	any	means	(see	"Scope	&	Closures"	title	of	this	book	series).	But	constantly	guessing	at
how	to	use		this	,	and	usually	being	wrong,	is	not	a	good	reason	to	retreat	back	to	lexical
scope	and	never	learn	why		this		eludes	you.

To	reference	a	function	object	from	inside	itself,		this		by	itself	will	typically	be	insufficient.
You	generally	need	a	reference	to	the	function	object	via	a	lexical	identifier	(variable)	that
points	at	it.

Consider	these	two	functions:
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function	foo()	{

				foo.count	=	4;	//	`foo`	refers	to	itself

}

setTimeout(	function(){

				//	anonymous	function	(no	name),	cannot

				//	refer	to	itself

},	10	);

In	the	first	function,	called	a	"named	function",		foo		is	a	reference	that	can	be	used	to	refer
to	the	function	from	inside	itself.

But	in	the	second	example,	the	function	callback	passed	to		setTimeout(..)		has	no	name
identifier	(so	called	an	"anonymous	function"),	so	there's	no	proper	way	to	refer	to	the
function	object	itself.

Note:	The	old-school	but	now	deprecated	and	frowned-upon		arguments.callee		reference
inside	a	function	also	points	to	the	function	object	of	the	currently	executing	function.	This
reference	is	typically	the	only	way	to	access	an	anonymous	function's	object	from	inside
itself.	The	best	approach,	however,	is	to	avoid	the	use	of	anonymous	functions	altogether,	at
least	for	those	which	require	a	self-reference,	and	instead	use	a	named	function
(expression).		arguments.callee		is	deprecated	and	should	not	be	used.

So	another	solution	to	our	running	example	would	have	been	to	use	the		foo		identifier	as	a
function	object	reference	in	each	place,	and	not	use		this		at	all,	which	works:
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function	foo(num)	{

				console.log(	"foo:	"	+	num	);

				//	keep	track	of	how	many	times	`foo`	is	called

				foo.count++;

}

foo.count	=	0;

var	i;

for	(i=0;	i<10;	i++)	{

				if	(i	>	5)	{

								foo(	i	);

				}

}

//	foo:	6

//	foo:	7

//	foo:	8

//	foo:	9

//	how	many	times	was	`foo`	called?

console.log(	foo.count	);	//	4

However,	that	approach	similarly	side-steps	actual	understanding	of		this		and	relies
entirely	on	the	lexical	scoping	of	variable		foo	.

Yet	another	way	of	approaching	the	issue	is	to	force		this		to	actually	point	at	the		foo	
function	object:
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function	foo(num)	{

				console.log(	"foo:	"	+	num	);

				//	keep	track	of	how	many	times	`foo`	is	called

				//	Note:	`this`	IS	actually	`foo`	now,	based	on

				//	how	`foo`	is	called	(see	below)

				this.count++;

}

foo.count	=	0;

var	i;

for	(i=0;	i<10;	i++)	{

				if	(i	>	5)	{

								//	using	`call(..)`,	we	ensure	the	`this`

								//	points	at	the	function	object	(`foo`)	itself

								foo.call(	foo,	i	);

				}

}

//	foo:	6

//	foo:	7

//	foo:	8

//	foo:	9

//	how	many	times	was	`foo`	called?

console.log(	foo.count	);	//	4

Instead	of	avoiding		this	,	we	embrace	it.	We'll	explain	in	a	little	bit	how	such	techniques
work	much	more	completely,	so	don't	worry	if	you're	still	a	bit	confused!

Its	Scope

The	next	most	common	misconception	about	the	meaning	of		this		is	that	it	somehow	refers
to	the	function's	scope.	It's	a	tricky	question,	because	in	one	sense	there	is	some	truth,	but
in	the	other	sense,	it's	quite	misguided.

To	be	clear,		this		does	not,	in	any	way,	refer	to	a	function's	lexical	scope.	It	is	true	that
internally,	scope	is	kind	of	like	an	object	with	properties	for	each	of	the	available	identifiers.
But	the	scope	"object"	is	not	accessible	to	JavaScript	code.	It's	an	inner	part	of	the	Engine's
implementation.

Consider	code	which	attempts	(and	fails!)	to	cross	over	the	boundary	and	use		this		to
implicitly	refer	to	a	function's	lexical	scope:
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function	foo()	{

				var	a	=	2;

				this.bar();

}

function	bar()	{

				console.log(	this.a	);

}

foo();	//undefined

There's	more	than	one	mistake	in	this	snippet.	While	it	may	seem	contrived,	the	code	you
see	is	a	distillation	of	actual	real-world	code	that	has	been	exchanged	in	public	community
help	forums.	It's	a	wonderful	(if	not	sad)	illustration	of	just	how	misguided		this	
assumptions	can	be.

Firstly,	an	attempt	is	made	to	reference	the		bar()		function	via		this.bar()	.	It	is	almost
certainly	an	accident	that	it	works,	but	we'll	explain	the	how	of	that	shortly.	The	most	natural
way	to	have	invoked		bar()		would	have	been	to	omit	the	leading		this.		and	just	make	a
lexical	reference	to	the	identifier.

However,	the	developer	who	writes	such	code	is	attempting	to	use		this		to	create	a	bridge
between	the	lexical	scopes	of		foo()		and		bar()	,	so	that		bar()		has	access	to	the	variable
	a		in	the	inner	scope	of		foo()	.	No	such	bridge	is	possible.	You	cannot	use	a		this	
reference	to	look	something	up	in	a	lexical	scope.	It	is	not	possible.

Every	time	you	feel	yourself	trying	to	mix	lexical	scope	look-ups	with		this	,	remind	yourself:
there	is	no	bridge.

What's		this	?
Having	set	aside	various	incorrect	assumptions,	let	us	now	turn	our	attention	to	how	the
	this		mechanism	really	works.

We	said	earlier	that		this		is	not	an	author-time	binding	but	a	runtime	binding.	It	is
contextual	based	on	the	conditions	of	the	function's	invocation.		this		binding	has	nothing	to
do	with	where	a	function	is	declared,	but	has	instead	everything	to	do	with	the	manner	in
which	the	function	is	called.

When	a	function	is	invoked,	an	activation	record,	otherwise	known	as	an	execution	context,
is	created.	This	record	contains	information	about	where	the	function	was	called	from	(the
call-stack),	how	the	function	was	invoked,	what	parameters	were	passed,	etc.	One	of	the
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properties	of	this	record	is	the		this		reference	which	will	be	used	for	the	duration	of	that
function's	execution.

In	the	next	chapter,	we	will	learn	to	find	a	function's	call-site	to	determine	how	its	execution
will	bind		this	.

Review	(TL;DR)
	this		binding	is	a	constant	source	of	confusion	for	the	JavaScript	developer	who	does	not
take	the	time	to	learn	how	the	mechanism	actually	works.	Guesses,	trial-and-error,	and	blind
copy-n-paste	from	Stack	Overflow	answers	is	not	an	effective	or	proper	way	to	leverage	this
important		this		mechanism.

To	learn		this	,	you	first	have	to	learn	what		this		is	not,	despite	any	assumptions	or
misconceptions	that	may	lead	you	down	those	paths.		this		is	neither	a	reference	to	the
function	itself,	nor	is	it	a	reference	to	the	function's	lexical	scope.

	this		is	actually	a	binding	that	is	made	when	a	function	is	invoked,	and	what	it	references	is
determined	entirely	by	the	call-site	where	the	function	is	called.
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Chapter	2:	 	this		All	Makes	Sense	Now!
In	Chapter	1,	we	discarded	various	misconceptions	about		this		and	learned	instead	that
	this		is	a	binding	made	for	each	function	invocation,	based	entirely	on	its	call-site	(how	the
function	is	called).

Call-site
To	understand		this		binding,	we	have	to	understand	the	call-site:	the	location	in	code
where	a	function	is	called	(not	where	it's	declared).	We	must	inspect	the	call-site	to	answer
the	question:	what's	this		this		a	reference	to?

Finding	the	call-site	is	generally:	"go	locate	where	a	function	is	called	from",	but	it's	not
always	that	easy,	as	certain	coding	patterns	can	obscure	the	true	call-site.

What's	important	is	to	think	about	the	call-stack	(the	stack	of	functions	that	have	been
called	to	get	us	to	the	current	moment	in	execution).	The	call-site	we	care	about	is	in	the
invocation	before	the	currently	executing	function.

Let's	demonstrate	call-stack	and	call-site:

this	All	Makes	Sense	Now!

314



function	baz()	{

				//	call-stack	is:	`baz`

				//	so,	our	call-site	is	in	the	global	scope

				console.log(	"baz"	);

				bar();	//	<--	call-site	for	`bar`

}

function	bar()	{

				//	call-stack	is:	`baz`	->	`bar`

				//	so,	our	call-site	is	in	`baz`

				console.log(	"bar"	);

				foo();	//	<--	call-site	for	`foo`

}

function	foo()	{

				//	call-stack	is:	`baz`	->	`bar`	->	`foo`

				//	so,	our	call-site	is	in	`bar`

				console.log(	"foo"	);

}

baz();	//	<--	call-site	for	`baz`

Take	care	when	analyzing	code	to	find	the	actual	call-site	(from	the	call-stack),	because	it's
the	only	thing	that	matters	for		this		binding.

Note:	You	can	visualize	a	call-stack	in	your	mind	by	looking	at	the	chain	of	function	calls	in
order,	as	we	did	with	the	comments	in	the	above	snippet.	But	this	is	painstaking	and	error-
prone.	Another	way	of	seeing	the	call-stack	is	using	a	debugger	tool	in	your	browser.	Most
modern	desktop	browsers	have	built-in	developer	tools,	which	includes	a	JS	debugger.	In
the	above	snippet,	you	could	have	set	a	breakpoint	in	the	tools	for	the	first	line	of	the		foo()	
function,	or	simply	inserted	the		debugger;		statement	on	that	first	line.	When	you	run	the
page,	the	debugger	will	pause	at	this	location,	and	will	show	you	a	list	of	the	functions	that
have	been	called	to	get	to	that	line,	which	will	be	your	call	stack.	So,	if	you're	trying	to
diagnose		this		binding,	use	the	developer	tools	to	get	the	call-stack,	then	find	the	second
item	from	the	top,	and	that	will	show	you	the	real	call-site.

Nothing	But	Rules
We	turn	our	attention	now	to	how	the	call-site	determines	where		this		will	point	during	the
execution	of	a	function.
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You	must	inspect	the	call-site	and	determine	which	of	4	rules	applies.	We	will	first	explain
each	of	these	4	rules	independently,	and	then	we	will	illustrate	their	order	of	precedence,	if
multiple	rules	could	apply	to	the	call-site.

Default	Binding

The	first	rule	we	will	examine	comes	from	the	most	common	case	of	function	calls:
standalone	function	invocation.	Think	of	this		this		rule	as	the	default	catch-all	rule	when
none	of	the	other	rules	apply.

Consider	this	code:

function	foo()	{

				console.log(	this.a	);

}

var	a	=	2;

foo();	//	2

The	first	thing	to	note,	if	you	were	not	already	aware,	is	that	variables	declared	in	the	global
scope,	as		var	a	=	2		is,	are	synonymous	with	global-object	properties	of	the	same	name.
They're	not	copies	of	each	other,	they	are	each	other.	Think	of	it	as	two	sides	of	the	same
coin.

Secondly,	we	see	that	when		foo()		is	called,		this.a		resolves	to	our	global	variable		a	.
Why?	Because	in	this	case,	the	default	binding	for		this		applies	to	the	function	call,	and	so
points		this		at	the	global	object.

How	do	we	know	that	the	default	binding	rule	applies	here?	We	examine	the	call-site	to	see
how		foo()		is	called.	In	our	snippet,		foo()		is	called	with	a	plain,	un-decorated	function
reference.	None	of	the	other	rules	we	will	demonstrate	will	apply	here,	so	the	default	binding
applies	instead.

If		strict	mode		is	in	effect,	the	global	object	is	not	eligible	for	the	default	binding,	so	the
	this		is	instead	set	to		undefined	.
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function	foo()	{

				"use	strict";

				console.log(	this.a	);

}

var	a	=	2;

foo();	//	TypeError:	`this`	is	`undefined`

A	subtle	but	important	detail	is:	even	though	the	overall		this		binding	rules	are	entirely
based	on	the	call-site,	the	global	object	is	only	eligible	for	the	default	binding	if	the	contents
of		foo()		are	not	running	in		strict	mode	;	the		strict	mode		state	of	the	call-site	of		foo()	
is	irrelevant.

function	foo()	{

				console.log(	this.a	);

}

var	a	=	2;

(function(){

				"use	strict";

				foo();	//	2

})();

Note:	Intentionally	mixing		strict	mode		and	non-	strict	mode		together	in	your	own	code	is
generally	frowned	upon.	Your	entire	program	should	probably	either	be	Strict	or	non-Strict.
However,	sometimes	you	include	a	third-party	library	that	has	different	Strict'ness	than	your
own	code,	so	care	must	be	taken	over	these	subtle	compatibility	details.

Implicit	Binding

Another	rule	to	consider	is:	does	the	call-site	have	a	context	object,	also	referred	to	as	an
owning	or	containing	object,	though	these	alternate	terms	could	be	slightly	misleading.

Consider:
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function	foo()	{

				console.log(	this.a	);

}

var	obj	=	{

				a:	2,

				foo:	foo

};

obj.foo();	//	2

Firstly,	notice	the	manner	in	which		foo()		is	declared	and	then	later	added	as	a	reference
property	onto		obj	.	Regardless	of	whether		foo()		is	initially	declared	on		obj	,	or	is	added
as	a	reference	later	(as	this	snippet	shows),	in	neither	case	is	the	function	really	"owned"	or
"contained"	by	the		obj		object.

However,	the	call-site	uses	the		obj		context	to	reference	the	function,	so	you	could	say	that
the		obj		object	"owns"	or	"contains"	the	function	reference	at	the	time	the	function	is
called.

Whatever	you	choose	to	call	this	pattern,	at	the	point	that		foo()		is	called,	it's	preceded	by
an	object	reference	to		obj	.	When	there	is	a	context	object	for	a	function	reference,	the
implicit	binding	rule	says	that	it's	that	object	which	should	be	used	for	the	function	call's
	this		binding.

Because		obj		is	the		this		for	the		foo()		call,		this.a		is	synonymous	with		obj.a	.

Only	the	top/last	level	of	an	object	property	reference	chain	matters	to	the	call-site.	For
instance:

function	foo()	{

				console.log(	this.a	);

}

var	obj2	=	{

				a:	42,

				foo:	foo

};

var	obj1	=	{

				a:	2,

				obj2:	obj2

};

obj1.obj2.foo();	//	42
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Implicitly	Lost

One	of	the	most	common	frustrations	that		this		binding	creates	is	when	an	implicitly	bound
function	loses	that	binding,	which	usually	means	it	falls	back	to	the	default	binding,	of	either
the	global	object	or		undefined	,	depending	on		strict	mode	.

Consider:

function	foo()	{

				console.log(	this.a	);

}

var	obj	=	{

				a:	2,

				foo:	foo

};

var	bar	=	obj.foo;	//	function	reference/alias!

var	a	=	"oops,	global";	//	`a`	also	property	on	global	object

bar();	//	"oops,	global"

Even	though		bar		appears	to	be	a	reference	to		obj.foo	,	in	fact,	it's	really	just	another
reference	to		foo		itself.	Moreover,	the	call-site	is	what	matters,	and	the	call-site	is		bar()	,
which	is	a	plain,	un-decorated	call	and	thus	the	default	binding	applies.

The	more	subtle,	more	common,	and	more	unexpected	way	this	occurs	is	when	we	consider
passing	a	callback	function:

function	foo()	{

				console.log(	this.a	);

}

function	doFoo(fn)	{

				//	`fn`	is	just	another	reference	to	`foo`

				fn();	//	<--	call-site!

}

var	obj	=	{

				a:	2,

				foo:	foo

};

var	a	=	"oops,	global";	//	`a`	also	property	on	global	object

doFoo(	obj.foo	);	//	"oops,	global"
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Parameter	passing	is	just	an	implicit	assignment,	and	since	we're	passing	a	function,	it's	an
implicit	reference	assignment,	so	the	end	result	is	the	same	as	the	previous	snippet.

What	if	the	function	you're	passing	your	callback	to	is	not	your	own,	but	built-in	to	the
language?	No	difference,	same	outcome.

function	foo()	{

				console.log(	this.a	);

}

var	obj	=	{

				a:	2,

				foo:	foo

};

var	a	=	"oops,	global";	//	`a`	also	property	on	global	object

setTimeout(	obj.foo,	100	);	//	"oops,	global"

Think	about	this	crude	theoretical	pseudo-implementation	of		setTimeout()		provided	as	a
built-in	from	the	JavaScript	environment:

function	setTimeout(fn,delay)	{

				//	wait	(somehow)	for	`delay`	milliseconds

				fn();	//	<--	call-site!

}

It's	quite	common	that	our	function	callbacks	lose	their		this		binding,	as	we've	just	seen.
But	another	way	that		this		can	surprise	us	is	when	the	function	we've	passed	our	callback
to	intentionally	changes	the		this		for	the	call.	Event	handlers	in	popular	JavaScript	libraries
are	quite	fond	of	forcing	your	callback	to	have	a		this		which	points	to,	for	instance,	the
DOM	element	that	triggered	the	event.	While	that	may	sometimes	be	useful,	other	times	it
can	be	downright	infuriating.	Unfortunately,	these	tools	rarely	let	you	choose.

Either	way	the		this		is	changed	unexpectedly,	you	are	not	really	in	control	of	how	your
callback	function	reference	will	be	executed,	so	you	have	no	way	(yet)	of	controlling	the	call-
site	to	give	your	intended	binding.	We'll	see	shortly	a	way	of	"fixing"	that	problem	by	fixing
the		this	.

Explicit	Binding

With	implicit	binding	as	we	just	saw,	we	had	to	mutate	the	object	in	question	to	include	a
reference	on	itself	to	the	function,	and	use	this	property	function	reference	to	indirectly
(implicitly)	bind		this		to	the	object.
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But,	what	if	you	want	to	force	a	function	call	to	use	a	particular	object	for	the		this		binding,
without	putting	a	property	function	reference	on	the	object?

"All"	functions	in	the	language	have	some	utilities	available	to	them	(via	their		[[Prototype]]	
--	more	on	that	later)	which	can	be	useful	for	this	task.	Specifically,	functions	have		call(..)	
and		apply(..)		methods.	Technically,	JavaScript	host	environments	sometimes	provide
functions	which	are	special	enough	(a	kind	way	of	putting	it!)	that	they	do	not	have	such
functionality.	But	those	are	few.	The	vast	majority	of	functions	provided,	and	certainly	all
functions	you	will	create,	do	have	access	to		call(..)		and		apply(..)	.

How	do	these	utilities	work?	They	both	take,	as	their	first	parameter,	an	object	to	use	for	the
	this	,	and	then	invoke	the	function	with	that		this		specified.	Since	you	are	directly	stating
what	you	want	the		this		to	be,	we	call	it	explicit	binding.

Consider:

function	foo()	{

				console.log(	this.a	);

}

var	obj	=	{

				a:	2

};

foo.call(	obj	);	//	2

Invoking		foo		with	explicit	binding	by		foo.call(..)		allows	us	to	force	its		this		to	be		obj	.

If	you	pass	a	simple	primitive	value	(of	type		string	,		boolean	,	or		number	)	as	the		this	
binding,	the	primitive	value	is	wrapped	in	its	object-form	(	new	String(..)	,		new	Boolean(..)	,
or		new	Number(..)	,	respectively).	This	is	often	referred	to	as	"boxing".

Note:	With	respect	to		this		binding,		call(..)		and		apply(..)		are	identical.	They	do
behave	differently	with	their	additional	parameters,	but	that's	not	something	we	care	about
presently.

Unfortunately,	explicit	binding	alone	still	doesn't	offer	any	solution	to	the	issue	mentioned
previously,	of	a	function	"losing"	its	intended		this		binding,	or	just	having	it	paved	over	by	a
framework,	etc.

Hard	Binding

But	a	variation	pattern	around	explicit	binding	actually	does	the	trick.	Consider:
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function	foo()	{

				console.log(	this.a	);

}

var	obj	=	{

				a:	2

};

var	bar	=	function()	{

				foo.call(	obj	);

};

bar();	//	2

setTimeout(	bar,	100	);	//	2

//	`bar`	hard	binds	`foo`'s	`this`	to	`obj`

//	so	that	it	cannot	be	overriden

bar.call(	window	);	//	2

Let's	examine	how	this	variation	works.	We	create	a	function		bar()		which,	internally,
manually	calls		foo.call(obj)	,	thereby	forcibly	invoking		foo		with		obj		binding	for		this	.
No	matter	how	you	later	invoke	the	function		bar	,	it	will	always	manually	invoke		foo		with
	obj	.	This	binding	is	both	explicit	and	strong,	so	we	call	it	hard	binding.

The	most	typical	way	to	wrap	a	function	with	a	hard	binding	creates	a	pass-thru	of	any
arguments	passed	and	any	return	value	received:

function	foo(something)	{

				console.log(	this.a,	something	);

				return	this.a	+	something;

}

var	obj	=	{

				a:	2

};

var	bar	=	function()	{

				return	foo.apply(	obj,	arguments	);

};

var	b	=	bar(	3	);	//	2	3

console.log(	b	);	//	5

Another	way	to	express	this	pattern	is	to	create	a	re-usable	helper:
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function	foo(something)	{

				console.log(	this.a,	something	);

				return	this.a	+	something;

}

//	simple	`bind`	helper

function	bind(fn,	obj)	{

				return	function()	{

								return	fn.apply(	obj,	arguments	);

				};

}

var	obj	=	{

				a:	2

};

var	bar	=	bind(	foo,	obj	);

var	b	=	bar(	3	);	//	2	3

console.log(	b	);	//	5

Since	hard	binding	is	such	a	common	pattern,	it's	provided	with	a	built-in	utility	as	of	ES5:
	Function.prototype.bind	,	and	it's	used	like	this:

function	foo(something)	{

				console.log(	this.a,	something	);

				return	this.a	+	something;

}

var	obj	=	{

				a:	2

};

var	bar	=	foo.bind(	obj	);

var	b	=	bar(	3	);	//	2	3

console.log(	b	);	//	5

	bind(..)		returns	a	new	function	that	is	hard-coded	to	call	the	original	function	with	the
	this		context	set	as	you	specified.

Note:	As	of	ES6,	the	hard-bound	function	produced	by		bind(..)		has	a		.name		property
that	derives	from	the	original	target	function.	For	example:		bar	=	foo.bind(..)		should	have
a		bar.name		value	of		"bound	foo"	,	which	is	the	function	call	name	that	should	show	up	in	a
stack	trace.

API	Call	"Contexts"
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Many	libraries'	functions,	and	indeed	many	new	built-in	functions	in	the	JavaScript	language
and	host	environment,	provide	an	optional	parameter,	usually	called	"context",	which	is
designed	as	a	work-around	for	you	not	having	to	use		bind(..)		to	ensure	your	callback
function	uses	a	particular		this	.

For	instance:

function	foo(el)	{

				console.log(	el,	this.id	);

}

var	obj	=	{

				id:	"awesome"

};

//	use	`obj`	as	`this`	for	`foo(..)`	calls

[1,	2,	3].forEach(	foo,	obj	);	//	1	awesome		2	awesome		3	awesome

Internally,	these	various	functions	almost	certainly	use	explicit	binding	via		call(..)		or
	apply(..)	,	saving	you	the	trouble.

	new		Binding

The	fourth	and	final	rule	for		this		binding	requires	us	to	re-think	a	very	common
misconception	about	functions	and	objects	in	JavaScript.

In	traditional	class-oriented	languages,	"constructors"	are	special	methods	attached	to
classes,	that	when	the	class	is	instantiated	with	a		new		operator,	the	constructor	of	that
class	is	called.	This	usually	looks	something	like:

something	=	new	MyClass(..);

JavaScript	has	a		new		operator,	and	the	code	pattern	to	use	it	looks	basically	identical	to
what	we	see	in	those	class-oriented	languages;	most	developers	assume	that	JavaScript's
mechanism	is	doing	something	similar.	However,	there	really	is	no	connection	to	class-
oriented	functionality	implied	by		new		usage	in	JS.

First,	let's	re-define	what	a	"constructor"	in	JavaScript	is.	In	JS,	constructors	are	just
functions	that	happen	to	be	called	with	the		new		operator	in	front	of	them.	They	are	not
attached	to	classes,	nor	are	they	instantiating	a	class.	They	are	not	even	special	types	of
functions.	They're	just	regular	functions	that	are,	in	essence,	hijacked	by	the	use	of		new		in
their	invocation.

For	example,	the		Number(..)		function	acting	as	a	constructor,	quoting	from	the	ES5.1	spec:
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15.7.2	The	Number	Constructor

When	Number	is	called	as	part	of	a	new	expression	it	is	a	constructor:	it	initialises	the
newly	created	object.

So,	pretty	much	any	ol'	function,	including	the	built-in	object	functions	like		Number(..)		(see
Chapter	3)	can	be	called	with		new		in	front	of	it,	and	that	makes	that	function	call	a
constructor	call.	This	is	an	important	but	subtle	distinction:	there's	really	no	such	thing	as
"constructor	functions",	but	rather	construction	calls	of	functions.

When	a	function	is	invoked	with		new		in	front	of	it,	otherwise	known	as	a	constructor	call,	the
following	things	are	done	automatically:

1.	 a	brand	new	object	is	created	(aka,	constructed)	out	of	thin	air
2.	 the	newly	constructed	object	is		[[Prototype]]	-linked
3.	 the	newly	constructed	object	is	set	as	the		this		binding	for	that	function	call
4.	 unless	the	function	returns	its	own	alternate	object,	the		new	-invoked	function	call	will

automatically	return	the	newly	constructed	object.

Steps	1,	3,	and	4	apply	to	our	current	discussion.	We'll	skip	over	step	2	for	now	and	come
back	to	it	in	Chapter	5.

Consider	this	code:

function	foo(a)	{

				this.a	=	a;

}

var	bar	=	new	foo(	2	);

console.log(	bar.a	);	//	2

By	calling		foo(..)		with		new		in	front	of	it,	we've	constructed	a	new	object	and	set	that	new
object	as	the		this		for	the	call	of		foo(..)	.	So		new		is	the	final	way	that	a	function	call's
	this		can	be	bound.	We'll	call	this	new	binding.

Everything	In	Order
So,	now	we've	uncovered	the	4	rules	for	binding		this		in	function	calls.	All	you	need	to	do	is
find	the	call-site	and	inspect	it	to	see	which	rule	applies.	But,	what	if	the	call-site	has	multiple
eligible	rules?	There	must	be	an	order	of	precedence	to	these	rules,	and	so	we	will	next
demonstrate	what	order	to	apply	the	rules.

It	should	be	clear	that	the	default	binding	is	the	lowest	priority	rule	of	the	4.	So	we'll	just	set
that	one	aside.
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Which	is	more	precedent,	implicit	binding	or	explicit	binding?	Let's	test	it:

function	foo()	{

				console.log(	this.a	);

}

var	obj1	=	{

				a:	2,

				foo:	foo

};

var	obj2	=	{

				a:	3,

				foo:	foo

};

obj1.foo();	//	2

obj2.foo();	//	3

obj1.foo.call(	obj2	);	//	3

obj2.foo.call(	obj1	);	//	2

So,	explicit	binding	takes	precedence	over	implicit	binding,	which	means	you	should	ask
first	if	explicit	binding	applies	before	checking	for	implicit	binding.

Now,	we	just	need	to	figure	out	where	new	binding	fits	in	the	precedence.

function	foo(something)	{

				this.a	=	something;

}

var	obj1	=	{

				foo:	foo

};

var	obj2	=	{};

obj1.foo(	2	);

console.log(	obj1.a	);	//	2

obj1.foo.call(	obj2,	3	);

console.log(	obj2.a	);	//	3

var	bar	=	new	obj1.foo(	4	);

console.log(	obj1.a	);	//	2

console.log(	bar.a	);	//	4

OK,	new	binding	is	more	precedent	than	implicit	binding.	But	do	you	think	new	binding	is
more	or	less	precedent	than	explicit	binding?
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Note:		new		and		call	/	apply		cannot	be	used	together,	so		new	foo.call(obj1)		is	not
allowed,	to	test	new	binding	directly	against	explicit	binding.	But	we	can	still	use	a	hard
binding	to	test	the	precedence	of	the	two	rules.

Before	we	explore	that	in	a	code	listing,	think	back	to	how	hard	binding	physically	works,
which	is	that		Function.prototype.bind(..)		creates	a	new	wrapper	function	that	is	hard-
coded	to	ignore	its	own		this		binding	(whatever	it	may	be),	and	use	a	manual	one	we
provide.

By	that	reasoning,	it	would	seem	obvious	to	assume	that	hard	binding	(which	is	a	form	of
explicit	binding)	is	more	precedent	than	new	binding,	and	thus	cannot	be	overridden	with
	new	.

Let's	check:

function	foo(something)	{

				this.a	=	something;

}

var	obj1	=	{};

var	bar	=	foo.bind(	obj1	);

bar(	2	);

console.log(	obj1.a	);	//	2

var	baz	=	new	bar(	3	);

console.log(	obj1.a	);	//	2

console.log(	baz.a	);	//	3

Whoa!		bar		is	hard-bound	against		obj1	,	but		new	bar(3)		did	not	change		obj1.a		to	be		3	
as	we	would	have	expected.	Instead,	the	hard	bound	(to		obj1	)	call	to		bar(..)		is	able	to
be	overridden	with		new	.	Since		new		was	applied,	we	got	the	newly	created	object	back,
which	we	named		baz	,	and	we	see	in	fact	that		baz.a		has	the	value		3	.

This	should	be	surprising	if	you	go	back	to	our	"fake"	bind	helper:

function	bind(fn,	obj)	{

				return	function()	{

								fn.apply(	obj,	arguments	);

				};

}

If	you	reason	about	how	the	helper's	code	works,	it	does	not	have	a	way	for	a		new		operator
call	to	override	the	hard-binding	to		obj		as	we	just	observed.
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But	the	built-in		Function.prototype.bind(..)		as	of	ES5	is	more	sophisticated,	quite	a	bit	so
in	fact.	Here	is	the	(slightly	reformatted)	polyfill	provided	by	the	MDN	page	for		bind(..)	:

if	(!Function.prototype.bind)	{

				Function.prototype.bind	=	function(oThis)	{

								if	(typeof	this	!==	"function")	{

												//	closest	thing	possible	to	the	ECMAScript	5

												//	internal	IsCallable	function

												throw	new	TypeError(	"Function.prototype.bind	-	what	"	+

																"is	trying	to	be	bound	is	not	callable"

												);

								}

								var	aArgs	=	Array.prototype.slice.call(	arguments,	1	),

												fToBind	=	this,

												fNOP	=	function(){},

												fBound	=	function(){

																return	fToBind.apply(

																				(

																								this	instanceof	fNOP	&&

																								oThis	?	this	:	oThis

																				),

																				aArgs.concat(	Array.prototype.slice.call(	arguments	)	)

																);

												}

								;

								fNOP.prototype	=	this.prototype;

								fBound.prototype	=	new	fNOP();

								return	fBound;

				};

}

Note:	The		bind(..)		polyfill	shown	above	differs	from	the	built-in		bind(..)		in	ES5	with
respect	to	hard-bound	functions	that	will	be	used	with		new		(see	below	for	why	that's	useful).
Because	the	polyfill	cannot	create	a	function	without	a		.prototype		as	the	built-in	utility
does,	there's	some	nuanced	indirection	to	approximate	the	same	behavior.	Tread	carefully	if
you	plan	to	use		new		with	a	hard-bound	function	and	you	rely	on	this	polyfill.

The	part	that's	allowing		new		overriding	is:

this	instanceof	fNOP	&&

oThis	?	this	:	oThis

//	...	and:

fNOP.prototype	=	this.prototype;

fBound.prototype	=	new	fNOP();
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We	won't	actually	dive	into	explaining	how	this	trickery	works	(it's	complicated	and	beyond
our	scope	here),	but	essentially	the	utility	determines	whether	or	not	the	hard-bound	function
has	been	called	with		new		(resulting	in	a	newly	constructed	object	being	its		this	),	and	if
so,	it	uses	that	newly	created		this		rather	than	the	previously	specified	hard	binding	for
	this	.

Why	is		new		being	able	to	override	hard	binding	useful?

The	primary	reason	for	this	behavior	is	to	create	a	function	(that	can	be	used	with		new		for
constructing	objects)	that	essentially	ignores	the		this		hard	binding	but	which	presets	some
or	all	of	the	function's	arguments.	One	of	the	capabilities	of		bind(..)		is	that	any	arguments
passed	after	the	first		this		binding	argument	are	defaulted	as	standard	arguments	to	the
underlying	function	(technically	called	"partial	application",	which	is	a	subset	of	"currying").

For	example:

function	foo(p1,p2)	{

				this.val	=	p1	+	p2;

}

//	using	`null`	here	because	we	don't	care	about

//	the	`this`	hard-binding	in	this	scenario,	and

//	it	will	be	overridden	by	the	`new`	call	anyway!

var	bar	=	foo.bind(	null,	"p1"	);

var	baz	=	new	bar(	"p2"	);

baz.val;	//	p1p2

Determining		this	

Now,	we	can	summarize	the	rules	for	determining		this		from	a	function	call's	call-site,	in
their	order	of	precedence.	Ask	these	questions	in	this	order,	and	stop	when	the	first	rule
applies.

1.	 Is	the	function	called	with		new		(new	binding)?	If	so,		this		is	the	newly	constructed
object.

	var	bar	=	new	foo()	

2.	 Is	the	function	called	with		call		or		apply		(explicit	binding),	even	hidden	inside	a
	bind		hard	binding?	If	so,		this		is	the	explicitly	specified	object.

	var	bar	=	foo.call(	obj2	)	

3.	 Is	the	function	called	with	a	context	(implicit	binding),	otherwise	known	as	an	owning
or	containing	object?	If	so,		this		is	that	context	object.
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	var	bar	=	obj1.foo()	

4.	 Otherwise,	default	the		this		(default	binding).	If	in		strict	mode	,	pick		undefined	,
otherwise	pick	the		global		object.

	var	bar	=	foo()	

That's	it.	That's	all	it	takes	to	understand	the	rules	of		this		binding	for	normal	function	calls.
Well...	almost.

Binding	Exceptions
As	usual,	there	are	some	exceptions	to	the	"rules".

The		this	-binding	behavior	can	in	some	scenarios	be	surprising,	where	you	intended	a
different	binding	but	you	end	up	with	binding	behavior	from	the	default	binding	rule	(see
previous).

Ignored		this	

If	you	pass		null		or		undefined		as	a		this		binding	parameter	to		call	,		apply	,	or		bind	,
those	values	are	effectively	ignored,	and	instead	the	default	binding	rule	applies	to	the
invocation.

function	foo()	{

				console.log(	this.a	);

}

var	a	=	2;

foo.call(	null	);	//	2

Why	would	you	intentionally	pass	something	like		null		for	a		this		binding?

It's	quite	common	to	use		apply(..)		for	spreading	out	arrays	of	values	as	parameters	to	a
function	call.	Similarly,		bind(..)		can	curry	parameters	(pre-set	values),	which	can	be	very
helpful.
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function	foo(a,b)	{

				console.log(	"a:"	+	a	+	",	b:"	+	b	);

}

//	spreading	out	array	as	parameters

foo.apply(	null,	[2,	3]	);	//	a:2,	b:3

//	currying	with	`bind(..)`

var	bar	=	foo.bind(	null,	2	);

bar(	3	);	//	a:2,	b:3

Both	these	utilities	require	a		this		binding	for	the	first	parameter.	If	the	functions	in	question
don't	care	about		this	,	you	need	a	placeholder	value,	and		null		might	seem	like	a
reasonable	choice	as	shown	in	this	snippet.

Note:	We	don't	cover	it	in	this	book,	but	ES6	has	the		...		spread	operator	which	will	let	you
syntactically	"spread	out"	an	array	as	parameters	without	needing		apply(..)	,	such	as
	foo(...[1,2])	,	which	amounts	to		foo(1,2)		--	syntactically	avoiding	a		this		binding	if	it's
unnecessary.	Unfortunately,	there's	no	ES6	syntactic	substitute	for	currying,	so	the		this	
parameter	of	the		bind(..)		call	still	needs	attention.

However,	there's	a	slight	hidden	"danger"	in	always	using		null		when	you	don't	care	about
the		this		binding.	If	you	ever	use	that	against	a	function	call	(for	instance,	a	third-party
library	function	that	you	don't	control),	and	that	function	does	make	a		this		reference,	the
default	binding	rule	means	it	might	inadvertently	reference	(or	worse,	mutate!)	the		global	
object	(	window		in	the	browser).

Obviously,	such	a	pitfall	can	lead	to	a	variety	of	very	difficult	to	diagnose/track-down	bugs.

Safer		this	

Perhaps	a	somewhat	"safer"	practice	is	to	pass	a	specifically	set	up	object	for		this		which
is	guaranteed	not	to	be	an	object	that	can	create	problematic	side	effects	in	your	program.
Borrowing	terminology	from	networking	(and	the	military),	we	can	create	a	"DMZ"	(de-
militarized	zone)	object	--	nothing	more	special	than	a	completely	empty,	non-delegated	(see
Chapters	5	and	6)	object.

If	we	always	pass	a	DMZ	object	for	ignored		this		bindings	we	don't	think	we	need	to	care
about,	we're	sure	any	hidden/unexpected	usage	of		this		will	be	restricted	to	the	empty
object,	which	insulates	our	program's		global		object	from	side-effects.

Since	this	object	is	totally	empty,	I	personally	like	to	give	it	the	variable	name		ø		(the
lowercase	mathematical	symbol	for	the	empty	set).	On	many	keyboards	(like	US-layout	on
Mac),	this	symbol	is	easily	typed	with		⌥	+	o		(option+	o	).	Some	systems	also	let	you	set
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up	hotkeys	for	specific	symbols.	If	you	don't	like	the		ø		symbol,	or	your	keyboard	doesn't
make	that	as	easy	to	type,	you	can	of	course	call	it	whatever	you	want.

Whatever	you	call	it,	the	easiest	way	to	set	it	up	as	totally	empty	is		Object.create(null)	
(see	Chapter	5).		Object.create(null)		is	similar	to		{	}	,	but	without	the	delegation	to
	Object.prototype	,	so	it's	"more	empty"	than	just		{	}	.

function	foo(a,b)	{

				console.log(	"a:"	+	a	+	",	b:"	+	b	);

}

//	our	DMZ	empty	object

var	ø	=	Object.create(	null	);

//	spreading	out	array	as	parameters

foo.apply(	ø,	[2,	3]	);	//	a:2,	b:3

//	currying	with	`bind(..)`

var	bar	=	foo.bind(	ø,	2	);

bar(	3	);	//	a:2,	b:3

Not	only	functionally	"safer",	there's	a	sort	of	stylistic	benefit	to		ø	,	in	that	it	semantically
conveys	"I	want	the		this		to	be	empty"	a	little	more	clearly	than		null		might.	But	again,
name	your	DMZ	object	whatever	you	prefer.

Indirection

Another	thing	to	be	aware	of	is	you	can	(intentionally	or	not!)	create	"indirect	references"	to
functions,	and	in	those	cases,	when	that	function	reference	is	invoked,	the	default	binding
rule	also	applies.

One	of	the	most	common	ways	that	indirect	references	occur	is	from	an	assignment:

function	foo()	{

				console.log(	this.a	);

}

var	a	=	2;

var	o	=	{	a:	3,	foo:	foo	};

var	p	=	{	a:	4	};

o.foo();	//	3

(p.foo	=	o.foo)();	//	2
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The	result	value	of	the	assignment	expression		p.foo	=	o.foo		is	a	reference	to	just	the
underlying	function	object.	As	such,	the	effective	call-site	is	just		foo()	,	not		p.foo()		or
	o.foo()		as	you	might	expect.	Per	the	rules	above,	the	default	binding	rule	applies.

Reminder:	regardless	of	how	you	get	to	a	function	invocation	using	the	default	binding	rule,
the		strict	mode		status	of	the	contents	of	the	invoked	function	making	the		this		reference
--	not	the	function	call-site	--	determines	the	default	binding	value:	either	the		global		object
if	in	non-	strict	mode		or		undefined		if	in		strict	mode	.

Softening	Binding

We	saw	earlier	that	hard	binding	was	one	strategy	for	preventing	a	function	call	falling	back
to	the	default	binding	rule	inadvertently,	by	forcing	it	to	be	bound	to	a	specific		this		(unless
you	use		new		to	override	it!).	The	problem	is,	hard-binding	greatly	reduces	the	flexibility	of	a
function,	preventing	manual		this		override	with	either	the	implicit	binding	or	even
subsequent	explicit	binding	attempts.

It	would	be	nice	if	there	was	a	way	to	provide	a	different	default	for	default	binding	(not
	global		or		undefined	),	while	still	leaving	the	function	able	to	be	manually		this		bound	via
implicit	binding	or	explicit	binding	techniques.

We	can	construct	a	so-called	soft	binding	utility	which	emulates	our	desired	behavior.

if	(!Function.prototype.softBind)	{

				Function.prototype.softBind	=	function(obj)	{

								var	fn	=	this,

												curried	=	[].slice.call(	arguments,	1	),

												bound	=	function	bound()	{

																return	fn.apply(

																				(!this	||

																								(typeof	window	!==	"undefined"	&&

																												this	===	window)	||

																								(typeof	global	!==	"undefined"	&&

																												this	===	global)

																				)	?	obj	:	this,

																				curried.concat.apply(	curried,	arguments	)

																);

												};

								bound.prototype	=	Object.create(	fn.prototype	);

								return	bound;

				};

}

The		softBind(..)		utility	provided	here	works	similarly	to	the	built-in	ES5		bind(..)		utility,
except	with	our	soft	binding	behavior.	It	wraps	the	specified	function	in	logic	that	checks	the
	this		at	call-time	and	if	it's		global		or		undefined	,	uses	a	pre-specified	alternate	default
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(	obj	).	Otherwise	the		this		is	left	untouched.	It	also	provides	optional	currying	(see	the
	bind(..)		discussion	earlier).

Let's	demonstrate	its	usage:

function	foo()	{

			console.log("name:	"	+	this.name);

}

var	obj	=	{	name:	"obj"	},

				obj2	=	{	name:	"obj2"	},

				obj3	=	{	name:	"obj3"	};

var	fooOBJ	=	foo.softBind(	obj	);

fooOBJ();	//	name:	obj

obj2.foo	=	foo.softBind(obj);

obj2.foo();	//	name:	obj2			<----	look!!!

fooOBJ.call(	obj3	);	//	name:	obj3			<----	look!

setTimeout(	obj2.foo,	10	);	//	name:	obj			<----	falls	back	to	soft-binding

The	soft-bound	version	of	the		foo()		function	can	be	manually		this	-bound	to		obj2		or
	obj3		as	shown,	but	it	falls	back	to		obj		if	the	default	binding	would	otherwise	apply.

Lexical		this	
Normal	functions	abide	by	the	4	rules	we	just	covered.	But	ES6	introduces	a	special	kind	of
function	that	does	not	use	these	rules:	arrow-function.

Arrow-functions	are	signified	not	by	the		function		keyword,	but	by	the		=>		so	called	"fat
arrow"	operator.	Instead	of	using	the	four	standard		this		rules,	arrow-functions	adopt	the
	this		binding	from	the	enclosing	(function	or	global)	scope.

Let's	illustrate	arrow-function	lexical	scope:
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function	foo()	{

				//	return	an	arrow	function

				return	(a)	=>	{

								//	`this`	here	is	lexically	adopted	from	`foo()`

								console.log(	this.a	);

				};

}

var	obj1	=	{

				a:	2

};

var	obj2	=	{

				a:	3

};

var	bar	=	foo.call(	obj1	);

bar.call(	obj2	);	//	2,	not	3!

The	arrow-function	created	in		foo()		lexically	captures	whatever		foo()	s		this		is	at	its
call-time.	Since		foo()		was		this	-bound	to		obj1	,		bar		(a	reference	to	the	returned	arrow-
function)	will	also	be		this	-bound	to		obj1	.	The	lexical	binding	of	an	arrow-function	cannot
be	overridden	(even	with		new	!).

The	most	common	use-case	will	likely	be	in	the	use	of	callbacks,	such	as	event	handlers	or
timers:

function	foo()	{

				setTimeout(()	=>	{

								//	`this`	here	is	lexically	adopted	from	`foo()`

								console.log(	this.a	);

				},100);

}

var	obj	=	{

				a:	2

};

foo.call(	obj	);	//	2

While	arrow-functions	provide	an	alternative	to	using		bind(..)		on	a	function	to	ensure	its
	this	,	which	can	seem	attractive,	it's	important	to	note	that	they	essentially	are	disabling	the
traditional		this		mechanism	in	favor	of	more	widely-understood	lexical	scoping.	Pre-ES6,
we	already	have	a	fairly	common	pattern	for	doing	so,	which	is	basically	almost
indistinguishable	from	the	spirit	of	ES6	arrow-functions:
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function	foo()	{

				var	self	=	this;	//	lexical	capture	of	`this`

				setTimeout(	function(){

								console.log(	self.a	);

				},	100	);

}

var	obj	=	{

				a:	2

};

foo.call(	obj	);	//	2

While		self	=	this		and	arrow-functions	both	seem	like	good	"solutions"	to	not	wanting	to
use		bind(..)	,	they	are	essentially	fleeing	from		this		instead	of	understanding	and
embracing	it.

If	you	find	yourself	writing		this	-style	code,	but	most	or	all	the	time,	you	defeat	the		this	
mechanism	with	lexical		self	=	this		or	arrow-function	"tricks",	perhaps	you	should	either:

1.	 Use	only	lexical	scope	and	forget	the	false	pretense	of		this	-style	code.

2.	 Embrace		this	-style	mechanisms	completely,	including	using		bind(..)		where
necessary,	and	try	to	avoid		self	=	this		and	arrow-function	"lexical	this"	tricks.

A	program	can	effectively	use	both	styles	of	code	(lexical	and		this	),	but	inside	of	the	same
function,	and	indeed	for	the	same	sorts	of	look-ups,	mixing	the	two	mechanisms	is	usually
asking	for	harder-to-maintain	code,	and	probably	working	too	hard	to	be	clever.

Review	(TL;DR)
Determining	the		this		binding	for	an	executing	function	requires	finding	the	direct	call-site
of	that	function.	Once	examined,	four	rules	can	be	applied	to	the	call-site,	in	this	order	of
precedence:

1.	 Called	with		new	?	Use	the	newly	constructed	object.

2.	 Called	with		call		or		apply		(or		bind	)?	Use	the	specified	object.

3.	 Called	with	a	context	object	owning	the	call?	Use	that	context	object.

4.	 Default:		undefined		in		strict	mode	,	global	object	otherwise.

Be	careful	of	accidental/unintentional	invoking	of	the	default	binding	rule.	In	cases	where	you
want	to	"safely"	ignore	a		this		binding,	a	"DMZ"	object	like		ø	=	Object.create(null)		is	a
good	placeholder	value	that	protects	the		global		object	from	unintended	side-effects.
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Instead	of	the	four	standard	binding	rules,	ES6	arrow-functions	use	lexical	scoping	for		this	
binding,	which	means	they	adopt	the		this		binding	(whatever	it	is)	from	its	enclosing
function	call.	They	are	essentially	a	syntactic	replacement	of		self	=	this		in	pre-ES6
coding.
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Chapter	3:	Objects
In	Chapters	1	and	2,	we	explained	how	the		this		binding	points	to	various	objects
depending	on	the	call-site	of	the	function	invocation.	But	what	exactly	are	objects,	and	why
do	we	need	to	point	to	them?	We	will	explore	objects	in	detail	in	this	chapter.

Syntax
Objects	come	in	two	forms:	the	declarative	(literal)	form,	and	the	constructed	form.

The	literal	syntax	for	an	object	looks	like	this:

var	myObj	=	{

				key:	value

				//	...

};

The	constructed	form	looks	like	this:

var	myObj	=	new	Object();

myObj.key	=	value;

The	constructed	form	and	the	literal	form	result	in	exactly	the	same	sort	of	object.	The	only
difference	really	is	that	you	can	add	one	or	more	key/value	pairs	to	the	literal	declaration,
whereas	with	constructed-form	objects,	you	must	add	the	properties	one-by-one.

Note:	It's	extremely	uncommon	to	use	the	"constructed	form"	for	creating	objects	as	just
shown.	You	would	pretty	much	always	want	to	use	the	literal	syntax	form.	The	same	will	be
true	of	most	of	the	built-in	objects	(see	below).

Type
Objects	are	the	general	building	block	upon	which	much	of	JS	is	built.	They	are	one	of	the	6
primary	types	(called	"language	types"	in	the	specification)	in	JS:

	string	

	number	

	boolean	

	null	
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	undefined	

	object	

Note	that	the	simple	primitives	(	string	,		number	,		boolean	,		null	,	and		undefined	)	are	not
themselves		objects	.		null		is	sometimes	referred	to	as	an	object	type,	but	this
misconception	stems	from	a	bug	in	the	language	which	causes		typeof	null		to	return	the
string		"object"		incorrectly	(and	confusingly).	In	fact,		null		is	its	own	primitive	type.

It's	a	common	mis-statement	that	"everything	in	JavaScript	is	an	object".	This	is
clearly	not	true.

By	contrast,	there	are	a	few	special	object	sub-types,	which	we	can	refer	to	as	complex
primitives.

	function		is	a	sub-type	of	object	(technically,	a	"callable	object").	Functions	in	JS	are	said	to
be	"first	class"	in	that	they	are	basically	just	normal	objects	(with	callable	behavior	semantics
bolted	on),	and	so	they	can	be	handled	like	any	other	plain	object.

Arrays	are	also	a	form	of	objects,	with	extra	behavior.	The	organization	of	contents	in	arrays
is	slightly	more	structured	than	for	general	objects.

Built-in	Objects

There	are	several	other	object	sub-types,	usually	referred	to	as	built-in	objects.	For	some	of
them,	their	names	seem	to	imply	they	are	directly	related	to	their	simple	primitives	counter-
parts,	but	in	fact,	their	relationship	is	more	complicated,	which	we'll	explore	shortly.

	String	

	Number	

	Boolean	

	Object	

	Function	

	Array	

	Date	

	RegExp	

	Error	

These	built-ins	have	the	appearance	of	being	actual	types,	even	classes,	if	you	rely	on	the
similarity	to	other	languages	such	as	Java's		String		class.

But	in	JS,	these	are	actually	just	built-in	functions.	Each	of	these	built-in	functions	can	be
used	as	a	constructor	(that	is,	a	function	call	with	the		new		operator	--	see	Chapter	2),	with
the	result	being	a	newly	constructed	object	of	the	sub-type	in	question.	For	instance:
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var	strPrimitive	=	"I	am	a	string";

typeof	strPrimitive;																												//	"string"

strPrimitive	instanceof	String;																				//	false

var	strObject	=	new	String(	"I	am	a	string"	);

typeof	strObject;																																	//	"object"

strObject	instanceof	String;																				//	true

//	inspect	the	object	sub-type

Object.prototype.toString.call(	strObject	);				//	[object	String]

We'll	see	in	detail	in	a	later	chapter	exactly	how	the		Object.prototype.toString...		bit	works,
but	briefly,	we	can	inspect	the	internal	sub-type	by	borrowing	the	base	default		toString()	
method,	and	you	can	see	it	reveals	that		strObject		is	an	object	that	was	in	fact	created	by
the		String		constructor.

The	primitive	value		"I	am	a	string"		is	not	an	object,	it's	a	primitive	literal	and	immutable
value.	To	perform	operations	on	it,	such	as	checking	its	length,	accessing	its	individual
character	contents,	etc,	a		String		object	is	required.

Luckily,	the	language	automatically	coerces	a		"string"		primitive	to	a		String		object	when
necessary,	which	means	you	almost	never	need	to	explicitly	create	the	Object	form.	It	is
strongly	preferred	by	the	majority	of	the	JS	community	to	use	the	literal	form	for	a	value,
where	possible,	rather	than	the	constructed	object	form.

Consider:

var	strPrimitive	=	"I	am	a	string";

console.log(	strPrimitive.length	);												//	13

console.log(	strPrimitive.charAt(	3	)	);				//	"m"

In	both	cases,	we	call	a	property	or	method	on	a	string	primitive,	and	the	engine
automatically	coerces	it	to	a		String		object,	so	that	the	property/method	access	works.

The	same	sort	of	coercion	happens	between	the	number	literal	primitive		42		and	the		new
Number(42)		object	wrapper,	when	using	methods	like		42.359.toFixed(2)	.	Likewise	for
	Boolean		objects	from		"boolean"		primitives.

	null		and		undefined		have	no	object	wrapper	form,	only	their	primitive	values.	By	contrast,
	Date		values	can	only	be	created	with	their	constructed	object	form,	as	they	have	no	literal
form	counter-part.
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	Object	s,		Array	s,		Function	s,	and		RegExp	s	(regular	expressions)	are	all	objects
regardless	of	whether	the	literal	or	constructed	form	is	used.	The	constructed	form	does
offer,	in	some	cases,	more	options	in	creation	than	the	literal	form	counterpart.	Since	objects
are	created	either	way,	the	simpler	literal	form	is	almost	universally	preferred.	Only	use	the
constructed	form	if	you	need	the	extra	options.

	Error		objects	are	rarely	created	explicitly	in	code,	but	usually	created	automatically	when
exceptions	are	thrown.	They	can	be	created	with	the	constructed	form		new	Error(..)	,	but
it's	often	unnecessary.

Contents
As	mentioned	earlier,	the	contents	of	an	object	consist	of	values	(any	type)	stored	at
specifically	named	locations,	which	we	call	properties.

It's	important	to	note	that	while	we	say	"contents"	which	implies	that	these	values	are
actually	stored	inside	the	object,	that's	merely	an	appearance.	The	engine	stores	values	in
implementation-dependent	ways,	and	may	very	well	not	store	them	in	some	object	container.
What	is	stored	in	the	container	are	these	property	names,	which	act	as	pointers	(technically,
references)	to	where	the	values	are	stored.

Consider:

var	myObject	=	{

				a:	2

};

myObject.a;								//	2

myObject["a"];				//	2

To	access	the	value	at	the	location		a		in		myObject	,	we	need	to	use	either	the		.		operator
or	the		[	]		operator.	The		.a		syntax	is	usually	referred	to	as	"property"	access,	whereas
the		["a"]		syntax	is	usually	referred	to	as	"key"	access.	In	reality,	they	both	access	the
same	location,	and	will	pull	out	the	same	value,		2	,	so	the	terms	can	be	used
interchangeably.	We	will	use	the	most	common	term,	"property	access"	from	here	on.

The	main	difference	between	the	two	syntaxes	is	that	the		.		operator	requires	an
	Identifier		compatible	property	name	after	it,	whereas	the		[".."]		syntax	can	take
basically	any	UTF-8/unicode	compatible	string	as	the	name	for	the	property.	To	reference	a
property	of	the	name	"Super-Fun!",	for	instance,	you	would	have	to	use	the		["Super-Fun!"]	
access	syntax,	as		Super-Fun!		is	not	a	valid		Identifier		property	name.
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Also,	since	the		[".."]		syntax	uses	a	string's	value	to	specify	the	location,	this	means	the
program	can	programmatically	build	up	the	value	of	the	string,	such	as:

var	wantA	=	true;

var	myObject	=	{

				a:	2

};

var	idx;

if	(wantA)	{

				idx	=	"a";

}

//	later

console.log(	myObject[idx]	);	//	2

In	objects,	property	names	are	always	strings.	If	you	use	any	other	value	besides	a		string	
(primitive)	as	the	property,	it	will	first	be	converted	to	a	string.	This	even	includes	numbers,
which	are	commonly	used	as	array	indexes,	so	be	careful	not	to	confuse	the	use	of	numbers
between	objects	and	arrays.

var	myObject	=	{	};

myObject[true]	=	"foo";

myObject[3]	=	"bar";

myObject[myObject]	=	"baz";

myObject["true"];																//	"foo"

myObject["3"];																				//	"bar"

myObject["[object	Object]"];				//	"baz"

Computed	Property	Names

The		myObject[..]		property	access	syntax	we	just	described	is	useful	if	you	need	to	use	a
computed	expression	value	as	the	key	name,	like		myObject[prefix	+	name]	.	But	that's	not
really	helpful	when	declaring	objects	using	the	object-literal	syntax.

ES6	adds	computed	property	names,	where	you	can	specify	an	expression,	surrounded	by	a
	[	]		pair,	in	the	key-name	position	of	an	object-literal	declaration:
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var	prefix	=	"foo";

var	myObject	=	{

				[prefix	+	"bar"]:	"hello",

				[prefix	+	"baz"]:	"world"

};

myObject["foobar"];	//	hello

myObject["foobaz"];	//	world

The	most	common	usage	of	computed	property	names	will	probably	be	for	ES6		Symbol	s,
which	we	will	not	be	covering	in	detail	in	this	book.	In	short,	they're	a	new	primitive	data	type
which	has	an	opaque	unguessable	value	(technically	a		string		value).	You	will	be	strongly
discouraged	from	working	with	the	actual	value	of	a		Symbol		(which	can	theoretically	be
different	between	different	JS	engines),	so	the	name	of	the		Symbol	,	like		Symbol.Something	
(just	a	made	up	name!),	will	be	what	you	use:

var	myObject	=	{

				[Symbol.Something]:	"hello	world"

};

Property	vs.	Method

Some	developers	like	to	make	a	distinction	when	talking	about	a	property	access	on	an
object,	if	the	value	being	accessed	happens	to	be	a	function.	Because	it's	tempting	to	think
of	the	function	as	belonging	to	the	object,	and	in	other	languages,	functions	which	belong	to
objects	(aka,	"classes")	are	referred	to	as	"methods",	it's	not	uncommon	to	hear,	"method
access"	as	opposed	to	"property	access".

The	specification	makes	this	same	distinction,	interestingly.

Technically,	functions	never	"belong"	to	objects,	so	saying	that	a	function	that	just	happens
to	be	accessed	on	an	object	reference	is	automatically	a	"method"	seems	a	bit	of	a	stretch	of
semantics.

It	is	true	that	some	functions	have		this		references	in	them,	and	that	sometimes	these
	this		references	refer	to	the	object	reference	at	the	call-site.	But	this	usage	really	does	not
make	that	function	any	more	a	"method"	than	any	other	function,	as		this		is	dynamically
bound	at	run-time,	at	the	call-site,	and	thus	its	relationship	to	the	object	is	indirect,	at	best.

Every	time	you	access	a	property	on	an	object,	that	is	a	property	access,	regardless	of	the
type	of	value	you	get	back.	If	you	happen	to	get	a	function	from	that	property	access,	it's	not
magically	a	"method"	at	that	point.	There's	nothing	special	(outside	of	possible	implicit		this	
binding	as	explained	earlier)	about	a	function	that	comes	from	a	property	access.
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For	instance:

function	foo()	{

				console.log(	"foo"	);

}

var	someFoo	=	foo;				//	variable	reference	to	`foo`

var	myObject	=	{

				someFoo:	foo

};

foo;																//	function	foo(){..}

someFoo;												//	function	foo(){..}

myObject.someFoo;				//	function	foo(){..}

	someFoo		and		myObject.someFoo		are	just	two	separate	references	to	the	same	function,	and
neither	implies	anything	about	the	function	being	special	or	"owned"	by	any	other	object.	If
	foo()		above	was	defined	to	have	a		this		reference	inside	it,	that		myObject.someFoo	
implicit	binding	would	be	the	only	observable	difference	between	the	two	references.
Neither	reference	really	makes	sense	to	be	called	a	"method".

Perhaps	one	could	argue	that	a	function	becomes	a	method,	not	at	definition	time,	but
during	run-time	just	for	that	invocation,	depending	on	how	it's	called	at	its	call-site	(with	an
object	reference	context	or	not	--	see	Chapter	2	for	more	details).	Even	this	interpretation	is
a	bit	of	a	stretch.

The	safest	conclusion	is	probably	that	"function"	and	"method"	are	interchangeable	in
JavaScript.

Note:	ES6	adds	a		super		reference,	which	is	typically	going	to	be	used	with		class		(see
Appendix	A).	The	way		super		behaves	(static	binding	rather	than	late	binding	as		this	)
gives	further	weight	to	the	idea	that	a	function	which	is		super		bound	somewhere	is	more	a
"method"	than	"function".	But	again,	these	are	just	subtle	semantic	(and	mechanical)
nuances.

Even	when	you	declare	a	function	expression	as	part	of	the	object-literal,	that	function
doesn't	magically	belong	more	to	the	object	--	still	just	multiple	references	to	the	same
function	object:
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var	myObject	=	{

				foo:	function	foo()	{

								console.log(	"foo"	);

				}

};

var	someFoo	=	myObject.foo;

someFoo;								//	function	foo(){..}

myObject.foo;				//	function	foo(){..}

Note:	In	Chapter	6,	we	will	cover	an	ES6	short-hand	for	that		foo:	function	foo(){	..	}	
declaration	syntax	in	our	object-literal.

Arrays

Arrays	also	use	the		[	]		access	form,	but	as	mentioned	above,	they	have	slightly	more
structured	organization	for	how	and	where	values	are	stored	(though	still	no	restriction	on
what	type	of	values	are	stored).	Arrays	assume	numeric	indexing,	which	means	that	values
are	stored	in	locations,	usually	called	indices,	at	non-negative	integers,	such	as		0		and		42	.

var	myArray	=	[	"foo",	42,	"bar"	];

myArray.length;								//	3

myArray[0];												//	"foo"

myArray[2];												//	"bar"

Arrays	are	objects,	so	even	though	each	index	is	a	positive	integer,	you	can	also	add
properties	onto	the	array:

var	myArray	=	[	"foo",	42,	"bar"	];

myArray.baz	=	"baz";

myArray.length;				//	3

myArray.baz;				//	"baz"

Notice	that	adding	named	properties	(regardless	of		.		or		[	]		operator	syntax)	does	not
change	the	reported		length		of	the	array.
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You	could	use	an	array	as	a	plain	key/value	object,	and	never	add	any	numeric	indices,	but
this	is	a	bad	idea	because	arrays	have	behavior	and	optimizations	specific	to	their	intended
use,	and	likewise	with	plain	objects.	Use	objects	to	store	key/value	pairs,	and	arrays	to	store
values	at	numeric	indices.

Be	careful:	If	you	try	to	add	a	property	to	an	array,	but	the	property	name	looks	like	a
number,	it	will	end	up	instead	as	a	numeric	index	(thus	modifying	the	array	contents):

var	myArray	=	[	"foo",	42,	"bar"	];

myArray["3"]	=	"baz";

myArray.length;				//	4

myArray[3];								//	"baz"

Duplicating	Objects

One	of	the	most	commonly	requested	features	when	developers	newly	take	up	the
JavaScript	language	is	how	to	duplicate	an	object.	It	would	seem	like	there	should	just	be	a
built-in		copy()		method,	right?	It	turns	out	that	it's	a	little	more	complicated	than	that,
because	it's	not	fully	clear	what,	by	default,	should	be	the	algorithm	for	the	duplication.

For	example,	consider	this	object:

function	anotherFunction()	{	/*..*/	}

var	anotherObject	=	{

				c:	true

};

var	anotherArray	=	[];

var	myObject	=	{

				a:	2,

				b:	anotherObject,				//	reference,	not	a	copy!

				c:	anotherArray,				//	another	reference!

				d:	anotherFunction

};

anotherArray.push(	anotherObject,	myObject	);

What	exactly	should	be	the	representation	of	a	copy	of		myObject	?
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Firstly,	we	should	answer	if	it	should	be	a	shallow	or	deep	copy.	A	shallow	copy	would	end
up	with		a		on	the	new	object	as	a	copy	of	the	value		2	,	but		b	,		c	,	and		d		properties	as
just	references	to	the	same	places	as	the	references	in	the	original	object.	A	deep	copy
would	duplicate	not	only		myObject	,	but		anotherObject		and		anotherArray	.	But	then	we
have	issues	that		anotherArray		has	references	to		anotherObject		and		myObject		in	it,	so
those	should	also	be	duplicated	rather	than	reference-preserved.	Now	we	have	an	infinite
circular	duplication	problem	because	of	the	circular	reference.

Should	we	detect	a	circular	reference	and	just	break	the	circular	traversal	(leaving	the	deep
element	not	fully	duplicated)?	Should	we	error	out	completely?	Something	in	between?

Moreover,	it's	not	really	clear	what	"duplicating"	a	function	would	mean?	There	are	some
hacks	like	pulling	out	the		toString()		serialization	of	a	function's	source	code	(which	varies
across	implementations	and	is	not	even	reliable	in	all	engines	depending	on	the	type	of
function	being	inspected).

So	how	do	we	resolve	all	these	tricky	questions?	Various	JS	frameworks	have	each	picked
their	own	interpretations	and	made	their	own	decisions.	But	which	of	these	(if	any)	should	JS
adopt	as	the	standard?	For	a	long	time,	there	was	no	clear	answer.

One	subset	solution	is	that	objects	which	are	JSON-safe	(that	is,	can	be	serialized	to	a
JSON	string	and	then	re-parsed	to	an	object	with	the	same	structure	and	values)	can	easily
be	duplicated	with:

var	newObj	=	JSON.parse(	JSON.stringify(	someObj	)	);

Of	course,	that	requires	you	to	ensure	your	object	is	JSON	safe.	For	some	situations,	that's
trivial.	For	others,	it's	insufficient.

At	the	same	time,	a	shallow	copy	is	fairly	understandable	and	has	far	less	issues,	so	ES6
has	now	defined		Object.assign(..)		for	this	task.		Object.assign(..)		takes	a	target	object
as	its	first	parameter,	and	one	or	more	source	objects	as	its	subsequent	parameters.	It
iterates	over	all	the	enumerable	(see	below),	owned	keys	(immediately	present)	on	the
source	object(s)	and	copies	them	(via		=		assignment	only)	to	target.	It	also,	helpfully,
returns	target,	as	you	can	see	below:

var	newObj	=	Object.assign(	{},	myObject	);

newObj.a;																								//	2

newObj.b	===	anotherObject;								//	true

newObj.c	===	anotherArray;								//	true

newObj.d	===	anotherFunction;				//	true

Objects

347



Note:	In	the	next	section,	we	describe	"property	descriptors"	(property	characteristics)	and
show	the	use	of		Object.defineProperty(..)	.	The	duplication	that	occurs	for
	Object.assign(..)		however	is	purely		=		style	assignment,	so	any	special	characteristics	of
a	property	(like		writable	)	on	a	source	object	are	not	preserved	on	the	target	object.

Property	Descriptors

Prior	to	ES5,	the	JavaScript	language	gave	no	direct	way	for	your	code	to	inspect	or	draw
any	distinction	between	the	characteristics	of	properties,	such	as	whether	the	property	was
read-only	or	not.

But	as	of	ES5,	all	properties	are	described	in	terms	of	a	property	descriptor.

Consider	this	code:

var	myObject	=	{

				a:	2

};

Object.getOwnPropertyDescriptor(	myObject,	"a"	);

//	{

//				value:	2,

//				writable:	true,

//				enumerable:	true,

//				configurable:	true

//	}

As	you	can	see,	the	property	descriptor	(called	a	"data	descriptor"	since	it's	only	for	holding
a	data	value)	for	our	normal	object	property		a		is	much	more	than	just	its		value		of		2	.	It
includes	3	other	characteristics:		writable	,		enumerable	,	and		configurable	.

While	we	can	see	what	the	default	values	for	the	property	descriptor	characteristics	are
when	we	create	a	normal	property,	we	can	use		Object.defineProperty(..)		to	add	a	new
property,	or	modify	an	existing	one	(if	it's		configurable	!),	with	the	desired	characteristics.

For	example:
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var	myObject	=	{};

Object.defineProperty(	myObject,	"a",	{

				value:	2,

				writable:	true,

				configurable:	true,

				enumerable:	true

}	);

myObject.a;	//	2

Using		defineProperty(..)	,	we	added	the	plain,	normal		a		property	to		myObject		in	a
manually	explicit	way.	However,	you	generally	wouldn't	use	this	manual	approach	unless	you
wanted	to	modify	one	of	the	descriptor	characteristics	from	its	normal	behavior.

Writable

The	ability	for	you	to	change	the	value	of	a	property	is	controlled	by		writable	.

Consider:

var	myObject	=	{};

Object.defineProperty(	myObject,	"a",	{

				value:	2,

				writable:	false,	//	not	writable!

				configurable:	true,

				enumerable:	true

}	);

myObject.a	=	3;

myObject.a;	//	2

As	you	can	see,	our	modification	of	the		value		silently	failed.	If	we	try	in		strict	mode	,	we
get	an	error:
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"use	strict";

var	myObject	=	{};

Object.defineProperty(	myObject,	"a",	{

				value:	2,

				writable:	false,	//	not	writable!

				configurable:	true,

				enumerable:	true

}	);

myObject.a	=	3;	//	TypeError

The		TypeError		tells	us	we	cannot	change	a	non-writable	property.

Note:	We	will	discuss	getters/setters	shortly,	but	briefly,	you	can	observe	that
	writable:false		means	a	value	cannot	be	changed,	which	is	somewhat	equivalent	to	if	you
defined	a	no-op	setter.	Actually,	your	no-op	setter	would	need	to	throw	a		TypeError		when
called,	to	be	truly	conformant	to		writable:false	.

Configurable

As	long	as	a	property	is	currently	configurable,	we	can	modify	its	descriptor	definition,	using
the	same		defineProperty(..)		utility.
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var	myObject	=	{

				a:	2

};

myObject.a	=	3;

myObject.a;																				//	3

Object.defineProperty(	myObject,	"a",	{

				value:	4,

				writable:	true,

				configurable:	false,				//	not	configurable!

				enumerable:	true

}	);

myObject.a;																				//	4

myObject.a	=	5;

myObject.a;																				//	5

Object.defineProperty(	myObject,	"a",	{

				value:	6,

				writable:	true,

				configurable:	true,

				enumerable:	true

}	);	//	TypeError

The	final		defineProperty(..)		call	results	in	a	TypeError,	regardless	of		strict	mode	,	if	you
attempt	to	change	the	descriptor	definition	of	a	non-configurable	property.	Be	careful:	as	you
can	see,	changing		configurable		to		false		is	a	one-way	action,	and	cannot	be	undone!

Note:	There's	a	nuanced	exception	to	be	aware	of:	even	if	the	property	is	already
	configurable:false	,		writable		can	always	be	changed	from		true		to		false		without	error,
but	not	back	to		true		if	already		false	.

Another	thing		configurable:false		prevents	is	the	ability	to	use	the		delete		operator	to
remove	an	existing	property.
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var	myObject	=	{

				a:	2

};

myObject.a;																//	2

delete	myObject.a;

myObject.a;																//	undefined

Object.defineProperty(	myObject,	"a",	{

				value:	2,

				writable:	true,

				configurable:	false,

				enumerable:	true

}	);

myObject.a;																//	2

delete	myObject.a;

myObject.a;																//	2

As	you	can	see,	the	last		delete		call	failed	(silently)	because	we	made	the		a		property	non-
configurable.

	delete		is	only	used	to	remove	object	properties	(which	can	be	removed)	directly	from	the
object	in	question.	If	an	object	property	is	the	last	remaining	reference	to	some
object/function,	and	you		delete		it,	that	removes	the	reference	and	now	that	unreferenced
object/function	can	be	garbage	collected.	But,	it	is	not	proper	to	think	of		delete		as	a	tool	to
free	up	allocated	memory	as	it	does	in	other	languages	(like	C/C++).		delete		is	just	an
object	property	removal	operation	--	nothing	more.

Enumerable

The	final	descriptor	characteristic	we	will	mention	here	(there	are	two	others,	which	we	deal
with	shortly	when	we	discuss	getter/setters)	is		enumerable	.

The	name	probably	makes	it	obvious,	but	this	characteristic	controls	if	a	property	will	show
up	in	certain	object-property	enumerations,	such	as	the		for..in		loop.	Set	to		false		to
keep	it	from	showing	up	in	such	enumerations,	even	though	it's	still	completely	accessible.
Set	to		true		to	keep	it	present.

All	normal	user-defined	properties	are	defaulted	to		enumerable	,	as	this	is	most	commonly
what	you	want.	But	if	you	have	a	special	property	you	want	to	hide	from	enumeration,	set	it
to		enumerable:false	.

We'll	demonstrate	enumerability	in	much	more	detail	shortly,	so	keep	a	mental	bookmark	on
this	topic.
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Immutability

It	is	sometimes	desired	to	make	properties	or	objects	that	cannot	be	changed	(either	by
accident	or	intentionally).	ES5	adds	support	for	handling	that	in	a	variety	of	different	nuanced
ways.

It's	important	to	note	that	all	of	these	approaches	create	shallow	immutability.	That	is,	they
affect	only	the	object	and	its	direct	property	characteristics.	If	an	object	has	a	reference	to
another	object	(array,	object,	function,	etc),	the	contents	of	that	object	are	not	affected,	and
remain	mutable.

myImmutableObject.foo;	//	[1,2,3]

myImmutableObject.foo.push(	4	);

myImmutableObject.foo;	//	[1,2,3,4]

We	assume	in	this	snippet	that		myImmutableObject		is	already	created	and	protected	as
immutable.	But,	to	also	protect	the	contents	of		myImmutableObject.foo		(which	is	its	own
object	--	array),	you	would	also	need	to	make		foo		immutable,	using	one	or	more	of	the
following	functionalities.

Note:	It	is	not	terribly	common	to	create	deeply	entrenched	immutable	objects	in	JS
programs.	Special	cases	can	certainly	call	for	it,	but	as	a	general	design	pattern,	if	you	find
yourself	wanting	to	seal	or	freeze	all	your	objects,	you	may	want	to	take	a	step	back	and
reconsider	your	program	design	to	be	more	robust	to	potential	changes	in	objects'	values.

Object	Constant

By	combining		writable:false		and		configurable:false	,	you	can	essentially	create	a
constant	(cannot	be	changed,	redefined	or	deleted)	as	an	object	property,	like:

var	myObject	=	{};

Object.defineProperty(	myObject,	"FAVORITE_NUMBER",	{

				value:	42,

				writable:	false,

				configurable:	false

}	);

Prevent	Extensions

If	you	want	to	prevent	an	object	from	having	new	properties	added	to	it,	but	otherwise	leave
the	rest	of	the	object's	properties	alone,	call		Object.preventExtensions(..)	:
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var	myObject	=	{

				a:	2

};

Object.preventExtensions(	myObject	);

myObject.b	=	3;

myObject.b;	//	undefined

In		non-strict	mode	,	the	creation	of		b		fails	silently.	In		strict	mode	,	it	throws	a		TypeError	.

Seal

	Object.seal(..)		creates	a	"sealed"	object,	which	means	it	takes	an	existing	object	and
essentially	calls		Object.preventExtensions(..)		on	it,	but	also	marks	all	its	existing	properties
as		configurable:false	.

So,	not	only	can	you	not	add	any	more	properties,	but	you	also	cannot	reconfigure	or	delete
any	existing	properties	(though	you	can	still	modify	their	values).

Freeze

	Object.freeze(..)		creates	a	frozen	object,	which	means	it	takes	an	existing	object	and
essentially	calls		Object.seal(..)		on	it,	but	it	also	marks	all	"data	accessor"	properties	as
	writable:false	,	so	that	their	values	cannot	be	changed.

This	approach	is	the	highest	level	of	immutability	that	you	can	attain	for	an	object	itself,	as	it
prevents	any	changes	to	the	object	or	to	any	of	its	direct	properties	(though,	as	mentioned
above,	the	contents	of	any	referenced	other	objects	are	unaffected).

You	could	"deep	freeze"	an	object	by	calling		Object.freeze(..)		on	the	object,	and	then
recursively	iterating	over	all	objects	it	references	(which	would	have	been	unaffected	thus
far),	and	calling		Object.freeze(..)		on	them	as	well.	Be	careful,	though,	as	that	could	affect
other	(shared)	objects	you're	not	intending	to	affect.

	[[Get]]	

There's	a	subtle,	but	important,	detail	about	how	property	accesses	are	performed.

Consider:

Objects

354



var	myObject	=	{

				a:	2

};

myObject.a;	//	2

The		myObject.a		is	a	property	access,	but	it	doesn't	just	look	in		myObject		for	a	property	of
the	name		a	,	as	it	might	seem.

According	to	the	spec,	the	code	above	actually	performs	a		[[Get]]		operation	(kinda	like	a
function	call:		[[Get]]()	)	on	the		myObject	.	The	default	built-in		[[Get]]		operation	for	an
object	first	inspects	the	object	for	a	property	of	the	requested	name,	and	if	it	finds	it,	it	will
return	the	value	accordingly.

However,	the		[[Get]]		algorithm	defines	other	important	behavior	if	it	does	not	find	a
property	of	the	requested	name.	We	will	examine	in	Chapter	5	what	happens	next	(traversal
of	the		[[Prototype]]		chain,	if	any).

But	one	important	result	of	this		[[Get]]		operation	is	that	if	it	cannot	through	any	means
come	up	with	a	value	for	the	requested	property,	it	instead	returns	the	value		undefined	.

var	myObject	=	{

				a:	2

};

myObject.b;	//	undefined

This	behavior	is	different	from	when	you	reference	variables	by	their	identifier	names.	If	you
reference	a	variable	that	cannot	be	resolved	within	the	applicable	lexical	scope	look-up,	the
result	is	not		undefined		as	it	is	for	object	properties,	but	instead	a		ReferenceError		is	thrown.

var	myObject	=	{

				a:	undefined

};

myObject.a;	//	undefined

myObject.b;	//	undefined

From	a	value	perspective,	there	is	no	difference	between	these	two	references	--	they	both
result	in		undefined	.	However,	the		[[Get]]		operation	underneath,	though	subtle	at	a
glance,	potentially	performed	a	bit	more	"work"	for	the	reference		myObject.b		than	for	the
reference		myObject.a	.
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Inspecting	only	the	value	results,	you	cannot	distinguish	whether	a	property	exists	and	holds
the	explicit	value		undefined	,	or	whether	the	property	does	not	exist	and		undefined		was	the
default	return	value	after		[[Get]]		failed	to	return	something	explicitly.	However,	we	will	see
shortly	how	you	can	distinguish	these	two	scenarios.

	[[Put]]	

Since	there's	an	internally	defined		[[Get]]		operation	for	getting	a	value	from	a	property,	it
should	be	obvious	there's	also	a	default		[[Put]]		operation.

It	may	be	tempting	to	think	that	an	assignment	to	a	property	on	an	object	would	just	invoke
	[[Put]]		to	set	or	create	that	property	on	the	object	in	question.	But	the	situation	is	more
nuanced	than	that.

When	invoking		[[Put]]	,	how	it	behaves	differs	based	on	a	number	of	factors,	including
(most	impactfully)	whether	the	property	is	already	present	on	the	object	or	not.

If	the	property	is	present,	the		[[Put]]		algorithm	will	roughly	check:

1.	 Is	the	property	an	accessor	descriptor	(see	"Getters	&	Setters"	section	below)?	If	so,
call	the	setter,	if	any.

2.	 Is	the	property	a	data	descriptor	with		writable		of		false	?	If	so,	silently	fail	in		non-
strict	mode	,	or	throw		TypeError		in		strict	mode	.

3.	 Otherwise,	set	the	value	to	the	existing	property	as	normal.

If	the	property	is	not	yet	present	on	the	object	in	question,	the		[[Put]]		operation	is	even
more	nuanced	and	complex.	We	will	revisit	this	scenario	in	Chapter	5	when	we	discuss
	[[Prototype]]		to	give	it	more	clarity.

Getters	&	Setters

The	default		[[Put]]		and		[[Get]]		operations	for	objects	completely	control	how	values	are
set	to	existing	or	new	properties,	or	retrieved	from	existing	properties,	respectively.

Note:	Using	future/advanced	capabilities	of	the	language,	it	may	be	possible	to	override	the
default		[[Get]]		or		[[Put]]		operations	for	an	entire	object	(not	just	per	property).	This	is
beyond	the	scope	of	our	discussion	in	this	book,	but	will	be	covered	later	in	the	"You	Don't
Know	JS"	series.

ES5	introduced	a	way	to	override	part	of	these	default	operations,	not	on	an	object	level	but
a	per-property	level,	through	the	use	of	getters	and	setters.	Getters	are	properties	which
actually	call	a	hidden	function	to	retrieve	a	value.	Setters	are	properties	which	actually	call	a
hidden	function	to	set	a	value.
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When	you	define	a	property	to	have	either	a	getter	or	a	setter	or	both,	its	definition	becomes
an	"accessor	descriptor"	(as	opposed	to	a	"data	descriptor").	For	accessor-descriptors,	the
	value		and		writable		characteristics	of	the	descriptor	are	moot	and	ignored,	and	instead	JS
considers	the		set		and		get		characteristics	of	the	property	(as	well	as		configurable		and
	enumerable	).

Consider:

var	myObject	=	{

				//	define	a	getter	for	`a`

				get	a()	{

								return	2;

				}

};

Object.defineProperty(

				myObject,				//	target

				"b",								//	property	name

				{												//	descriptor

								//	define	a	getter	for	`b`

								get:	function(){	return	this.a	*	2	},

								//	make	sure	`b`	shows	up	as	an	object	property

								enumerable:	true

				}

);

myObject.a;	//	2

myObject.b;	//	4

Either	through	object-literal	syntax	with		get	a()	{	..	}		or	through	explicit	definition	with
	defineProperty(..)	,	in	both	cases	we	created	a	property	on	the	object	that	actually	doesn't
hold	a	value,	but	whose	access	automatically	results	in	a	hidden	function	call	to	the	getter
function,	with	whatever	value	it	returns	being	the	result	of	the	property	access.

var	myObject	=	{

				//	define	a	getter	for	`a`

				get	a()	{

								return	2;

				}

};

myObject.a	=	3;

myObject.a;	//	2
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Since	we	only	defined	a	getter	for		a	,	if	we	try	to	set	the	value	of		a		later,	the	set	operation
won't	throw	an	error	but	will	just	silently	throw	the	assignment	away.	Even	if	there	was	a
valid	setter,	our	custom	getter	is	hard-coded	to	return	only		2	,	so	the	set	operation	would	be
moot.

To	make	this	scenario	more	sensible,	properties	should	also	be	defined	with	setters,	which
override	the	default		[[Put]]		operation	(aka,	assignment),	per-property,	just	as	you'd
expect.	You	will	almost	certainly	want	to	always	declare	both	getter	and	setter	(having	only
one	or	the	other	often	leads	to	unexpected/surprising	behavior):

var	myObject	=	{

				//	define	a	getter	for	`a`

				get	a()	{

								return	this._a_;

				},

				//	define	a	setter	for	`a`

				set	a(val)	{

								this._a_	=	val	*	2;

				}

};

myObject.a	=	2;

myObject.a;	//	4

Note:	In	this	example,	we	actually	store	the	specified	value		2		of	the	assignment	(	[[Put]]	
operation)	into	another	variable		_a_	.	The		_a_		name	is	purely	by	convention	for	this
example	and	implies	nothing	special	about	its	behavior	--	it's	a	normal	property	like	any
other.

Existence

We	showed	earlier	that	a	property	access	like		myObject.a		may	result	in	an		undefined	
value	if	either	the	explicit		undefined		is	stored	there	or	the		a		property	doesn't	exist	at	all.
So,	if	the	value	is	the	same	in	both	cases,	how	else	do	we	distinguish	them?

We	can	ask	an	object	if	it	has	a	certain	property	without	asking	to	get	that	property's	value:
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var	myObject	=	{

				a:	2

};

("a"	in	myObject);																//	true

("b"	in	myObject);																//	false

myObject.hasOwnProperty(	"a"	);				//	true

myObject.hasOwnProperty(	"b"	);				//	false

The		in		operator	will	check	to	see	if	the	property	is	in	the	object,	or	if	it	exists	at	any	higher
level	of	the		[[Prototype]]		chain	object	traversal	(see	Chapter	5).	By	contrast,
	hasOwnProperty(..)		checks	to	see	if	only		myObject		has	the	property	or	not,	and	will	not
consult	the		[[Prototype]]		chain.	We'll	come	back	to	the	important	differences	between
these	two	operations	in	Chapter	5	when	we	explore		[[Prototype]]	s	in	detail.

	hasOwnProperty(..)		is	accessible	for	all	normal	objects	via	delegation	to		Object.prototype	
(see	Chapter	5).	But	it's	possible	to	create	an	object	that	does	not	link	to		Object.prototype	
(via		Object.create(null)		--	see	Chapter	5).	In	this	case,	a	method	call	like
	myObject.hasOwnProperty(..)		would	fail.

In	that	scenario,	a	more	robust	way	of	performing	such	a	check	is
	Object.prototype.hasOwnProperty.call(myObject,"a")	,	which	borrows	the	base
	hasOwnProperty(..)		method	and	uses	explicit		this		binding	(see	Chapter	2)	to	apply	it
against	our		myObject	.

Note:	The		in		operator	has	the	appearance	that	it	will	check	for	the	existence	of	a	value
inside	a	container,	but	it	actually	checks	for	the	existence	of	a	property	name.	This	difference
is	important	to	note	with	respect	to	arrays,	as	the	temptation	to	try	a	check	like		4	in	[2,	4,
6]		is	strong,	but	this	will	not	behave	as	expected.

Enumeration

Previously,	we	explained	briefly	the	idea	of	"enumerability"	when	we	looked	at	the
	enumerable		property	descriptor	characteristic.	Let's	revisit	that	and	examine	it	in	more	close
detail.
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var	myObject	=	{	};

Object.defineProperty(

				myObject,

				"a",

				//	make	`a`	enumerable,	as	normal

				{	enumerable:	true,	value:	2	}

);

Object.defineProperty(

				myObject,

				"b",

				//	make	`b`	NON-enumerable

				{	enumerable:	false,	value:	3	}

);

myObject.b;	//	3

("b"	in	myObject);	//	true

myObject.hasOwnProperty(	"b"	);	//	true

//	.......

for	(var	k	in	myObject)	{

				console.log(	k,	myObject[k]	);

}

//	"a"	2

You'll	notice	that		myObject.b		in	fact	exists	and	has	an	accessible	value,	but	it	doesn't	show
up	in	a		for..in		loop	(though,	surprisingly,	it	is	revealed	by	the		in		operator	existence
check).	That's	because	"enumerable"	basically	means	"will	be	included	if	the	object's
properties	are	iterated	through".

Note:		for..in		loops	applied	to	arrays	can	give	somewhat	unexpected	results,	in	that	the
enumeration	of	an	array	will	include	not	only	all	the	numeric	indices,	but	also	any
enumerable	properties.	It's	a	good	idea	to	use		for..in		loops	only	on	objects,	and
traditional		for		loops	with	numeric	index	iteration	for	the	values	stored	in	arrays.

Another	way	that	enumerable	and	non-enumerable	properties	can	be	distinguished:

Objects

360



var	myObject	=	{	};

Object.defineProperty(

				myObject,

				"a",

				//	make	`a`	enumerable,	as	normal

				{	enumerable:	true,	value:	2	}

);

Object.defineProperty(

				myObject,

				"b",

				//	make	`b`	non-enumerable

				{	enumerable:	false,	value:	3	}

);

myObject.propertyIsEnumerable(	"a"	);	//	true

myObject.propertyIsEnumerable(	"b"	);	//	false

Object.keys(	myObject	);	//	["a"]

Object.getOwnPropertyNames(	myObject	);	//	["a",	"b"]

	propertyIsEnumerable(..)		tests	whether	the	given	property	name	exists	directly	on	the
object	and	is	also		enumerable:true	.

	Object.keys(..)		returns	an	array	of	all	enumerable	properties,	whereas
	Object.getOwnPropertyNames(..)		returns	an	array	of	all	properties,	enumerable	or	not.

Whereas		in		vs.		hasOwnProperty(..)		differ	in	whether	they	consult	the		[[Prototype]]	
chain	or	not,		Object.keys(..)		and		Object.getOwnPropertyNames(..)		both	inspect	only	the
direct	object	specified.

There's	(currently)	no	built-in	way	to	get	a	list	of	all	properties	which	is	equivalent	to	what
the		in		operator	test	would	consult	(traversing	all	properties	on	the	entire		[[Prototype]]	
chain,	as	explained	in	Chapter	5).	You	could	approximate	such	a	utility	by	recursively
traversing	the		[[Prototype]]		chain	of	an	object,	and	for	each	level,	capturing	the	list	from
	Object.keys(..)		--	only	enumerable	properties.

Iteration
The		for..in		loop	iterates	over	the	list	of	enumerable	properties	on	an	object	(including	its
	[[Prototype]]		chain).	But	what	if	you	instead	want	to	iterate	over	the	values?

With	numerically-indexed	arrays,	iterating	over	the	values	is	typically	done	with	a	standard
	for		loop,	like:
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var	myArray	=	[1,	2,	3];

for	(var	i	=	0;	i	<	myArray.length;	i++)	{

				console.log(	myArray[i]	);

}

//	1	2	3

This	isn't	iterating	over	the	values,	though,	but	iterating	over	the	indices,	where	you	then	use
the	index	to	reference	the	value,	as		myArray[i]	.

ES5	also	added	several	iteration	helpers	for	arrays,	including		forEach(..)	,		every(..)	,	and
	some(..)	.	Each	of	these	helpers	accepts	a	function	callback	to	apply	to	each	element	in	the
array,	differing	only	in	how	they	respectively	respond	to	a	return	value	from	the	callback.

	forEach(..)		will	iterate	over	all	values	in	the	array,	and	ignores	any	callback	return	values.
	every(..)		keeps	going	until	the	end	or	the	callback	returns	a		false		(or	"falsy")	value,
whereas		some(..)		keeps	going	until	the	end	or	the	callback	returns	a		true		(or	"truthy")
value.

These	special	return	values	inside		every(..)		and		some(..)		act	somewhat	like	a		break	
statement	inside	a	normal		for		loop,	in	that	they	stop	the	iteration	early	before	it	reaches
the	end.

If	you	iterate	on	an	object	with	a		for..in		loop,	you're	also	only	getting	at	the	values
indirectly,	because	it's	actually	iterating	only	over	the	enumerable	properties	of	the	object,
leaving	you	to	access	the	properties	manually	to	get	the	values.

Note:	As	contrasted	with	iterating	over	an	array's	indices	in	a	numerically	ordered	way	(	for	
loop	or	other	iterators),	the	order	of	iteration	over	an	object's	properties	is	not	guaranteed
and	may	vary	between	different	JS	engines.	Do	not	rely	on	any	observed	ordering	for
anything	that	requires	consistency	among	environments,	as	any	observed	agreement	is
unreliable.

But	what	if	you	want	to	iterate	over	the	values	directly	instead	of	the	array	indices	(or	object
properties)?	Helpfully,	ES6	adds	a		for..of		loop	syntax	for	iterating	over	arrays	(and
objects,	if	the	object	defines	its	own	custom	iterator):

var	myArray	=	[	1,	2,	3	];

for	(var	v	of	myArray)	{

				console.log(	v	);

}

//	1

//	2

//	3
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The		for..of		loop	asks	for	an	iterator	object	(from	a	default	internal	function	known	as
	@@iterator		in	spec-speak)	of	the	thing	to	be	iterated,	and	the	loop	then	iterates	over	the
successive	return	values	from	calling	that	iterator	object's		next()		method,	once	for	each
loop	iteration.

Arrays	have	a	built-in		@@iterator	,	so		for..of		works	easily	on	them,	as	shown.	But	let's
manually	iterate	the	array,	using	the	built-in		@@iterator	,	to	see	how	it	works:

var	myArray	=	[	1,	2,	3	];

var	it	=	myArray[Symbol.iterator]();

it.next();	//	{	value:1,	done:false	}

it.next();	//	{	value:2,	done:false	}

it.next();	//	{	value:3,	done:false	}

it.next();	//	{	done:true	}

Note:	We	get	at	the		@@iterator		internal	property	of	an	object	using	an	ES6		Symbol	:
	Symbol.iterator	.	We	briefly	mentioned		Symbol		semantics	earlier	in	the	chapter	(see
"Computed	Property	Names"),	so	the	same	reasoning	applies	here.	You'll	always	want	to
reference	such	special	properties	by		Symbol		name	reference	instead	of	by	the	special	value
it	may	hold.	Also,	despite	the	name's	implications,		@@iterator		is	not	the	iterator	object
itself,	but	a	function	that	returns	the	iterator	object	--	a	subtle	but	important	detail!

As	the	above	snippet	reveals,	the	return	value	from	an	iterator's		next()		call	is	an	object	of
the	form		{	value:	..	,	done:	..	}	,	where		value		is	the	current	iteration	value,	and		done	
is	a		boolean		that	indicates	if	there's	more	to	iterate.

Notice	the	value		3		was	returned	with	a		done:false	,	which	seems	strange	at	first	glance.
You	have	to	call	the		next()		a	fourth	time	(which	the		for..of		loop	in	the	previous	snippet
automatically	does)	to	get		done:true		and	know	you're	truly	done	iterating.	The	reason	for
this	quirk	is	beyond	the	scope	of	what	we'll	discuss	here,	but	it	comes	from	the	semantics	of
ES6	generator	functions.

While	arrays	do	automatically	iterate	in		for..of		loops,	regular	objects	do	not	have	a	built-
in		@@iterator	.	The	reasons	for	this	intentional	omission	are	more	complex	than	we	will
examine	here,	but	in	general	it	was	better	to	not	include	some	implementation	that	could
prove	troublesome	for	future	types	of	objects.

It	is	possible	to	define	your	own	default		@@iterator		for	any	object	that	you	care	to	iterate
over.	For	example:
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var	myObject	=	{

				a:	2,

				b:	3

};

Object.defineProperty(	myObject,	Symbol.iterator,	{

				enumerable:	false,

				writable:	false,

				configurable:	true,

				value:	function()	{

								var	o	=	this;

								var	idx	=	0;

								var	ks	=	Object.keys(	o	);

								return	{

												next:	function()	{

																return	{

																				value:	o[ks[idx++]],

																				done:	(idx	>	ks.length)

																};

												}

								};

				}

}	);

//	iterate	`myObject`	manually

var	it	=	myObject[Symbol.iterator]();

it.next();	//	{	value:2,	done:false	}

it.next();	//	{	value:3,	done:false	}

it.next();	//	{	value:undefined,	done:true	}

//	iterate	`myObject`	with	`for..of`

for	(var	v	of	myObject)	{

				console.log(	v	);

}

//	2

//	3

Note:	We	used		Object.defineProperty(..)		to	define	our	custom		@@iterator		(mostly	so	we
could	make	it	non-enumerable),	but	using	the		Symbol		as	a	computed	property	name
(covered	earlier	in	this	chapter),	we	could	have	declared	it	directly,	like		var	myObject	=	{
a:2,	b:3,	[Symbol.iterator]:	function(){	/*	..	*/	}	}	.

Each	time	the		for..of		loop	calls		next()		on		myObject	's	iterator	object,	the	internal	pointer
will	advance	and	return	back	the	next	value	from	the	object's	properties	list	(see	a	previous
note	about	iteration	ordering	on	object	properties/values).

The	iteration	we	just	demonstrated	is	a	simple	value-by-value	iteration,	but	you	can	of
course	define	arbitrarily	complex	iterations	for	your	custom	data	structures,	as	you	see	fit.
Custom	iterators	combined	with	ES6's		for..of		loop	are	a	powerful	new	syntactic	tool	for
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manipulating	user-defined	objects.

For	example,	a	list	of		Pixel		objects	(with		x		and		y		coordinate	values)	could	decide	to
order	its	iteration	based	on	the	linear	distance	from	the		(0,0)		origin,	or	filter	out	points	that
are	"too	far	away",	etc.	As	long	as	your	iterator	returns	the	expected		{	value:	..	}		return
values	from		next()		calls,	and	a		{	done:	true	}		after	the	iteration	is	complete,	ES6's
	for..of		can	iterate	over	it.

In	fact,	you	can	even	generate	"infinite"	iterators	which	never	"finish"	and	always	return	a
new	value	(such	as	a	random	number,	an	incremented	value,	a	unique	identifier,	etc),
though	you	probably	will	not	use	such	iterators	with	an	unbounded		for..of		loop,	as	it
would	never	end	and	would	hang	your	program.

var	randoms	=	{

				[Symbol.iterator]:	function()	{

								return	{

												next:	function()	{

																return	{	value:	Math.random()	};

												}

								};

				}

};

var	randoms_pool	=	[];

for	(var	n	of	randoms)	{

				randoms_pool.push(	n	);

				//	don't	proceed	unbounded!

				if	(randoms_pool.length	===	100)	break;

}

This	iterator	will	generate	random	numbers	"forever",	so	we're	careful	to	only	pull	out	100
values	so	our	program	doesn't	hang.

Review	(TL;DR)
Objects	in	JS	have	both	a	literal	form	(such	as		var	a	=	{	..	}	)	and	a	constructed	form
(such	as		var	a	=	new	Array(..)	).	The	literal	form	is	almost	always	preferred,	but	the
constructed	form	offers,	in	some	cases,	more	creation	options.

Many	people	mistakenly	claim	"everything	in	JavaScript	is	an	object",	but	this	is	incorrect.
Objects	are	one	of	the	6	(or	7,	depending	on	your	perspective)	primitive	types.	Objects	have
sub-types,	including		function	,	and	also	can	be	behavior-specialized,	like		[object	Array]	
as	the	internal	label	representing	the	array	object	sub-type.
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Objects	are	collections	of	key/value	pairs.	The	values	can	be	accessed	as	properties,	via
	.propName		or		["propName"]		syntax.	Whenever	a	property	is	accessed,	the	engine	actually
invokes	the	internal	default		[[Get]]		operation	(and		[[Put]]		for	setting	values),	which	not
only	looks	for	the	property	directly	on	the	object,	but	which	will	traverse	the		[[Prototype]]	
chain	(see	Chapter	5)	if	not	found.

Properties	have	certain	characteristics	that	can	be	controlled	through	property	descriptors,
such	as		writable		and		configurable	.	In	addition,	objects	can	have	their	mutability	(and	that
of	their	properties)	controlled	to	various	levels	of	immutability	using
	Object.preventExtensions(..)	,		Object.seal(..)	,	and		Object.freeze(..)	.

Properties	don't	have	to	contain	values	--	they	can	be	"accessor	properties"	as	well,	with
getters/setters.	They	can	also	be	either	enumerable	or	not,	which	controls	if	they	show	up	in
	for..in		loop	iterations,	for	instance.

You	can	also	iterate	over	the	values	in	data	structures	(arrays,	objects,	etc)	using	the	ES6
	for..of		syntax,	which	looks	for	either	a	built-in	or	custom		@@iterator		object	consisting	of
a		next()		method	to	advance	through	the	data	values	one	at	a	time.
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Chapter	4:	Mixing	(Up)	"Class"	Objects
Following	our	exploration	of	objects	from	the	previous	chapter,	it's	natural	that	we	now	turn
our	attention	to	"object	oriented	(OO)	programming",	with	"classes".	We'll	first	look	at	"class
orientation"	as	a	design	pattern,	before	examining	the	mechanics	of	"classes":
"instantiation",	"inheritance"	and	"(relative)	polymorphism".

We'll	see	that	these	concepts	don't	really	map	very	naturally	to	the	object	mechanism	in	JS,
and	the	lengths	(mixins,	etc.)	many	JavaScript	developers	go	to	overcome	such	challenges.

Note:	This	chapter	spends	quite	a	bit	of	time	(the	first	half!)	on	heavy	"objected	oriented
programming"	theory.	We	eventually	relate	these	ideas	to	real	concrete	JavaScript	code	in
the	second	half,	when	we	talk	about	"Mixins".	But	there's	a	lot	of	concept	and	pseudo-code
to	wade	through	first,	so	don't	get	lost	--	just	stick	with	it!

Class	Theory
"Class/Inheritance"	describes	a	certain	form	of	code	organization	and	architecture	--	a	way
of	modeling	real	world	problem	domains	in	our	software.

OO	or	class	oriented	programming	stresses	that	data	intrinsically	has	associated	behavior
(of	course,	different	depending	on	the	type	and	nature	of	the	data!)	that	operates	on	it,	so
proper	design	is	to	package	up	(aka,	encapsulate)	the	data	and	the	behavior	together.	This
is	sometimes	called	"data	structures"	in	formal	computer	science.

For	example,	a	series	of	characters	that	represents	a	word	or	phrase	is	usually	called	a
"string".	The	characters	are	the	data.	But	you	almost	never	just	care	about	the	data,	you
usually	want	to	do	things	with	the	data,	so	the	behaviors	that	can	apply	to	that	data
(calculating	its	length,	appending	data,	searching,	etc.)	are	all	designed	as	methods	of	a
	String		class.

Any	given	string	is	just	an	instance	of	this	class,	which	means	that	it's	a	neatly	collected
packaging	of	both	the	character	data	and	the	functionality	we	can	perform	on	it.

Classes	also	imply	a	way	of	classifying	a	certain	data	structure.	The	way	we	do	this	is	to
think	about	any	given	structure	as	a	specific	variation	of	a	more	general	base	definition.

Let's	explore	this	classification	process	by	looking	at	a	commonly	cited	example.	A	car	can
be	described	as	a	specific	implementation	of	a	more	general	"class"	of	thing,	called	a
vehicle.
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We	model	this	relationship	in	software	with	classes	by	defining	a		Vehicle		class	and	a		Car	
class.

The	definition	of		Vehicle		might	include	things	like	propulsion	(engines,	etc.),	the	ability	to
carry	people,	etc.,	which	would	all	be	the	behaviors.	What	we	define	in		Vehicle		is	all	the
stuff	that	is	common	to	all	(or	most	of)	the	different	types	of	vehicles	(the	"planes,	trains,	and
automobiles").

It	might	not	make	sense	in	our	software	to	re-define	the	basic	essence	of	"ability	to	carry
people"	over	and	over	again	for	each	different	type	of	vehicle.	Instead,	we	define	that
capability	once	in		Vehicle	,	and	then	when	we	define		Car	,	we	simply	indicate	that	it
"inherits"	(or	"extends")	the	base	definition	from		Vehicle	.	The	definition	of		Car		is	said	to
specialize	the	general		Vehicle		definition.

While		Vehicle		and		Car		collectively	define	the	behavior	by	way	of	methods,	the	data	in	an
instance	would	be	things	like	the	unique	VIN	of	a	specific	car,	etc.

And	thus,	classes,	inheritance,	and	instantiation	emerge.

Another	key	concept	with	classes	is	"polymorphism",	which	describes	the	idea	that	a	general
behavior	from	a	parent	class	can	be	overridden	in	a	child	class	to	give	it	more	specifics.	In
fact,	relative	polymorphism	lets	us	reference	the	base	behavior	from	the	overridden
behavior.

Class	theory	strongly	suggests	that	a	parent	class	and	a	child	class	share	the	same	method
name	for	a	certain	behavior,	so	that	the	child	overrides	the	parent	(differentially).	As	we'll	see
later,	doing	so	in	your	JavaScript	code	is	opting	into	frustration	and	code	brittleness.

"Class"	Design	Pattern

You	may	never	have	thought	about	classes	as	a	"design	pattern",	since	it's	most	common	to
see	discussion	of	popular	"OO	Design	Patterns",	like	"Iterator",	"Observer",	"Factory",
"Singleton",	etc.	As	presented	this	way,	it's	almost	an	assumption	that	OO	classes	are	the
lower-level	mechanics	by	which	we	implement	all	(higher	level)	design	patterns,	as	if	OO	is	a
given	foundation	for	all	(proper)	code.

Depending	on	your	level	of	formal	education	in	programming,	you	may	have	heard	of
"procedural	programming"	as	a	way	of	describing	code	which	only	consists	of	procedures
(aka,	functions)	calling	other	functions,	without	any	higher	abstractions.	You	may	have	been
taught	that	classes	were	the	proper	way	to	transform	procedural-style	"spaghetti	code"	into
well-formed,	well-organized	code.
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Of	course,	if	you	have	experience	with	"functional	programming"	(Monads,	etc.),	you	know
very	well	that	classes	are	just	one	of	several	common	design	patterns.	But	for	others,	this
may	be	the	first	time	you've	asked	yourself	if	classes	really	are	a	fundamental	foundation	for
code,	or	if	they	are	an	optional	abstraction	on	top	of	code.

Some	languages	(like	Java)	don't	give	you	the	choice,	so	it's	not	very	optional	at	all	--
everything's	a	class.	Other	languages	like	C/C++	or	PHP	give	you	both	procedural	and
class-oriented	syntaxes,	and	it's	left	more	to	the	developer's	choice	which	style	or	mixture	of
styles	is	appropriate.

JavaScript	"Classes"

Where	does	JavaScript	fall	in	this	regard?	JS	has	had	some	class-like	syntactic	elements
(like		new		and		instanceof	)	for	quite	awhile,	and	more	recently	in	ES6,	some	additions,	like
the		class		keyword	(see	Appendix	A).

But	does	that	mean	JavaScript	actually	has	classes?	Plain	and	simple:	No.

Since	classes	are	a	design	pattern,	you	can,	with	quite	a	bit	of	effort	(as	we'll	see	throughout
the	rest	of	this	chapter),	implement	approximations	for	much	of	classical	class	functionality.
JS	tries	to	satisfy	the	extremely	pervasive	desire	to	design	with	classes	by	providing
seemingly	class-like	syntax.

While	we	may	have	a	syntax	that	looks	like	classes,	it's	as	if	JavaScript	mechanics	are
fighting	against	you	using	the	class	design	pattern,	because	behind	the	curtain,	the
mechanisms	that	you	build	on	are	operating	quite	differently.	Syntactic	sugar	and	(extremely
widely	used)	JS	"Class"	libraries	go	a	long	way	toward	hiding	this	reality	from	you,	but
sooner	or	later	you	will	face	the	fact	that	the	classes	you	have	in	other	languages	are	not	like
the	"classes"	you're	faking	in	JS.

What	this	boils	down	to	is	that	classes	are	an	optional	pattern	in	software	design,	and	you
have	the	choice	to	use	them	in	JavaScript	or	not.	Since	many	developers	have	a	strong
affinity	to	class	oriented	software	design,	we'll	spend	the	rest	of	this	chapter	exploring	what	it
takes	to	maintain	the	illusion	of	classes	with	what	JS	provides,	and	the	pain	points	we
experience.

Class	Mechanics
In	many	class-oriented	languages,	the	"standard	library"	provides	a	"stack"	data	structure
(push,	pop,	etc.)	as	a		Stack		class.	This	class	would	have	an	internal	set	of	variables	that
stores	the	data,	and	it	would	have	a	set	of	publicly	accessible	behaviors	("methods")
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provided	by	the	class,	which	gives	your	code	the	ability	to	interact	with	the	(hidden)	data
(adding	&	removing	data,	etc.).

But	in	such	languages,	you	don't	really	operate	directly	on		Stack		(unless	making	a	Static
class	member	reference,	which	is	outside	the	scope	of	our	discussion).	The		Stack		class	is
merely	an	abstract	explanation	of	what	any	"stack"	should	do,	but	it's	not	itself	a	"stack".	You
must	instantiate	the		Stack		class	before	you	have	a	concrete	data	structure	thing	to
operate	against.

Building

The	traditional	metaphor	for	"class"	and	"instance"	based	thinking	comes	from	a	building
construction.

An	architect	plans	out	all	the	characteristics	of	a	building:	how	wide,	how	tall,	how	many
windows	and	in	what	locations,	even	what	type	of	material	to	use	for	the	walls	and	roof.	She
doesn't	necessarily	care,	at	this	point,	where	the	building	will	be	built,	nor	does	she	care	how
many	copies	of	that	building	will	be	built.

She	also	doesn't	care	very	much	about	the	contents	of	the	building	--	the	furniture,	wall
paper,	ceiling	fans,	etc.	--	only	what	type	of	structure	they	will	be	contained	by.

The	architectural	blue-prints	she	produces	are	only	plans	for	a	building.	They	don't	actually
constitute	a	building	we	can	walk	into	and	sit	down.	We	need	a	builder	for	that	task.	A	builder
will	take	those	plans	and	follow	them,	exactly,	as	he	builds	the	building.	In	a	very	real	sense,
he	is	copying	the	intended	characteristics	from	the	plans	to	the	physical	building.

Once	complete,	the	building	is	a	physical	instantiation	of	the	blue-print	plans,	hopefully	an
essentially	perfect	copy.	And	then	the	builder	can	move	to	the	open	lot	next	door	and	do	it	all
over	again,	creating	yet	another	copy.

The	relationship	between	building	and	blue-print	is	indirect.	You	can	examine	a	blue-print	to
understand	how	the	building	was	structured,	for	any	parts	where	direct	inspection	of	the
building	itself	was	insufficient.	But	if	you	want	to	open	a	door,	you	have	to	go	to	the	building
itself	--	the	blue-print	merely	has	lines	drawn	on	a	page	that	represent	where	the	door	should
be.

A	class	is	a	blue-print.	To	actually	get	an	object	we	can	interact	with,	we	must	build	(aka,
"instantiate")	something	from	the	class.	The	end	result	of	such	"construction"	is	an	object,
typically	called	an	"instance",	which	we	can	directly	call	methods	on	and	access	any	public
data	properties	from,	as	necessary.

This	object	is	a	copy	of	all	the	characteristics	described	by	the	class.
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You	likely	wouldn't	expect	to	walk	into	a	building	and	find,	framed	and	hanging	on	the	wall,	a
copy	of	the	blue-prints	used	to	plan	the	building,	though	the	blue-prints	are	probably	on	file
with	a	public	records	office.	Similarly,	you	don't	generally	use	an	object	instance	to	directly
access	and	manipulate	its	class,	but	it	is	usually	possible	to	at	least	determine	which	class
an	object	instance	comes	from.

It's	more	useful	to	consider	the	direct	relationship	of	a	class	to	an	object	instance,	rather
than	any	indirect	relationship	between	an	object	instance	and	the	class	it	came	from.	A
class	is	instantiated	into	object	form	by	a	copy	operation.

As	you	can	see,	the	arrows	move	from	left	to	right,	and	from	top	to	bottom,	which	indicates
the	copy	operations	that	occur,	both	conceptually	and	physically.

Constructor

Instances	of	classes	are	constructed	by	a	special	method	of	the	class,	usually	of	the	same
name	as	the	class,	called	a	constructor.	This	method's	explicit	job	is	to	initialize	any
information	(state)	the	instance	will	need.

For	example,	consider	this	loose	pseudo-code	(invented	syntax)	for	classes:
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class	CoolGuy	{

				specialTrick	=	nothing

				CoolGuy(	trick	)	{

								specialTrick	=	trick

				}

				showOff()	{

								output(	"Here's	my	trick:	",	specialTrick	)

				}

}

To	make	a		CoolGuy		instance,	we	would	call	the	class	constructor:

Joe	=	new	CoolGuy(	"jumping	rope"	)

Joe.showOff()	//	Here's	my	trick:	jumping	rope

Notice	that	the		CoolGuy		class	has	a	constructor		CoolGuy()	,	which	is	actually	what	we	call
when	we	say		new	CoolGuy(..)	.	We	get	an	object	back	(an	instance	of	our	class)	from	the
constructor,	and	we	can	call	the	method		showOff()	,	which	prints	out	that	particular
	CoolGuy	s	special	trick.

Obviously,	jumping	rope	makes	Joe	a	pretty	cool	guy.

The	constructor	of	a	class	belongs	to	the	class,	almost	universally	with	the	same	name	as
the	class.	Also,	constructors	pretty	much	always	need	to	be	called	with		new		to	let	the
language	engine	know	you	want	to	construct	a	new	class	instance.

Class	Inheritance
In	class-oriented	languages,	not	only	can	you	define	a	class	which	can	be	instantiated	itself,
but	you	can	define	another	class	that	inherits	from	the	first	class.

The	second	class	is	often	said	to	be	a	"child	class"	whereas	the	first	is	the	"parent	class".
These	terms	obviously	come	from	the	metaphor	of	parents	and	children,	though	the
metaphors	here	are	a	bit	stretched,	as	you'll	see	shortly.

When	a	parent	has	a	biological	child,	the	genetic	characteristics	of	the	parent	are	copied	into
the	child.	Obviously,	in	most	biological	reproduction	systems,	there	are	two	parents	who	co-
equally	contribute	genes	to	the	mix.	But	for	the	purposes	of	the	metaphor,	we'll	assume	just
one	parent.
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Once	the	child	exists,	he	or	she	is	separate	from	the	parent.	The	child	was	heavily
influenced	by	the	inheritance	from	his	or	her	parent,	but	is	unique	and	distinct.	If	a	child	ends
up	with	red	hair,	that	doesn't	mean	the	parent's	hair	was	or	automatically	becomes	red.

In	a	similar	way,	once	a	child	class	is	defined,	it's	separate	and	distinct	from	the	parent	class.
The	child	class	contains	an	initial	copy	of	the	behavior	from	the	parent,	but	can	then	override
any	inherited	behavior	and	even	define	new	behavior.

It's	important	to	remember	that	we're	talking	about	parent	and	child	classes,	which	aren't
physical	things.	This	is	where	the	metaphor	of	parent	and	child	gets	a	little	confusing,
because	we	actually	should	say	that	a	parent	class	is	like	a	parent's	DNA	and	a	child	class	is
like	a	child's	DNA.	We	have	to	make	(aka	"instantiate")	a	person	out	of	each	set	of	DNA	to
actually	have	a	physical	person	to	have	a	conversation	with.

Let's	set	aside	biological	parents	and	children,	and	look	at	inheritance	through	a	slightly
different	lens:	different	types	of	vehicles.	That's	one	of	the	most	canonical	(and	often	groan-
worthy)	metaphors	to	understand	inheritance.

Let's	revisit	the		Vehicle		and		Car		discussion	from	earlier	in	this	chapter.	Consider	this
loose	pseudo-code	(invented	syntax)	for	inherited	classes:
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class	Vehicle	{

				engines	=	1

				ignition()	{

								output(	"Turning	on	my	engine."	)

				}

				drive()	{

								ignition()

								output(	"Steering	and	moving	forward!"	)

				}

}

class	Car	inherits	Vehicle	{

				wheels	=	4

				drive()	{

								inherited:drive()

								output(	"Rolling	on	all	",	wheels,	"	wheels!"	)

				}

}

class	SpeedBoat	inherits	Vehicle	{

				engines	=	2

				ignition()	{

								output(	"Turning	on	my	",	engines,	"	engines."	)

				}

				pilot()	{

								inherited:drive()

								output(	"Speeding	through	the	water	with	ease!"	)

				}

}

Note:	For	clarity	and	brevity,	constructors	for	these	classes	have	been	omitted.

We	define	the		Vehicle		class	to	assume	an	engine,	a	way	to	turn	on	the	ignition,	and	a	way
to	drive	around.	But	you	wouldn't	ever	manufacture	just	a	generic	"vehicle",	so	it's	really	just
an	abstract	concept	at	this	point.

So	then	we	define	two	specific	kinds	of	vehicle:		Car		and		SpeedBoat	.	They	each	inherit	the
general	characteristics	of		Vehicle	,	but	then	they	specialize	the	characteristics	appropriately
for	each	kind.	A	car	needs	4	wheels,	and	a	speed	boat	needs	2	engines,	which	means	it
needs	extra	attention	to	turn	on	the	ignition	of	both	engines.

Polymorphism
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	Car		defines	its	own		drive()		method,	which	overrides	the	method	of	the	same	name	it
inherited	from		Vehicle	.	But	then,		Car	s		drive()		method	calls		inherited:drive()	,	which
indicates	that		Car		can	reference	the	original	pre-overridden		drive()		it	inherited.
	SpeedBoat	s		pilot()		method	also	makes	a	reference	to	its	inherited	copy	of		drive()	.

This	technique	is	called	"polymorphism",	or	"virtual	polymorphism".	More	specifically	to	our
current	point,	we'll	call	it	"relative	polymorphism".

Polymorphism	is	a	much	broader	topic	than	we	will	exhaust	here,	but	our	current	"relative"
semantics	refers	to	one	particular	aspect:	the	idea	that	any	method	can	reference	another
method	(of	the	same	or	different	name)	at	a	higher	level	of	the	inheritance	hierarchy.	We	say
"relative"	because	we	don't	absolutely	define	which	inheritance	level	(aka,	class)	we	want	to
access,	but	rather	relatively	reference	it	by	essentially	saying	"look	one	level	up".

In	many	languages,	the	keyword		super		is	used,	in	place	of	this	example's		inherited:	,
which	leans	on	the	idea	that	a	"super	class"	is	the	parent/ancestor	of	the	current	class.

Another	aspect	of	polymorphism	is	that	a	method	name	can	have	multiple	definitions	at
different	levels	of	the	inheritance	chain,	and	these	definitions	are	automatically	selected	as
appropriate	when	resolving	which	methods	are	being	called.

We	see	two	occurrences	of	that	behavior	in	our	example	above:		drive()		is	defined	in	both
	Vehicle		and		Car	,	and		ignition()		is	defined	in	both		Vehicle		and		SpeedBoat	.

Note:	Another	thing	that	traditional	class-oriented	languages	give	you	via		super		is	a	direct
way	for	the	constructor	of	a	child	class	to	reference	the	constructor	of	its	parent	class.	This	is
largely	true	because	with	real	classes,	the	constructor	belongs	to	the	class.	However,	in	JS,
it's	the	reverse	--	it's	actually	more	appropriate	to	think	of	the	"class"	belonging	to	the
constructor	(the		Foo.prototype...		type	references).	Since	in	JS	the	relationship	between
child	and	parent	exists	only	between	the	two		.prototype		objects	of	the	respective
constructors,	the	constructors	themselves	are	not	directly	related,	and	thus	there's	no	simple
way	to	relatively	reference	one	from	the	other	(see	Appendix	A	for	ES6		class		which
"solves"	this	with		super	).

An	interesting	implication	of	polymorphism	can	be	seen	specifically	with		ignition()	.	Inside
	pilot()	,	a	relative-polymorphic	reference	is	made	to	(the	inherited)		Vehicle	s	version	of
	drive()	.	But	that		drive()		references	an		ignition()		method	just	by	name	(no	relative
reference).

Which	version	of		ignition()		will	the	language	engine	use,	the	one	from		Vehicle		or	the
one	from		SpeedBoat	?	It	uses	the		SpeedBoat		version	of		ignition()	.	If	you	were	to
instantiate		Vehicle		class	itself,	and	then	call	its		drive()	,	the	language	engine	would
instead	just	use		Vehicle	s		ignition()		method	definition.
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Put	another	way,	the	definition	for	the	method		ignition()		polymorphs	(changes)	depending
on	which	class	(level	of	inheritance)	you	are	referencing	an	instance	of.

This	may	seem	like	overly	deep	academic	detail.	But	understanding	these	details	is
necessary	to	properly	contrast	similar	(but	distinct)	behaviors	in	JavaScript's		[[Prototype]]	
mechanism.

When	classes	are	inherited,	there	is	a	way	for	the	classes	themselves	(not	the	object
instances	created	from	them!)	to	relatively	reference	the	class	inherited	from,	and	this
relative	reference	is	usually	called		super	.

Remember	this	figure	from	earlier:

Notice	how	for	both	instantiation	(	a1	,		a2	,		b1	,	and		b2	)	and	inheritance	(	Bar	),	the
arrows	indicate	a	copy	operation.

Conceptually,	it	would	seem	a	child	class		Bar		can	access	behavior	in	its	parent	class		Foo	
using	a	relative	polymorphic	reference	(aka,		super	).	However,	in	reality,	the	child	class	is
merely	given	a	copy	of	the	inherited	behavior	from	its	parent	class.	If	the	child	"overrides"	a
method	it	inherits,	both	the	original	and	overridden	versions	of	the	method	are	actually
maintained,	so	that	they	are	both	accessible.

Don't	let	polymorphism	confuse	you	into	thinking	a	child	class	is	linked	to	its	parent	class.	A
child	class	instead	gets	a	copy	of	what	it	needs	from	the	parent	class.	Class	inheritance
implies	copies.

Multiple	Inheritance
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Recall	our	earlier	discussion	of	parent(s)	and	children	and	DNA?	We	said	that	the	metaphor
was	a	bit	weird	because	biologically	most	offspring	come	from	two	parents.	If	a	class	could
inherit	from	two	other	classes,	it	would	more	closely	fit	the	parent/child	metaphor.

Some	class-oriented	languages	allow	you	to	specify	more	than	one	"parent"	class	to	"inherit"
from.	Multiple-inheritance	means	that	each	parent	class	definition	is	copied	into	the	child
class.

On	the	surface,	this	seems	like	a	powerful	addition	to	class-orientation,	giving	us	the	ability
to	compose	more	functionality	together.	However,	there	are	certainly	some	complicating
questions	that	arise.	If	both	parent	classes	provide	a	method	called		drive()	,	which	version
would	a		drive()		reference	in	the	child	resolve	to?	Would	you	always	have	to	manually
specify	which	parent's		drive()		you	meant,	thus	losing	some	of	the	gracefulness	of
polymorphic	inheritance?

There's	another	variation,	the	so	called	"Diamond	Problem",	which	refers	to	the	scenario
where	a	child	class	"D"	inherits	from	two	parent	classes	("B"	and	"C"),	and	each	of	those	in
turn	inherits	from	a	common	"A"	parent.	If	"A"	provides	a	method		drive()	,	and	both	"B"	and
"C"	override	(polymorph)	that	method,	when		D		references		drive()	,	which	version	should
it	use	(	B:drive()		or		C:drive()	)?

These	complications	go	even	much	deeper	than	this	quick	glance.	We	address	them	here
only	so	we	can	contrast	to	how	JavaScript's	mechanisms	work.

JavaScript	is	simpler:	it	does	not	provide	a	native	mechanism	for	"multiple	inheritance".
Many	see	this	is	a	good	thing,	because	the	complexity	savings	more	than	make	up	for	the
"reduced"	functionality.	But	this	doesn't	stop	developers	from	trying	to	fake	it	in	various	ways,
as	we'll	see	next.

Mixins
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JavaScript's	object	mechanism	does	not	automatically	perform	copy	behavior	when	you
"inherit"	or	"instantiate".	Plainly,	there	are	no	"classes"	in	JavaScript	to	instantiate,	only
objects.	And	objects	don't	get	copied	to	other	objects,	they	get	linked	together	(more	on	that
in	Chapter	5).

Since	observed	class	behaviors	in	other	languages	imply	copies,	let's	examine	how	JS
developers	fake	the	missing	copy	behavior	of	classes	in	JavaScript:	mixins.	We'll	look	at	two
types	of	"mixin":	explicit	and	implicit.

Explicit	Mixins

Let's	again	revisit	our		Vehicle		and		Car		example	from	before.	Since	JavaScript	will	not
automatically	copy	behavior	from		Vehicle		to		Car	,	we	can	instead	create	a	utility	that
manually	copies.	Such	a	utility	is	often	called		extend(..)		by	many	libraries/frameworks,	but
we	will	call	it		mixin(..)		here	for	illustrative	purposes.
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//	vastly	simplified	`mixin(..)`	example:

function	mixin(	sourceObj,	targetObj	)	{

				for	(var	key	in	sourceObj)	{

								//	only	copy	if	not	already	present

								if	(!(key	in	targetObj))	{

												targetObj[key]	=	sourceObj[key];

								}

				}

				return	targetObj;

}

var	Vehicle	=	{

				engines:	1,

				ignition:	function()	{

								console.log(	"Turning	on	my	engine."	);

				},

				drive:	function()	{

								this.ignition();

								console.log(	"Steering	and	moving	forward!"	);

				}

};

var	Car	=	mixin(	Vehicle,	{

				wheels:	4,

				drive:	function()	{

								Vehicle.drive.call(	this	);

								console.log(	"Rolling	on	all	"	+	this.wheels	+	"	wheels!"	);

				}

}	);

Note:	Subtly	but	importantly,	we're	not	dealing	with	classes	anymore,	because	there	are	no
classes	in	JavaScript.		Vehicle		and		Car		are	just	objects	that	we	make	copies	from	and	to,
respectively.

	Car		now	has	a	copy	of	the	properties	and	functions	from		Vehicle	.	Technically,	functions
are	not	actually	duplicated,	but	rather	references	to	the	functions	are	copied.	So,		Car		now
has	a	property	called		ignition	,	which	is	a	copied	reference	to	the		ignition()		function,	as
well	as	a	property	called		engines		with	the	copied	value	of		1		from		Vehicle	.

	Car		already	had	a		drive		property	(function),	so	that	property	reference	was	not
overridden	(see	the		if		statement	in		mixin(..)		above).

"Polymorphism"	Revisited

Mixing	(Up)	"Class"	Objects

379



Let's	examine	this	statement:		Vehicle.drive.call(	this	)	.	This	is	what	I	call	"explicit
pseudo-polymorphism".	Recall	in	our	previous	pseudo-code	this	line	was
	inherited:drive()	,	which	we	called	"relative	polymorphism".

JavaScript	does	not	have	(prior	to	ES6;	see	Appendix	A)	a	facility	for	relative	polymorphism.
So,	because	both		Car		and		Vehicle		had	a	function	of	the	same	name:		drive()	,	to
distinguish	a	call	to	one	or	the	other,	we	must	make	an	absolute	(not	relative)	reference.	We
explicitly	specify	the		Vehicle		object	by	name,	and	call	the		drive()		function	on	it.

But	if	we	said		Vehicle.drive()	,	the		this		binding	for	that	function	call	would	be	the
	Vehicle		object	instead	of	the		Car		object	(see	Chapter	2),	which	is	not	what	we	want.	So,
instead	we	use		.call(	this	)		(Chapter	2)	to	ensure	that		drive()		is	executed	in	the
context	of	the		Car		object.

Note:	If	the	function	name	identifier	for		Car.drive()		hadn't	overlapped	with	(aka,
"shadowed";	see	Chapter	5)		Vehicle.drive()	,	we	wouldn't	have	been	exercising	"method
polymorphism".	So,	a	reference	to		Vehicle.drive()		would	have	been	copied	over	by	the
	mixin(..)		call,	and	we	could	have	accessed	directly	with		this.drive()	.	The	chosen
identifier	overlap	shadowing	is	why	we	have	to	use	the	more	complex	explicit	pseudo-
polymorphism	approach.

In	class-oriented	languages,	which	have	relative	polymorphism,	the	linkage	between		Car	
and		Vehicle		is	established	once,	at	the	top	of	the	class	definition,	which	makes	for	only	one
place	to	maintain	such	relationships.

But	because	of	JavaScript's	peculiarities,	explicit	pseudo-polymorphism	(because	of
shadowing!)	creates	brittle	manual/explicit	linkage	in	every	single	function	where	you
need	such	a	(pseudo-)polymorphic	reference.	This	can	significantly	increase	the
maintenance	cost.	Moreover,	while	explicit	pseudo-polymorphism	can	emulate	the	behavior
of	"multiple	inheritance",	it	only	increases	the	complexity	and	brittleness.

The	result	of	such	approaches	is	usually	more	complex,	harder-to-read,	and	harder-to-
maintain	code.	Explicit	pseudo-polymorphism	should	be	avoided	wherever	possible,
because	the	cost	outweighs	the	benefit	in	most	respects.

Mixing	Copies

Recall	the		mixin(..)		utility	from	above:
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//	vastly	simplified	`mixin()`	example:

function	mixin(	sourceObj,	targetObj	)	{

				for	(var	key	in	sourceObj)	{

								//	only	copy	if	not	already	present

								if	(!(key	in	targetObj))	{

												targetObj[key]	=	sourceObj[key];

								}

				}

				return	targetObj;

}

Now,	let's	examine	how		mixin(..)		works.	It	iterates	over	the	properties	of		sourceObj	
(	Vehicle		in	our	example)	and	if	there's	no	matching	property	of	that	name	in		targetObj	
(	Car		in	our	example),	it	makes	a	copy.	Since	we're	making	the	copy	after	the	initial	object
exists,	we	are	careful	to	not	copy	over	a	target	property.

If	we	made	the	copies	first,	before	specifying	the		Car		specific	contents,	we	could	omit	this
check	against		targetObj	,	but	that's	a	little	more	clunky	and	less	efficient,	so	it's	generally
less	preferred:

//	alternate	mixin,	less	"safe"	to	overwrites

function	mixin(	sourceObj,	targetObj	)	{

				for	(var	key	in	sourceObj)	{

								targetObj[key]	=	sourceObj[key];

				}

				return	targetObj;

}

var	Vehicle	=	{

				//	...

};

//	first,	create	an	empty	object	with

//	Vehicle's	stuff	copied	in

var	Car	=	mixin(	Vehicle,	{	}	);

//	now	copy	the	intended	contents	into	Car

mixin(	{

				wheels:	4,

				drive:	function()	{

								//	...

				}

},	Car	);
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Either	approach,	we	have	explicitly	copied	the	non-overlapping	contents	of		Vehicle		into
	Car	.	The	name	"mixin"	comes	from	an	alternate	way	of	explaining	the	task:		Car		has
	Vehicle	s	contents	mixed-in,	just	like	you	mix	in	chocolate	chips	into	your	favorite	cookie
dough.

As	a	result	of	the	copy	operation,		Car		will	operate	somewhat	separately	from		Vehicle	.	If
you	add	a	property	onto		Car	,	it	will	not	affect		Vehicle	,	and	vice	versa.

Note:	A	few	minor	details	have	been	skimmed	over	here.	There	are	still	some	subtle	ways
the	two	objects	can	"affect"	each	other	even	after	copying,	such	as	if	they	both	share	a
reference	to	a	common	object	(such	as	an	array).

Since	the	two	objects	also	share	references	to	their	common	functions,	that	means	that
even	manual	copying	of	functions	(aka,	mixins)	from	one	object	to	another	doesn't
actually	emulate	the	real	duplication	from	class	to	instance	that	occurs	in	class-
oriented	languages.

JavaScript	functions	can't	really	be	duplicated	(in	a	standard,	reliable	way),	so	what	you	end
up	with	instead	is	a	duplicated	reference	to	the	same	shared	function	object	(functions	are
objects;	see	Chapter	3).	If	you	modified	one	of	the	shared	function	objects	(like
	ignition()	)	by	adding	properties	on	top	of	it,	for	instance,	both		Vehicle		and		Car		would
be	"affected"	via	the	shared	reference.

Explicit	mixins	are	a	fine	mechanism	in	JavaScript.	But	they	appear	more	powerful	than	they
really	are.	Not	much	benefit	is	actually	derived	from	copying	a	property	from	one	object	to
another,	as	opposed	to	just	defining	the	properties	twice,	once	on	each	object.	And
that's	especially	true	given	the	function-object	reference	nuance	we	just	mentioned.

If	you	explicitly	mix-in	two	or	more	objects	into	your	target	object,	you	can	partially	emulate
the	behavior	of	"multiple	inheritance",	but	there's	no	direct	way	to	handle	collisions	if	the
same	method	or	property	is	being	copied	from	more	than	one	source.	Some
developers/libraries	have	come	up	with	"late	binding"	techniques	and	other	exotic	work-
arounds,	but	fundamentally	these	"tricks"	are	usually	more	effort	(and	lesser	performance!)
than	the	pay-off.

Take	care	only	to	use	explicit	mixins	where	it	actually	helps	make	more	readable	code,	and
avoid	the	pattern	if	you	find	it	making	code	that's	harder	to	trace,	or	if	you	find	it	creates
unnecessary	or	unwieldy	dependencies	between	objects.

If	it	starts	to	get	harder	to	properly	use	mixins	than	before	you	used	them,	you	should
probably	stop	using	mixins.	In	fact,	if	you	have	to	use	a	complex	library/utility	to	work	out	all
these	details,	it	might	be	a	sign	that	you're	going	about	it	the	harder	way,	perhaps
unnecessarily.	In	Chapter	6,	we'll	try	to	distill	a	simpler	way	that	accomplishes	the	desired
outcomes	without	all	the	fuss.
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Parasitic	Inheritance

A	variation	on	this	explicit	mixin	pattern,	which	is	both	in	some	ways	explicit	and	in	other
ways	implicit,	is	called	"parasitic	inheritance",	popularized	mainly	by	Douglas	Crockford.

Here's	how	it	can	work:

//	"Traditional	JS	Class"	`Vehicle`

function	Vehicle()	{

				this.engines	=	1;

}

Vehicle.prototype.ignition	=	function()	{

				console.log(	"Turning	on	my	engine."	);

};

Vehicle.prototype.drive	=	function()	{

				this.ignition();

				console.log(	"Steering	and	moving	forward!"	);

};

//	"Parasitic	Class"	`Car`

function	Car()	{

				//	first,	`car`	is	a	`Vehicle`

				var	car	=	new	Vehicle();

				//	now,	let's	modify	our	`car`	to	specialize	it

				car.wheels	=	4;

				//	save	a	privileged	reference	to	`Vehicle::drive()`

				var	vehDrive	=	car.drive;

				//	override	`Vehicle::drive()`

				car.drive	=	function()	{

								vehDrive.call(	this	);

								console.log(	"Rolling	on	all	"	+	this.wheels	+	"	wheels!"	);

				};

				return	car;

}

var	myCar	=	new	Car();

myCar.drive();

//	Turning	on	my	engine.

//	Steering	and	moving	forward!

//	Rolling	on	all	4	wheels!

As	you	can	see,	we	initially	make	a	copy	of	the	definition	from	the		Vehicle		"parent	class"
(object),	then	mixin	our	"child	class"	(object)	definition	(preserving	privileged	parent-class
references	as	needed),	and	pass	off	this	composed	object		car		as	our	child	instance.
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Note:	when	we	call		new	Car()	,	a	new	object	is	created	and	referenced	by		Car	s		this	
reference	(see	Chapter	2).	But	since	we	don't	use	that	object,	and	instead	return	our	own
	car		object,	the	initially	created	object	is	just	discarded.	So,		Car()		could	be	called	without
the		new		keyword,	and	the	functionality	above	would	be	identical,	but	without	the	wasted
object	creation/garbage-collection.

Implicit	Mixins

Implicit	mixins	are	closely	related	to	explicit	pseudo-polymorphism	as	explained	previously.
As	such,	they	come	with	the	same	caveats	and	warnings.

Consider	this	code:

var	Something	=	{

				cool:	function()	{

								this.greeting	=	"Hello	World";

								this.count	=	this.count	?	this.count	+	1	:	1;

				}

};

Something.cool();

Something.greeting;	//	"Hello	World"

Something.count;	//	1

var	Another	=	{

				cool:	function()	{

								//	implicit	mixin	of	`Something`	to	`Another`

								Something.cool.call(	this	);

				}

};

Another.cool();

Another.greeting;	//	"Hello	World"

Another.count;	//	1	(not	shared	state	with	`Something`)

With		Something.cool.call(	this	)	,	which	can	happen	either	in	a	"constructor"	call	(most
common)	or	in	a	method	call	(shown	here),	we	essentially	"borrow"	the	function
	Something.cool()		and	call	it	in	the	context	of		Another		(via	its		this		binding;	see	Chapter
2)	instead	of		Something	.	The	end	result	is	that	the	assignments	that		Something.cool()	
makes	are	applied	against	the		Another		object	rather	than	the		Something		object.

So,	it	is	said	that	we	"mixed	in"		Something	s	behavior	with	(or	into)		Another	.

While	this	sort	of	technique	seems	to	take	useful	advantage	of		this		rebinding	functionality,
it	is	the	brittle		Something.cool.call(	this	)		call,	which	cannot	be	made	into	a	relative	(and
thus	more	flexible)	reference,	that	you	should	heed	with	caution.	Generally,	avoid	such
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constructs	where	possible	to	keep	cleaner	and	more	maintainable	code.

Review	(TL;DR)
Classes	are	a	design	pattern.	Many	languages	provide	syntax	which	enables	natural	class-
oriented	software	design.	JS	also	has	a	similar	syntax,	but	it	behaves	very	differently	from
what	you're	used	to	with	classes	in	those	other	languages.

Classes	mean	copies.

When	traditional	classes	are	instantiated,	a	copy	of	behavior	from	class	to	instance	occurs.
When	classes	are	inherited,	a	copy	of	behavior	from	parent	to	child	also	occurs.

Polymorphism	(having	different	functions	at	multiple	levels	of	an	inheritance	chain	with	the
same	name)	may	seem	like	it	implies	a	referential	relative	link	from	child	back	to	parent,	but
it's	still	just	a	result	of	copy	behavior.

JavaScript	does	not	automatically	create	copies	(as	classes	imply)	between	objects.

The	mixin	pattern	(both	explicit	and	implicit)	is	often	used	to	sort	of	emulate	class	copy
behavior,	but	this	usually	leads	to	ugly	and	brittle	syntax	like	explicit	pseudo-polymorphism
(	OtherObj.methodName.call(this,	...)	),	which	often	results	in	harder	to	understand	and
maintain	code.

Explicit	mixins	are	also	not	exactly	the	same	as	class	copy,	since	objects	(and	functions!)
only	have	shared	references	duplicated,	not	the	objects/functions	duplicated	themselves.
Not	paying	attention	to	such	nuance	is	the	source	of	a	variety	of	gotchas.

In	general,	faking	classes	in	JS	often	sets	more	landmines	for	future	coding	than	solving
present	real	problems.
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Chapter	5:	Prototypes
In	Chapters	3	and	4,	we	mentioned	the		[[Prototype]]		chain	several	times,	but	haven't	said
what	exactly	it	is.	We	will	now	examine	prototypes	in	detail.

Note:	All	of	the	attempts	to	emulate	class-copy	behavior,	as	described	previously	in	Chapter
4,	labeled	as	variations	of	"mixins",	completely	circumvent	the		[[Prototype]]		chain
mechanism	we	examine	here	in	this	chapter.

	[[Prototype]]	

Objects	in	JavaScript	have	an	internal	property,	denoted	in	the	specification	as
	[[Prototype]]	,	which	is	simply	a	reference	to	another	object.	Almost	all	objects	are	given	a
non-	null		value	for	this	property,	at	the	time	of	their	creation.

Note:	We	will	see	shortly	that	it	is	possible	for	an	object	to	have	an	empty		[[Prototype]]	
linkage,	though	this	is	somewhat	less	common.

Consider:

var	myObject	=	{

				a:	2

};

myObject.a;	//	2

What	is	the		[[Prototype]]		reference	used	for?	In	Chapter	3,	we	examined	the		[[Get]]	
operation	that	is	invoked	when	you	reference	a	property	on	an	object,	such	as		myObject.a	.
For	that	default		[[Get]]		operation,	the	first	step	is	to	check	if	the	object	itself	has	a	property
	a		on	it,	and	if	so,	it's	used.

Note:	ES6	Proxies	are	outside	of	our	discussion	scope	in	this	book	(will	be	covered	in	a	later
book	in	the	series!),	but	everything	we	discuss	here	about	normal		[[Get]]		and		[[Put]]	
behavior	does	not	apply	if	a		Proxy		is	involved.

But	it's	what	happens	if		a		isn't	present	on		myObject		that	brings	our	attention	now	to	the
	[[Prototype]]		link	of	the	object.

The	default		[[Get]]		operation	proceeds	to	follow	the		[[Prototype]]		link	of	the	object	if	it
cannot	find	the	requested	property	on	the	object	directly.
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var	anotherObject	=	{

				a:	2

};

//	create	an	object	linked	to	`anotherObject`

var	myObject	=	Object.create(	anotherObject	);

myObject.a;	//	2

Note:	We	will	explain	what		Object.create(..)		does,	and	how	it	operates,	shortly.	For	now,
just	assume	it	creates	an	object	with	the		[[Prototype]]		linkage	we're	examining	to	the
object	specified.

So,	we	have		myObject		that	is	now		[[Prototype]]		linked	to		anotherObject	.	Clearly
	myObject.a		doesn't	actually	exist,	but	nevertheless,	the	property	access	succeeds	(being
found	on		anotherObject		instead)	and	indeed	finds	the	value		2	.

But,	if		a		weren't	found	on		anotherObject		either,	its		[[Prototype]]		chain,	if	non-empty,	is
again	consulted	and	followed.

This	process	continues	until	either	a	matching	property	name	is	found,	or	the		[[Prototype]]	
chain	ends.	If	no	matching	property	is	ever	found	by	the	end	of	the	chain,	the	return	result
from	the		[[Get]]		operation	is		undefined	.

Similar	to	this		[[Prototype]]		chain	look-up	process,	if	you	use	a		for..in		loop	to	iterate
over	an	object,	any	property	that	can	be	reached	via	its	chain	(and	is	also		enumerable		--	see
Chapter	3)	will	be	enumerated.	If	you	use	the		in		operator	to	test	for	the	existence	of	a
property	on	an	object,		in		will	check	the	entire	chain	of	the	object	(regardless	of
enumerability).

var	anotherObject	=	{

				a:	2

};

//	create	an	object	linked	to	`anotherObject`

var	myObject	=	Object.create(	anotherObject	);

for	(var	k	in	myObject)	{

				console.log("found:	"	+	k);

}

//	found:	a

("a"	in	myObject);	//	true

So,	the		[[Prototype]]		chain	is	consulted,	one	link	at	a	time,	when	you	perform	property
look-ups	in	various	fashions.	The	look-up	stops	once	the	property	is	found	or	the	chain	ends.
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	Object.prototype	

But	where	exactly	does	the		[[Prototype]]		chain	"end"?

The	top-end	of	every	normal		[[Prototype]]		chain	is	the	built-in		Object.prototype	.	This
object	includes	a	variety	of	common	utilities	used	all	over	JS,	because	all	normal	(built-in,
not	host-specific	extension)	objects	in	JavaScript	"descend	from"	(aka,	have	at	the	top	of
their		[[Prototype]]		chain)	the		Object.prototype		object.

Some	utilities	found	here	you	may	be	familiar	with	include		.toString()		and		.valueOf()	.	In
Chapter	3,	we	introduced	another:		.hasOwnProperty(..)	.	And	yet	another	function	on
	Object.prototype		you	may	not	be	familiar	with,	but	which	we'll	address	later	in	this	chapter,
is		.isPrototypeOf(..)	.

Setting	&	Shadowing	Properties

Back	in	Chapter	3,	we	mentioned	that	setting	properties	on	an	object	was	more	nuanced
than	just	adding	a	new	property	to	the	object	or	changing	an	existing	property's	value.	We
will	now	revisit	this	situation	more	completely.

myObject.foo	=	"bar";

If	the		myObject		object	already	has	a	normal	data	accessor	property	called		foo		directly
present	on	it,	the	assignment	is	as	simple	as	changing	the	value	of	the	existing	property.

If		foo		is	not	already	present	directly	on		myObject	,	the		[[Prototype]]		chain	is	traversed,
just	like	for	the		[[Get]]		operation.	If		foo		is	not	found	anywhere	in	the	chain,	the	property
	foo		is	added	directly	to		myObject		with	the	specified	value,	as	expected.

However,	if		foo		is	already	present	somewhere	higher	in	the	chain,	nuanced	(and	perhaps
surprising)	behavior	can	occur	with	the		myObject.foo	=	"bar"		assignment.	We'll	examine
that	more	in	just	a	moment.

If	the	property	name		foo		ends	up	both	on		myObject		itself	and	at	a	higher	level	of	the
	[[Prototype]]		chain	that	starts	at		myObject	,	this	is	called	shadowing.	The		foo		property
directly	on		myObject		shadows	any		foo		property	which	appears	higher	in	the	chain,
because	the		myObject.foo		look-up	would	always	find	the		foo		property	that's	lowest	in	the
chain.

As	we	just	hinted,	shadowing		foo		on		myObject		is	not	as	simple	as	it	may	seem.	We	will
now	examine	three	scenarios	for	the		myObject.foo	=	"bar"		assignment	when		foo		is	not
already	on		myObject		directly,	but	is	at	a	higher	level	of		myObject	's		[[Prototype]]		chain:

1.	 If	a	normal	data	accessor	(see	Chapter	3)	property	named		foo		is	found	anywhere
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higher	on	the		[[Prototype]]		chain,	and	it's	not	marked	as	read-only
(	writable:false	)	then	a	new	property	called		foo		is	added	directly	to		myObject	,
resulting	in	a	shadowed	property.

2.	 If	a		foo		is	found	higher	on	the		[[Prototype]]		chain,	but	it's	marked	as	read-only
(	writable:false	),	then	both	the	setting	of	that	existing	property	as	well	as	the	creation
of	the	shadowed	property	on		myObject		are	disallowed.	If	the	code	is	running	in		strict
mode	,	an	error	will	be	thrown.	Otherwise,	the	setting	of	the	property	value	will	silently	be
ignored.	Either	way,	no	shadowing	occurs.

3.	 If	a		foo		is	found	higher	on	the		[[Prototype]]		chain	and	it's	a	setter	(see	Chapter	3),
then	the	setter	will	always	be	called.	No		foo		will	be	added	to	(aka,	shadowed	on)
	myObject	,	nor	will	the		foo		setter	be	redefined.

Most	developers	assume	that	assignment	of	a	property	(	[[Put]]	)	will	always	result	in
shadowing	if	the	property	already	exists	higher	on	the		[[Prototype]]		chain,	but	as	you	can
see,	that's	only	true	in	one	(#1)	of	the	three	situations	just	described.

If	you	want	to	shadow		foo		in	cases	#2	and	#3,	you	cannot	use		=		assignment,	but	must
instead	use		Object.defineProperty(..)		(see	Chapter	3)	to	add		foo		to		myObject	.

Note:	Case	#2	may	be	the	most	surprising	of	the	three.	The	presence	of	a	read-only
property	prevents	a	property	of	the	same	name	being	implicitly	created	(shadowed)	at	a
lower	level	of	a		[[Prototype]]		chain.	The	reason	for	this	restriction	is	primarily	to	reinforce
the	illusion	of	class-inherited	properties.	If	you	think	of	the		foo		at	a	higher	level	of	the	chain
as	having	been	inherited	(copied	down)	to		myObject	,	then	it	makes	sense	to	enforce	the
non-writable	nature	of	that		foo		property	on		myObject	.	If	you	however	separate	the	illusion
from	the	fact,	and	recognize	that	no	such	inheritance	copying	actually	occurred	(see
Chapters	4	and	5),	it's	a	little	unnatural	that		myObject		would	be	prevented	from	having	a
	foo		property	just	because	some	other	object	had	a	non-writable		foo		on	it.	It's	even
stranger	that	this	restriction	only	applies	to		=		assignment,	but	is	not	enforced	when	using
	Object.defineProperty(..)	.

Shadowing	with	methods	leads	to	ugly	explicit	pseudo-polymorphism	(see	Chapter	4)	if	you
need	to	delegate	between	them.	Usually,	shadowing	is	more	complicated	and	nuanced	than
it's	worth,	so	you	should	try	to	avoid	it	if	possible.	See	Chapter	6	for	an	alternative
design	pattern,	which	among	other	things	discourages	shadowing	in	favor	of	cleaner
alternatives.

Shadowing	can	even	occur	implicitly	in	subtle	ways,	so	care	must	be	taken	if	trying	to	avoid
it.	Consider:
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var	anotherObject	=	{

				a:	2

};

var	myObject	=	Object.create(	anotherObject	);

anotherObject.a;	//	2

myObject.a;	//	2

anotherObject.hasOwnProperty(	"a"	);	//	true

myObject.hasOwnProperty(	"a"	);	//	false

myObject.a++;	//	oops,	implicit	shadowing!

anotherObject.a;	//	2

myObject.a;	//	3

myObject.hasOwnProperty(	"a"	);	//	true

Though	it	may	appear	that		myObject.a++		should	(via	delegation)	look-up	and	just	increment
the		anotherObject.a		property	itself	in	place,	instead	the		++		operation	corresponds	to
	myObject.a	=	myObject.a	+	1	.	The	result	is		[[Get]]		looking	up		a		property	via
	[[Prototype]]		to	get	the	current	value		2		from		anotherObject.a	,	incrementing	the	value
by	one,	then		[[Put]]		assigning	the		3		value	to	a	new	shadowed	property		a		on
	myObject	.	Oops!

Be	very	careful	when	dealing	with	delegated	properties	that	you	modify.	If	you	wanted	to
increment		anotherObject.a	,	the	only	proper	way	is		anotherObject.a++	.

"Class"
At	this	point,	you	might	be	wondering:	"Why	does	one	object	need	to	link	to	another	object?"
What's	the	real	benefit?	That	is	a	very	appropriate	question	to	ask,	but	we	must	first
understand	what		[[Prototype]]		is	not	before	we	can	fully	understand	and	appreciate	what
it	is	and	how	it's	useful.

As	we	explained	in	Chapter	4,	in	JavaScript,	there	are	no	abstract	patterns/blueprints	for
objects	called	"classes"	as	there	are	in	class-oriented	languages.	JavaScript	just	has
objects.

In	fact,	JavaScript	is	almost	unique	among	languages	as	perhaps	the	only	language	with
the	right	to	use	the	label	"object	oriented",	because	it's	one	of	a	very	short	list	of	languages
where	an	object	can	be	created	directly,	without	a	class	at	all.

Prototypes

390



In	JavaScript,	classes	can't	(being	that	they	don't	exist!)	describe	what	an	object	can	do.	The
object	defines	its	own	behavior	directly.	There's	just	the	object.

"Class"	Functions

There's	a	peculiar	kind	of	behavior	in	JavaScript	that	has	been	shamelessly	abused	for
years	to	hack	something	that	looks	like	"classes".	We'll	examine	this	approach	in	detail.

The	peculiar	"sort-of	class"	behavior	hinges	on	a	strange	characteristic	of	functions:	all
functions	by	default	get	a	public,	non-enumerable	(see	Chapter	3)	property	on	them	called
	prototype	,	which	points	at	an	otherwise	arbitrary	object.

function	Foo()	{

				//	...

}

Foo.prototype;	//	{	}

This	object	is	often	called	"Foo's	prototype",	because	we	access	it	via	an	unfortunately-
named		Foo.prototype		property	reference.	However,	that	terminology	is	hopelessly	destined
to	lead	us	into	confusion,	as	we'll	see	shortly.	Instead,	I	will	call	it	"the	object	formerly	known
as	Foo's	prototype".	Just	kidding.	How	about:	"object	arbitrarily	labeled	'Foo	dot	prototype'"?

Whatever	we	call	it,	what	exactly	is	this	object?

The	most	direct	way	to	explain	it	is	that	each	object	created	from	calling		new	Foo()		(see
Chapter	2)	will	end	up	(somewhat	arbitrarily)		[[Prototype]]	-linked	to	this	"Foo	dot
prototype"	object.

Let's	illustrate:

function	Foo()	{

				//	...

}

var	a	=	new	Foo();

Object.getPrototypeOf(	a	)	===	Foo.prototype;	//	true

When		a		is	created	by	calling		new	Foo()	,	one	of	the	things	(see	Chapter	2	for	all	four
steps)	that	happens	is	that		a		gets	an	internal		[[Prototype]]		link	to	the	object	that
	Foo.prototype		is	pointing	at.

Stop	for	a	moment	and	ponder	the	implications	of	that	statement.
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In	class-oriented	languages,	multiple	copies	(aka,	"instances")	of	a	class	can	be	made,	like
stamping	something	out	from	a	mold.	As	we	saw	in	Chapter	4,	this	happens	because	the
process	of	instantiating	(or	inheriting	from)	a	class	means,	"copy	the	behavior	plan	from	that
class	into	a	physical	object",	and	this	is	done	again	for	each	new	instance.

But	in	JavaScript,	there	are	no	such	copy-actions	performed.	You	don't	create	multiple
instances	of	a	class.	You	can	create	multiple	objects	that		[[Prototype]]		link	to	a	common
object.	But	by	default,	no	copying	occurs,	and	thus	these	objects	don't	end	up	totally
separate	and	disconnected	from	each	other,	but	rather,	quite	linked.

	new	Foo()		results	in	a	new	object	(we	called	it		a	),	and	that	new	object		a		is	internally
	[[Prototype]]		linked	to	the		Foo.prototype		object.

We	end	up	with	two	objects,	linked	to	each	other.	That's	it.	We	didn't	instantiate	a	class.
We	certainly	didn't	do	any	copying	of	behavior	from	a	"class"	into	a	concrete	object.	We	just
caused	two	objects	to	be	linked	to	each	other.

In	fact,	the	secret,	which	eludes	most	JS	developers,	is	that	the		new	Foo()		function	calling
had	really	almost	nothing	direct	to	do	with	the	process	of	creating	the	link.	It	was	sort	of	an
accidental	side-effect.		new	Foo()		is	an	indirect,	round-about	way	to	end	up	with	what	we
want:	a	new	object	linked	to	another	object.

Can	we	get	what	we	want	in	a	more	direct	way?	Yes!	The	hero	is		Object.create(..)	.	But
we'll	get	to	that	in	a	little	bit.

What's	in	a	name?

In	JavaScript,	we	don't	make	copies	from	one	object	("class")	to	another	("instance").	We
make	links	between	objects.	For	the		[[Prototype]]		mechanism,	visually,	the	arrows	move
from	right	to	left,	and	from	bottom	to	top.
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This	mechanism	is	often	called	"prototypal	inheritance"	(we'll	explore	the	code	in	detail
shortly),	which	is	commonly	said	to	be	the	dynamic-language	version	of	"classical
inheritance".	It's	an	attempt	to	piggy-back	on	the	common	understanding	of	what
"inheritance"	means	in	the	class-oriented	world,	but	tweak	(read:	pave	over)	the	understood
semantics,	to	fit	dynamic	scripting.

The	word	"inheritance"	has	a	very	strong	meaning	(see	Chapter	4),	with	plenty	of	mental
precedent.	Merely	adding	"prototypal"	in	front	to	distinguish	the	actually	nearly	opposite
behavior	in	JavaScript	has	left	in	its	wake	nearly	two	decades	of	miry	confusion.

I	like	to	say	that	sticking	"prototypal"	in	front	of	"inheritance"	to	drastically	reverse	its	actual
meaning	is	like	holding	an	orange	in	one	hand,	an	apple	in	the	other,	and	insisting	on	calling
the	apple	a	"red	orange".	No	matter	what	confusing	label	I	put	in	front	of	it,	that	doesn't
change	the	fact	that	one	fruit	is	an	apple	and	the	other	is	an	orange.

The	better	approach	is	to	plainly	call	an	apple	an	apple	--	to	use	the	most	accurate	and
direct	terminology.	That	makes	it	easier	to	understand	both	their	similarities	and	their	many
differences,	because	we	all	have	a	simple,	shared	understanding	of	what	"apple"	means.

Because	of	the	confusion	and	conflation	of	terms,	I	believe	the	label	"prototypal	inheritance"
itself	(and	trying	to	mis-apply	all	its	associated	class-orientation	terminology,	like	"class",
"constructor",	"instance",	"polymorphism",	etc)	has	done	more	harm	than	good	in
explaining	how	JavaScript's	mechanism	really	works.

"Inheritance"	implies	a	copy	operation,	and	JavaScript	doesn't	copy	object	properties
(natively,	by	default).	Instead,	JS	creates	a	link	between	two	objects,	where	one	object	can
essentially	delegate	property/function	access	to	another	object.	"Delegation"	(see	Chapter	6)
is	a	much	more	accurate	term	for	JavaScript's	object-linking	mechanism.
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Another	term	which	is	sometimes	thrown	around	in	JavaScript	is	"differential	inheritance".
The	idea	here	is	that	we	describe	an	object's	behavior	in	terms	of	what	is	different	from	a
more	general	descriptor.	For	example,	you	explain	that	a	car	is	a	kind	of	vehicle,	but	one	that
has	exactly	4	wheels,	rather	than	re-describing	all	the	specifics	of	what	makes	up	a	general
vehicle	(engine,	etc).

If	you	try	to	think	of	any	given	object	in	JS	as	the	sum	total	of	all	behavior	that	is	available
via	delegation,	and	in	your	mind	you	flatten	all	that	behavior	into	one	tangible	thing,	then
you	can	(sorta)	see	how	"differential	inheritance"	might	fit.

But	just	like	with	"prototypal	inheritance",	"differential	inheritance"	pretends	that	your	mental
model	is	more	important	than	what	is	physically	happening	in	the	language.	It	overlooks	the
fact	that	object		B		is	not	actually	differentially	constructed,	but	is	instead	built	with	specific
characteristics	defined,	alongside	"holes"	where	nothing	is	defined.	It	is	in	these	"holes"
(gaps	in,	or	lack	of,	definition)	that	delegation	can	take	over	and,	on	the	fly,	"fill	them	in"	with
delegated	behavior.

The	object	is	not,	by	native	default,	flattened	into	the	single	differential	object,	through
copying,	that	the	mental	model	of	"differential	inheritance"	implies.	As	such,	"differential
inheritance"	is	just	not	as	natural	a	fit	for	describing	how	JavaScript's		[[Prototype]]	
mechanism	actually	works.

You	can	choose	to	prefer	the	"differential	inheritance"	terminology	and	mental	model,	as	a
matter	of	taste,	but	there's	no	denying	the	fact	that	it	only	fits	the	mental	acrobatics	in	your
mind,	not	the	physical	behavior	in	the	engine.

"Constructors"

Let's	go	back	to	some	earlier	code:

function	Foo()	{

				//	...

}

var	a	=	new	Foo();

What	exactly	leads	us	to	think		Foo		is	a	"class"?

For	one,	we	see	the	use	of	the		new		keyword,	just	like	class-oriented	languages	do	when
they	construct	class	instances.	For	another,	it	appears	that	we	are	in	fact	executing	a
constructor	method	of	a	class,	because		Foo()		is	actually	a	method	that	gets	called,	just	like
how	a	real	class's	constructor	gets	called	when	you	instantiate	that	class.
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To	further	the	confusion	of	"constructor"	semantics,	the	arbitrarily	labeled		Foo.prototype	
object	has	another	trick	up	its	sleeve.	Consider	this	code:

function	Foo()	{

				//	...

}

Foo.prototype.constructor	===	Foo;	//	true

var	a	=	new	Foo();

a.constructor	===	Foo;	//	true

The		Foo.prototype		object	by	default	(at	declaration	time	on	line	1	of	the	snippet!)	gets	a
public,	non-enumerable	(see	Chapter	3)	property	called		.constructor	,	and	this	property	is	a
reference	back	to	the	function	(	Foo		in	this	case)	that	the	object	is	associated	with.
Moreover,	we	see	that	object		a		created	by	the	"constructor"	call		new	Foo()		seems	to	also
have	a	property	on	it	called		.constructor		which	similarly	points	to	"the	function	which
created	it".

Note:	This	is	not	actually	true.		a		has	no		.constructor		property	on	it,	and	though
	a.constructor		does	in	fact	resolve	to	the		Foo		function,	"constructor"	does	not	actually
mean	"was	constructed	by",	as	it	appears.	We'll	explain	this	strangeness	shortly.

Oh,	yeah,	also...	by	convention	in	the	JavaScript	world,	"class"es	are	named	with	a	capital
letter,	so	the	fact	that	it's		Foo		instead	of		foo		is	a	strong	clue	that	we	intend	it	to	be	a
"class".	That's	totally	obvious	to	you,	right!?

Note:	This	convention	is	so	strong	that	many	JS	linters	actually	complain	if	you	call		new		on
a	method	with	a	lowercase	name,	or	if	we	don't	call		new		on	a	function	that	happens	to	start
with	a	capital	letter.	That	sort	of	boggles	the	mind	that	we	struggle	so	much	to	get	(fake)
"class-orientation"	right	in	JavaScript	that	we	create	linter	rules	to	ensure	we	use	capital
letters,	even	though	the	capital	letter	doesn't	mean	anything	at	all	to	the	JS	engine.

Constructor	Or	Call?

In	the	above	snippet,	it's	tempting	to	think	that		Foo		is	a	"constructor",	because	we	call	it
with		new		and	we	observe	that	it	"constructs"	an	object.

In	reality,		Foo		is	no	more	a	"constructor"	than	any	other	function	in	your	program.	Functions
themselves	are	not	constructors.	However,	when	you	put	the		new		keyword	in	front	of	a
normal	function	call,	that	makes	that	function	call	a	"constructor	call".	In	fact,		new		sort	of
hijacks	any	normal	function	and	calls	it	in	a	fashion	that	constructs	an	object,	in	addition	to
whatever	else	it	was	going	to	do.
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For	example:

function	NothingSpecial()	{

				console.log(	"Don't	mind	me!"	);

}

var	a	=	new	NothingSpecial();

//	"Don't	mind	me!"

a;	//	{}

	NothingSpecial		is	just	a	plain	old	normal	function,	but	when	called	with		new	,	it	constructs
an	object,	almost	as	a	side-effect,	which	we	happen	to	assign	to		a	.	The	call	was	a
constructor	call,	but		NothingSpecial		is	not,	in	and	of	itself,	a	constructor.

In	other	words,	in	JavaScript,	it's	most	appropriate	to	say	that	a	"constructor"	is	any
function	called	with	the		new		keyword	in	front	of	it.

Functions	aren't	constructors,	but	function	calls	are	"constructor	calls"	if	and	only	if		new		is
used.

Mechanics

Are	those	the	only	common	triggers	for	ill-fated	"class"	discussions	in	JavaScript?

Not	quite.	JS	developers	have	strived	to	simulate	as	much	as	they	can	of	class-orientation:

function	Foo(name)	{

				this.name	=	name;

}

Foo.prototype.myName	=	function()	{

				return	this.name;

};

var	a	=	new	Foo(	"a"	);

var	b	=	new	Foo(	"b"	);

a.myName();	//	"a"

b.myName();	//	"b"

This	snippet	shows	two	additional	"class-orientation"	tricks	in	play:

1.	 	this.name	=	name	:	adds	the		.name		property	onto	each	object	(	a		and		b	,
respectively;	see	Chapter	2	about		this		binding),	similar	to	how	class	instances
encapsulate	data	values.
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2.	 	Foo.prototype.myName	=	...	:	perhaps	the	more	interesting	technique,	this	adds	a
property	(function)	to	the		Foo.prototype		object.	Now,		a.myName()		works,	but	perhaps
surprisingly.	How?

In	the	above	snippet,	it's	strongly	tempting	to	think	that	when		a		and		b		are	created,	the
properties/functions	on	the		Foo.prototype		object	are	copied	over	to	each	of		a		and		b	
objects.	However,	that's	not	what	happens.

At	the	beginning	of	this	chapter,	we	explained	the		[[Prototype]]		link,	and	how	it	provides
the	fall-back	look-up	steps	if	a	property	reference	isn't	found	directly	on	an	object,	as	part	of
the	default		[[Get]]		algorithm.

So,	by	virtue	of	how	they	are	created,		a		and		b		each	end	up	with	an	internal
	[[Prototype]]		linkage	to		Foo.prototype	.	When		myName		is	not	found	on		a		or		b	,
respectively,	it's	instead	found	(through	delegation,	see	Chapter	6)	on		Foo.prototype	.

"Constructor"	Redux

Recall	the	discussion	from	earlier	about	the		.constructor		property,	and	how	it	seems	like
	a.constructor	===	Foo		being	true	means	that		a		has	an	actual		.constructor		property	on
it,	pointing	at		Foo	?	Not	correct.

This	is	just	unfortunate	confusion.	In	actuality,	the		.constructor		reference	is	also	delegated
up	to		Foo.prototype	,	which	happens	to,	by	default,	have	a		.constructor		that	points	at
	Foo	.

It	seems	awfully	convenient	that	an	object		a		"constructed	by"		Foo		would	have	access	to	a
	.constructor		property	that	points	to		Foo	.	But	that's	nothing	more	than	a	false	sense	of
security.	It's	a	happy	accident,	almost	tangentially,	that		a.constructor		happens	to	point	at
	Foo		via	this	default		[[Prototype]]		delegation.	There's	actually	several	ways	that	the	ill-
fated	assumption	of		.constructor		meaning	"was	constructed	by"	can	come	back	to	bite
you.

For	one,	the		.constructor		property	on		Foo.prototype		is	only	there	by	default	on	the	object
created	when		Foo		the	function	is	declared.	If	you	create	a	new	object,	and	replace	a
function's	default		.prototype		object	reference,	the	new	object	will	not	by	default	magically
get	a		.constructor		on	it.

Consider:

Prototypes

397



function	Foo()	{	/*	..	*/	}

Foo.prototype	=	{	/*	..	*/	};	//	create	a	new	prototype	object

var	a1	=	new	Foo();

a1.constructor	===	Foo;	//	false!

a1.constructor	===	Object;	//	true!

	Object(..)		didn't	"construct"		a1		did	it?	It	sure	seems	like		Foo()		"constructed"	it.	Many
developers	think	of		Foo()		as	doing	the	construction,	but	where	everything	falls	apart	is
when	you	think	"constructor"	means	"was	constructed	by",	because	by	that	reasoning,
	a1.constructor		should	be		Foo	,	but	it	isn't!

What's	happening?		a1		has	no		.constructor		property,	so	it	delegates	up	the
	[[Prototype]]		chain	to		Foo.prototype	.	But	that	object	doesn't	have	a		.constructor		either
(like	the	default		Foo.prototype		object	would	have	had!),	so	it	keeps	delegating,	this	time	up
to		Object.prototype	,	the	top	of	the	delegation	chain.	That	object	indeed	has	a
	.constructor		on	it,	which	points	to	the	built-in		Object(..)		function.

Misconception,	busted.

Of	course,	you	can	add		.constructor		back	to	the		Foo.prototype		object,	but	this	takes
manual	work,	especially	if	you	want	to	match	native	behavior	and	have	it	be	non-enumerable
(see	Chapter	3).

For	example:

function	Foo()	{	/*	..	*/	}

Foo.prototype	=	{	/*	..	*/	};	//	create	a	new	prototype	object

//	Need	to	properly	"fix"	the	missing	`.constructor`

//	property	on	the	new	object	serving	as	`Foo.prototype`.

//	See	Chapter	3	for	`defineProperty(..)`.

Object.defineProperty(	Foo.prototype,	"constructor"	,	{

				enumerable:	false,

				writable:	true,

				configurable:	true,

				value:	Foo				//	point	`.constructor`	at	`Foo`

}	);

That's	a	lot	of	manual	work	to	fix		.constructor	.	Moreover,	all	we're	really	doing	is
perpetuating	the	misconception	that	"constructor"	means	"was	constructed	by".	That's	an
expensive	illusion.
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The	fact	is,		.constructor		on	an	object	arbitrarily	points,	by	default,	at	a	function	who,
reciprocally,	has	a	reference	back	to	the	object	--	a	reference	which	it	calls		.prototype	.	The
words	"constructor"	and	"prototype"	only	have	a	loose	default	meaning	that	might	or	might
not	hold	true	later.	The	best	thing	to	do	is	remind	yourself,	"constructor	does	not	mean
constructed	by".

	.constructor		is	not	a	magic	immutable	property.	It	is	non-enumerable	(see	snippet	above),
but	its	value	is	writable	(can	be	changed),	and	moreover,	you	can	add	or	overwrite
(intentionally	or	accidentally)	a	property	of	the	name		constructor		on	any	object	in	any
	[[Prototype]]		chain,	with	any	value	you	see	fit.

By	virtue	of	how	the		[[Get]]		algorithm	traverses	the		[[Prototype]]		chain,	a		.constructor	
property	reference	found	anywhere	may	resolve	quite	differently	than	you'd	expect.

See	how	arbitrary	its	meaning	actually	is?

The	result?	Some	arbitrary	object-property	reference	like		a1.constructor		cannot	actually	be
trusted	to	be	the	assumed	default	function	reference.	Moreover,	as	we'll	see	shortly,	just	by
simple	omission,		a1.constructor		can	even	end	up	pointing	somewhere	quite	surprising	and
insensible.

	.constructor		is	extremely	unreliable,	and	an	unsafe	reference	to	rely	upon	in	your	code.
Generally,	such	references	should	be	avoided	where	possible.

"(Prototypal)	Inheritance"
We've	seen	some	approximations	of	"class"	mechanics	as	typically	hacked	into	JavaScript
programs.	But	JavaScript	"class"es	would	be	rather	hollow	if	we	didn't	have	an
approximation	of	"inheritance".

Actually,	we've	already	seen	the	mechanism	which	is	commonly	called	"prototypal
inheritance"	at	work	when		a		was	able	to	"inherit	from"		Foo.prototype	,	and	thus	get	access
to	the		myName()		function.	But	we	traditionally	think	of	"inheritance"	as	being	a	relationship
between	two	"classes",	rather	than	between	"class"	and	"instance".
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Recall	this	figure	from	earlier,	which	shows	not	only	delegation	from	an	object	(aka,
"instance")		a1		to	object		Foo.prototype	,	but	from		Bar.prototype		to		Foo.prototype	,	which
somewhat	resembles	the	concept	of	Parent-Child	class	inheritance.	Resembles,	except	of
course	for	the	direction	of	the	arrows,	which	show	these	are	delegation	links	rather	than
copy	operations.

And,	here's	the	typical	"prototype	style"	code	that	creates	such	links:
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function	Foo(name)	{

				this.name	=	name;

}

Foo.prototype.myName	=	function()	{

				return	this.name;

};

function	Bar(name,label)	{

				Foo.call(	this,	name	);

				this.label	=	label;

}

//	here,	we	make	a	new	`Bar.prototype`

//	linked	to	`Foo.prototype`

Bar.prototype	=	Object.create(	Foo.prototype	);

//	Beware!	Now	`Bar.prototype.constructor`	is	gone,

//	and	might	need	to	be	manually	"fixed"	if	you're

//	in	the	habit	of	relying	on	such	properties!

Bar.prototype.myLabel	=	function()	{

				return	this.label;

};

var	a	=	new	Bar(	"a",	"obj	a"	);

a.myName();	//	"a"

a.myLabel();	//	"obj	a"

Note:	To	understand	why		this		points	to		a		in	the	above	code	snippet,	see	Chapter	2.

The	important	part	is		Bar.prototype	=	Object.create(	Foo.prototype	)	.		Object.create(..)	
creates	a	"new"	object	out	of	thin	air,	and	links	that	new	object's	internal		[[Prototype]]		to
the	object	you	specify	(	Foo.prototype		in	this	case).

In	other	words,	that	line	says:	"make	a	new	'Bar	dot	prototype'	object	that's	linked	to	'Foo	dot
prototype'."

When		function	Bar()	{	..	}		is	declared,		Bar	,	like	any	other	function,	has	a		.prototype	
link	to	its	default	object.	But	that	object	is	not	linked	to		Foo.prototype		like	we	want.	So,	we
create	a	new	object	that	is	linked	as	we	want,	effectively	throwing	away	the	original
incorrectly-linked	object.

Note:	A	common	mis-conception/confusion	here	is	that	either	of	the	following	approaches
would	also	work,	but	they	do	not	work	as	you'd	expect:
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//	doesn't	work	like	you	want!

Bar.prototype	=	Foo.prototype;

//	works	kinda	like	you	want,	but	with

//	side-effects	you	probably	don't	want	:(

Bar.prototype	=	new	Foo();

	Bar.prototype	=	Foo.prototype		doesn't	create	a	new	object	for		Bar.prototype		to	be	linked
to.	It	just	makes		Bar.prototype		be	another	reference	to		Foo.prototype	,	which	effectively
links		Bar		directly	to	the	same	object	as		Foo		links	to:		Foo.prototype	.	This	means	when
you	start	assigning,	like		Bar.prototype.myLabel	=	...	,	you're	modifying	not	a	separate
object	but	the	shared		Foo.prototype		object	itself,	which	would	affect	any	objects	linked	to
	Foo.prototype	.	This	is	almost	certainly	not	what	you	want.	If	it	is	what	you	want,	then	you
likely	don't	need		Bar		at	all,	and	should	just	use	only		Foo		and	make	your	code	simpler.

	Bar.prototype	=	new	Foo()		does	in	fact	create	a	new	object	which	is	duly	linked	to
	Foo.prototype		as	we'd	want.	But,	it	uses	the		Foo(..)		"constructor	call"	to	do	it.	If	that
function	has	any	side-effects	(such	as	logging,	changing	state,	registering	against	other
objects,	adding	data	properties	to		this	,	etc.),	those	side-effects	happen	at	the	time	of
this	linking	(and	likely	against	the	wrong	object!),	rather	than	only	when	the	eventual		Bar()	
"descendants"	are	created,	as	would	likely	be	expected.

So,	we're	left	with	using		Object.create(..)		to	make	a	new	object	that's	properly	linked,	but
without	having	the	side-effects	of	calling		Foo(..)	.	The	slight	downside	is	that	we	have	to
create	a	new	object,	throwing	the	old	one	away,	instead	of	modifying	the	existing	default
object	we're	provided.

It	would	be	nice	if	there	was	a	standard	and	reliable	way	to	modify	the	linkage	of	an	existing
object.	Prior	to	ES6,	there's	a	non-standard	and	not	fully-cross-browser	way,	via	the
	.__proto__		property,	which	is	settable.	ES6	adds	a		Object.setPrototypeOf(..)		helper
utility,	which	does	the	trick	in	a	standard	and	predictable	way.

Compare	the	pre-ES6	and	ES6-standardized	techniques	for	linking		Bar.prototype		to
	Foo.prototype	,	side-by-side:

//	pre-ES6

//	throws	away	default	existing	`Bar.prototype`

Bar.prototype	=	Object.create(	Foo.prototype	);

//	ES6+

//	modifies	existing	`Bar.prototype`

Object.setPrototypeOf(	Bar.prototype,	Foo.prototype	);
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Ignoring	the	slight	performance	disadvantage	(throwing	away	an	object	that's	later	garbage
collected)	of	the		Object.create(..)		approach,	it's	a	little	bit	shorter	and	may	be	perhaps	a
little	easier	to	read	than	the	ES6+	approach.	But	it's	probably	a	syntactic	wash	either	way.

Inspecting	"Class"	Relationships

What	if	you	have	an	object	like		a		and	want	to	find	out	what	object	(if	any)	it	delegates	to?
Inspecting	an	instance	(just	an	object	in	JS)	for	its	inheritance	ancestry	(delegation	linkage	in
JS)	is	often	called	introspection	(or	reflection)	in	traditional	class-oriented	environments.

Consider:

function	Foo()	{

				//	...

}

Foo.prototype.blah	=	...;

var	a	=	new	Foo();

How	do	we	then	introspect		a		to	find	out	its	"ancestry"	(delegation	linkage)?	The	first
approach	embraces	the	"class"	confusion:

a	instanceof	Foo;	//	true

The		instanceof		operator	takes	a	plain	object	as	its	left-hand	operand	and	a	function	as	its
right-hand	operand.	The	question		instanceof		answers	is:	in	the	entire		[[Prototype]]	
chain	of		a	,	does	the	object	arbitrarily	pointed	to	by		Foo.prototype		ever	appear?

Unfortunately,	this	means	that	you	can	only	inquire	about	the	"ancestry"	of	some	object	(	a	)
if	you	have	some	function	(	Foo	,	with	its	attached		.prototype		reference)	to	test	with.	If	you
have	two	arbitrary	objects,	say		a		and		b	,	and	want	to	find	out	if	the	objects	are	related	to
each	other	through	a		[[Prototype]]		chain,		instanceof		alone	can't	help.

Note:	If	you	use	the	built-in		.bind(..)		utility	to	make	a	hard-bound	function	(see	Chapter
2),	the	function	created	will	not	have	a		.prototype		property.	Using		instanceof		with	such	a
function	transparently	substitutes	the		.prototype		of	the	target	function	that	the	hard-bound
function	was	created	from.

It's	fairly	uncommon	to	use	hard-bound	functions	as	"constructor	calls",	but	if	you	do,	it	will
behave	as	if	the	original	target	function	was	invoked	instead,	which	means	that	using
	instanceof		with	a	hard-bound	function	also	behaves	according	to	the	original	function.
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This	snippet	illustrates	the	ridiculousness	of	trying	to	reason	about	relationships	between
two	objects	using	"class"	semantics	and		instanceof	:

//	helper	utility	to	see	if	`o1`	is

//	related	to	(delegates	to)	`o2`

function	isRelatedTo(o1,	o2)	{

				function	F(){}

				F.prototype	=	o2;

				return	o1	instanceof	F;

}

var	a	=	{};

var	b	=	Object.create(	a	);

isRelatedTo(	b,	a	);	//	true

Inside		isRelatedTo(..)	,	we	borrow	a	throw-away	function		F	,	reassign	its		.prototype		to
arbitrarily	point	to	some	object		o2	,	then	ask	if		o1		is	an	"instance	of"		F	.	Obviously		o1	
isn't	actually	inherited	or	descended	or	even	constructed	from		F	,	so	it	should	be	clear	why
this	kind	of	exercise	is	silly	and	confusing.	The	problem	comes	down	to	the	awkwardness
of	class	semantics	forced	upon	JavaScript,	in	this	case	as	revealed	by	the	indirect
semantics	of		instanceof	.

The	second,	and	much	cleaner,	approach	to		[[Prototype]]		reflection	is:

Foo.prototype.isPrototypeOf(	a	);	//	true

Notice	that	in	this	case,	we	don't	really	care	about	(or	even	need)		Foo	,	we	just	need	an
object	(in	our	case,	arbitrarily	labeled		Foo.prototype	)	to	test	against	another	object.	The
question		isPrototypeOf(..)		answers	is:	in	the	entire		[[Prototype]]		chain	of		a	,	does
	Foo.prototype		ever	appear?

Same	question,	and	exact	same	answer.	But	in	this	second	approach,	we	don't	actually
need	the	indirection	of	referencing	a	function	(	Foo	)	whose		.prototype		property	will
automatically	be	consulted.

We	just	need	two	objects	to	inspect	a	relationship	between	them.	For	example:

//	Simply:	does	`b`	appear	anywhere	in

//	`c`s	[[Prototype]]	chain?

b.isPrototypeOf(	c	);
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Notice,	this	approach	doesn't	require	a	function	("class")	at	all.	It	just	uses	object	references
directly	to		b		and		c	,	and	inquires	about	their	relationship.	In	other	words,	our
	isRelatedTo(..)		utility	above	is	built-in	to	the	language,	and	it's	called		isPrototypeOf(..)	.

We	can	also	directly	retrieve	the		[[Prototype]]		of	an	object.	As	of	ES5,	the	standard	way	to
do	this	is:

Object.getPrototypeOf(	a	);

And	you'll	notice	that	object	reference	is	what	we'd	expect:

Object.getPrototypeOf(	a	)	===	Foo.prototype;	//	true

Most	browsers	(not	all!)	have	also	long	supported	a	non-standard	alternate	way	of	accessing
the	internal		[[Prototype]]	:

a.__proto__	===	Foo.prototype;	//	true

The	strange		.__proto__		(not	standardized	until	ES6!)	property	"magically"	retrieves	the
internal		[[Prototype]]		of	an	object	as	a	reference,	which	is	quite	helpful	if	you	want	to
directly	inspect	(or	even	traverse:		.__proto__.__proto__...	)	the	chain.

Just	as	we	saw	earlier	with		.constructor	,		.__proto__		doesn't	actually	exist	on	the	object
you're	inspecting	(	a		in	our	running	example).	In	fact,	it	exists	(non-enumerable;	see
Chapter	2)	on	the	built-in		Object.prototype	,	along	with	the	other	common	utilities
(	.toString()	,		.isPrototypeOf(..)	,	etc).

Moreover,		.__proto__		looks	like	a	property,	but	it's	actually	more	appropriate	to	think	of	it	as
a	getter/setter	(see	Chapter	3).

Roughly,	we	could	envision		.__proto__		implemented	(see	Chapter	3	for	object	property
definitions)	like	this:

Object.defineProperty(	Object.prototype,	"__proto__",	{

				get:	function()	{

								return	Object.getPrototypeOf(	this	);

				},

				set:	function(o)	{

								//	setPrototypeOf(..)	as	of	ES6

								Object.setPrototypeOf(	this,	o	);

								return	o;

				}

}	);
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So,	when	we	access	(retrieve	the	value	of)		a.__proto__	,	it's	like	calling		a.__proto__()	
(calling	the	getter	function).	That	function	call	has		a		as	its		this		even	though	the	getter
function	exists	on	the		Object.prototype		object	(see	Chapter	2	for		this		binding	rules),	so
it's	just	like	saying		Object.getPrototypeOf(	a	)	.

	.__proto__		is	also	a	settable	property,	just	like	using	ES6's		Object.setPrototypeOf(..)	
shown	earlier.	However,	generally	you	should	not	change	the		[[Prototype]]		of	an
existing	object.

There	are	some	very	complex,	advanced	techniques	used	deep	in	some	frameworks	that
allow	tricks	like	"subclassing"	an		Array	,	but	this	is	commonly	frowned	on	in	general
programming	practice,	as	it	usually	leads	to	much	harder	to	understand/maintain	code.

Note:	As	of	ES6,	the		class		keyword	will	allow	something	that	approximates	"subclassing"
of	built-in's	like		Array	.	See	Appendix	A	for	discussion	of	the		class		syntax	added	in	ES6.

The	only	other	narrow	exception	(as	mentioned	earlier)	would	be	setting	the		[[Prototype]]	
of	a	default	function's		.prototype		object	to	reference	some	other	object	(besides
	Object.prototype	).	That	would	avoid	replacing	that	default	object	entirely	with	a	new	linked
object.	Otherwise,	it's	best	to	treat	object		[[Prototype]]		linkage	as	a	read-only
characteristic	for	ease	of	reading	your	code	later.

Note:	The	JavaScript	community	unofficially	coined	a	term	for	the	double-underscore,
specifically	the	leading	one	in	properties	like		__proto__	:	"dunder".	So,	the	"cool	kids"	in
JavaScript	would	generally	pronounce		__proto__		as	"dunder	proto".

Object	Links
As	we've	now	seen,	the		[[Prototype]]		mechanism	is	an	internal	link	that	exists	on	one
object	which	references	some	other	object.

This	linkage	is	(primarily)	exercised	when	a	property/method	reference	is	made	against	the
first	object,	and	no	such	property/method	exists.	In	that	case,	the		[[Prototype]]		linkage
tells	the	engine	to	look	for	the	property/method	on	the	linked-to	object.	In	turn,	if	that	object
cannot	fulfill	the	look-up,	its		[[Prototype]]		is	followed,	and	so	on.	This	series	of	links
between	objects	forms	what	is	called	the	"prototype	chain".

	Create()	ing	Links

We've	thoroughly	debunked	why	JavaScript's		[[Prototype]]		mechanism	is	not	like	classes,
and	we've	seen	how	it	instead	creates	links	between	proper	objects.
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What's	the	point	of	the		[[Prototype]]		mechanism?	Why	is	it	so	common	for	JS	developers
to	go	to	so	much	effort	(emulating	classes)	in	their	code	to	wire	up	these	linkages?

Remember	we	said	much	earlier	in	this	chapter	that		Object.create(..)		would	be	a	hero?
Now,	we're	ready	to	see	how.

var	foo	=	{

				something:	function()	{

								console.log(	"Tell	me	something	good..."	);

				}

};

var	bar	=	Object.create(	foo	);

bar.something();	//	Tell	me	something	good...

	Object.create(..)		creates	a	new	object	(	bar	)	linked	to	the	object	we	specified	(	foo	),
which	gives	us	all	the	power	(delegation)	of	the		[[Prototype]]		mechanism,	but	without	any
of	the	unnecessary	complication	of		new		functions	acting	as	classes	and	constructor	calls,
confusing		.prototype		and		.constructor		references,	or	any	of	that	extra	stuff.

Note:		Object.create(null)		creates	an	object	that	has	an	empty	(aka,		null	)
	[[Prototype]]		linkage,	and	thus	the	object	can't	delegate	anywhere.	Since	such	an	object
has	no	prototype	chain,	the		instanceof		operator	(explained	earlier)	has	nothing	to	check,
so	it	will	always	return		false	.	These	special	empty-	[[Prototype]]		objects	are	often	called
"dictionaries"	as	they	are	typically	used	purely	for	storing	data	in	properties,	mostly	because
they	have	no	possible	surprise	effects	from	any	delegated	properties/functions	on	the
	[[Prototype]]		chain,	and	are	thus	purely	flat	data	storage.

We	don't	need	classes	to	create	meaningful	relationships	between	two	objects.	The	only
thing	we	should	really	care	about	is	objects	linked	together	for	delegation,	and
	Object.create(..)		gives	us	that	linkage	without	all	the	class	cruft.

	Object.create()		Polyfilled

	Object.create(..)		was	added	in	ES5.	You	may	need	to	support	pre-ES5	environments	(like
older	IE's),	so	let's	take	a	look	at	a	simple	partial	polyfill	for		Object.create(..)		that	gives	us
the	capability	that	we	need	even	in	those	older	JS	environments:
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if	(!Object.create)	{

				Object.create	=	function(o)	{

								function	F(){}

								F.prototype	=	o;

								return	new	F();

				};

}

This	polyfill	works	by	using	a	throw-away		F		function	and	overriding	its		.prototype	
property	to	point	to	the	object	we	want	to	link	to.	Then	we	use		new	F()		construction	to
make	a	new	object	that	will	be	linked	as	we	specified.

This	usage	of		Object.create(..)		is	by	far	the	most	common	usage,	because	it's	the	part
that	can	be	polyfilled.	There's	an	additional	set	of	functionality	that	the	standard	ES5	built-in
	Object.create(..)		provides,	which	is	not	polyfillable	for	pre-ES5.	As	such,	this	capability
is	far-less	commonly	used.	For	completeness	sake,	let's	look	at	that	additional	functionality:

var	anotherObject	=	{

				a:	2

};

var	myObject	=	Object.create(	anotherObject,	{

				b:	{

								enumerable:	false,

								writable:	true,

								configurable:	false,

								value:	3

				},

				c:	{

								enumerable:	true,

								writable:	false,

								configurable:	false,

								value:	4

				}

}	);

myObject.hasOwnProperty(	"a"	);	//	false

myObject.hasOwnProperty(	"b"	);	//	true

myObject.hasOwnProperty(	"c"	);	//	true

myObject.a;	//	2

myObject.b;	//	3

myObject.c;	//	4

The	second	argument	to		Object.create(..)		specifies	property	names	to	add	to	the	newly
created	object,	via	declaring	each	new	property's	property	descriptor	(see	Chapter	3).
Because	polyfilling	property	descriptors	into	pre-ES5	is	not	possible,	this	additional

Prototypes

408



functionality	on		Object.create(..)		also	cannot	be	polyfilled.

The	vast	majority	of	usage	of		Object.create(..)		uses	the	polyfill-safe	subset	of
functionality,	so	most	developers	are	fine	with	using	the	partial	polyfill	in	pre-ES5
environments.

Some	developers	take	a	much	stricter	view,	which	is	that	no	function	should	be	polyfilled
unless	it	can	be	fully	polyfilled.	Since		Object.create(..)		is	one	of	those	partial-polyfill'able
utilities,	this	narrower	perspective	says	that	if	you	need	to	use	any	of	the	functionality	of
	Object.create(..)		in	a	pre-ES5	environment,	instead	of	polyfilling,	you	should	use	a
custom	utility,	and	stay	away	from	using	the	name		Object.create		entirely.	You	could	instead
define	your	own	utility,	like:

function	createAndLinkObject(o)	{

				function	F(){}

				F.prototype	=	o;

				return	new	F();

}

var	anotherObject	=	{

				a:	2

};

var	myObject	=	createAndLinkObject(	anotherObject	);

myObject.a;	//	2

I	do	not	share	this	strict	opinion.	I	fully	endorse	the	common	partial-polyfill	of
	Object.create(..)		as	shown	above,	and	using	it	in	your	code	even	in	pre-ES5.	I'll	leave	it	to
you	to	make	your	own	decision.

Links	As	Fallbacks?

It	may	be	tempting	to	think	that	these	links	between	objects	primarily	provide	a	sort	of
fallback	for	"missing"	properties	or	methods.	While	that	may	be	an	observed	outcome,	I	don't
think	it	represents	the	right	way	of	thinking	about		[[Prototype]]	.

Consider:

Prototypes

409



var	anotherObject	=	{

				cool:	function()	{

								console.log(	"cool!"	);

				}

};

var	myObject	=	Object.create(	anotherObject	);

myObject.cool();	//	"cool!"

That	code	will	work	by	virtue	of		[[Prototype]]	,	but	if	you	wrote	it	that	way	so	that
	anotherObject		was	acting	as	a	fallback	just	in	case		myObject		couldn't	handle	some
property/method	that	some	developer	may	try	to	call,	odds	are	that	your	software	is	going	to
be	a	bit	more	"magical"	and	harder	to	understand	and	maintain.

That's	not	to	say	there	aren't	cases	where	fallbacks	are	an	appropriate	design	pattern,	but
it's	not	very	common	or	idiomatic	in	JS,	so	if	you	find	yourself	doing	so,	you	might	want	to
take	a	step	back	and	reconsider	if	that's	really	appropriate	and	sensible	design.

Note:	In	ES6,	an	advanced	functionality	called		Proxy		is	introduced	which	can	provide
something	of	a	"method	not	found"	type	of	behavior.		Proxy		is	beyond	the	scope	of	this
book,	but	will	be	covered	in	detail	in	a	later	book	in	the	"You	Don't	Know	JS"	series.

Don't	miss	an	important	but	nuanced	point	here.

Designing	software	where	you	intend	for	a	developer	to,	for	instance,	call		myObject.cool()	
and	have	that	work	even	though	there	is	no		cool()		method	on		myObject		introduces	some
"magic"	into	your	API	design	that	can	be	surprising	for	future	developers	who	maintain	your
software.

You	can	however	design	your	API	with	less	"magic"	to	it,	but	still	take	advantage	of	the
power	of		[[Prototype]]		linkage.

var	anotherObject	=	{

				cool:	function()	{

								console.log(	"cool!"	);

				}

};

var	myObject	=	Object.create(	anotherObject	);

myObject.doCool	=	function()	{

				this.cool();	//	internal	delegation!

};

myObject.doCool();	//	"cool!"
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Here,	we	call		myObject.doCool()	,	which	is	a	method	that	actually	exists	on		myObject	,
making	our	API	design	more	explicit	(less	"magical").	Internally,	our	implementation	follows
the	delegation	design	pattern	(see	Chapter	6),	taking	advantage	of		[[Prototype]]	
delegation	to		anotherObject.cool()	.

In	other	words,	delegation	will	tend	to	be	less	surprising/confusing	if	it's	an	internal
implementation	detail	rather	than	plainly	exposed	in	your	API	design.	We	will	expound	on
delegation	in	great	detail	in	the	next	chapter.

Review	(TL;DR)
When	attempting	a	property	access	on	an	object	that	doesn't	have	that	property,	the	object's
internal		[[Prototype]]		linkage	defines	where	the		[[Get]]		operation	(see	Chapter	3)
should	look	next.	This	cascading	linkage	from	object	to	object	essentially	defines	a
"prototype	chain"	(somewhat	similar	to	a	nested	scope	chain)	of	objects	to	traverse	for
property	resolution.

All	normal	objects	have	the	built-in		Object.prototype		as	the	top	of	the	prototype	chain	(like
the	global	scope	in	scope	look-up),	where	property	resolution	will	stop	if	not	found	anywhere
prior	in	the	chain.		toString()	,		valueOf()	,	and	several	other	common	utilities	exist	on	this
	Object.prototype		object,	explaining	how	all	objects	in	the	language	are	able	to	access
them.

The	most	common	way	to	get	two	objects	linked	to	each	other	is	using	the		new		keyword
with	a	function	call,	which	among	its	four	steps	(see	Chapter	2),	it	creates	a	new	object
linked	to	another	object.

The	"another	object"	that	the	new	object	is	linked	to	happens	to	be	the	object	referenced	by
the	arbitrarily	named		.prototype		property	of	the	function	called	with		new	.	Functions	called
with		new		are	often	called	"constructors",	despite	the	fact	that	they	are	not	actually
instantiating	a	class	as	constructors	do	in	traditional	class-oriented	languages.

While	these	JavaScript	mechanisms	can	seem	to	resemble	"class	instantiation"	and	"class
inheritance"	from	traditional	class-oriented	languages,	the	key	distinction	is	that	in
JavaScript,	no	copies	are	made.	Rather,	objects	end	up	linked	to	each	other	via	an	internal
	[[Prototype]]		chain.

For	a	variety	of	reasons,	not	the	least	of	which	is	terminology	precedent,	"inheritance"	(and
"prototypal	inheritance")	and	all	the	other	OO	terms	just	do	not	make	sense	when
considering	how	JavaScript	actually	works	(not	just	applied	to	our	forced	mental	models).

Instead,	"delegation"	is	a	more	appropriate	term,	because	these	relationships	are	not	copies
but	delegation	links.
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Chapter	6:	Behavior	Delegation
In	Chapter	5,	we	addressed	the		[[Prototype]]		mechanism	in	detail,	and	why	it's	confusing
and	inappropriate	(despite	countless	attempts	for	nearly	two	decades)	to	describe	it	as
"class"	or	"inheritance".	We	trudged	through	not	only	the	fairly	verbose	syntax	(	.prototype	
littering	the	code),	but	the	various	gotchas	(like	surprising		.constructor		resolution	or	ugly
pseudo-polymorphic	syntax).	We	explored	variations	of	the	"mixin"	approach,	which	many
people	use	to	attempt	to	smooth	over	such	rough	areas.

It's	a	common	reaction	at	this	point	to	wonder	why	it	has	to	be	so	complex	to	do	something
seemingly	so	simple.	Now	that	we've	pulled	back	the	curtain	and	seen	just	how	dirty	it	all
gets,	it's	not	a	surprise	that	most	JS	developers	never	dive	this	deep,	and	instead	relegate
such	mess	to	a	"class"	library	to	handle	it	for	them.

I	hope	by	now	you're	not	content	to	just	gloss	over	and	leave	such	details	to	a	"black	box"
library.	Let's	now	dig	into	how	we	could	and	should	be	thinking	about	the	object
	[[Prototype]]		mechanism	in	JS,	in	a	much	simpler	and	more	straightforward	way	than
the	confusion	of	classes.

As	a	brief	review	of	our	conclusions	from	Chapter	5,	the		[[Prototype]]		mechanism	is	an
internal	link	that	exists	on	one	object	which	references	another	object.

This	linkage	is	exercised	when	a	property/method	reference	is	made	against	the	first	object,
and	no	such	property/method	exists.	In	that	case,	the		[[Prototype]]		linkage	tells	the
engine	to	look	for	the	property/method	on	the	linked-to	object.	In	turn,	if	that	object	cannot
fulfill	the	look-up,	its		[[Prototype]]		is	followed,	and	so	on.	This	series	of	links	between
objects	forms	what	is	called	the	"prototype	chain".

In	other	words,	the	actual	mechanism,	the	essence	of	what's	important	to	the	functionality
we	can	leverage	in	JavaScript,	is	all	about	objects	being	linked	to	other	objects.

That	single	observation	is	fundamental	and	critical	to	understanding	the	motivations	and
approaches	for	the	rest	of	this	chapter!

Towards	Delegation-Oriented	Design
To	properly	focus	our	thoughts	on	how	to	use		[[Prototype]]		in	the	most	straightforward
way,	we	must	recognize	that	it	represents	a	fundamentally	different	design	pattern	from
classes	(see	Chapter	4).
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Note:	Some	principles	of	class-oriented	design	are	still	very	valid,	so	don't	toss	out
everything	you	know	(just	most	of	it!).	For	example,	encapsulation	is	quite	powerful,	and	is
compatible	(though	not	as	common)	with	delegation.

We	need	to	try	to	change	our	thinking	from	the	class/inheritance	design	pattern	to	the
behavior	delegation	design	pattern.	If	you	have	done	most	or	all	of	your	programming	in	your
education/career	thinking	in	classes,	this	may	be	uncomfortable	or	feel	unnatural.	You	may
need	to	try	this	mental	exercise	quite	a	few	times	to	get	the	hang	of	this	very	different	way	of
thinking.

I'm	going	to	walk	you	through	some	theoretical	exercises	first,	then	we'll	look	side-by-side	at
a	more	concrete	example	to	give	you	practical	context	for	your	own	code.

Class	Theory

Let's	say	we	have	several	similar	tasks	("XYZ",	"ABC",	etc)	that	we	need	to	model	in	our
software.

With	classes,	the	way	you	design	the	scenario	is:	define	a	general	parent	(base)	class	like
	Task	,	defining	shared	behavior	for	all	the	"alike"	tasks.	Then,	you	define	child	classes		XYZ	
and		ABC	,	both	of	which	inherit	from		Task	,	and	each	of	which	adds	specialized	behavior	to
handle	their	respective	tasks.

Importantly,	the	class	design	pattern	will	encourage	you	that	to	get	the	most	out	of
inheritance,	you	will	want	to	employ	method	overriding	(and	polymorphism),	where	you
override	the	definition	of	some	general		Task		method	in	your		XYZ		task,	perhaps	even
making	use	of		super		to	call	to	the	base	version	of	that	method	while	adding	more	behavior
to	it.	You'll	likely	find	quite	a	few	places	where	you	can	"abstract"	out	general	behavior	to
the	parent	class	and	specialize	(override)	it	in	your	child	classes.

Here's	some	loose	pseudo-code	for	that	scenario:
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class	Task	{

				id;

				//	constructor	`Task()`

				Task(ID)	{	id	=	ID;	}

				outputTask()	{	output(	id	);	}

}

class	XYZ	inherits	Task	{

				label;

				//	constructor	`XYZ()`

				XYZ(ID,Label)	{	super(	ID	);	label	=	Label;	}

				outputTask()	{	super();	output(	label	);	}

}

class	ABC	inherits	Task	{

				//	...

}

Now,	you	can	instantiate	one	or	more	copies	of	the		XYZ		child	class,	and	use	those
instance(s)	to	perform	task	"XYZ".	These	instances	have	copies	both	of	the	general		Task	
defined	behavior	as	well	as	the	specific		XYZ		defined	behavior.	Likewise,	instances	of	the
	ABC		class	would	have	copies	of	the		Task		behavior	and	the	specific		ABC		behavior.	After
construction,	you	will	generally	only	interact	with	these	instances	(and	not	the	classes),	as
the	instances	each	have	copies	of	all	the	behavior	you	need	to	do	the	intended	task.

Delegation	Theory

But	now	let's	try	to	think	about	the	same	problem	domain,	but	using	behavior	delegation
instead	of	classes.

You	will	first	define	an	object	(not	a	class,	nor	a		function		as	most	JS'rs	would	lead	you	to
believe)	called		Task	,	and	it	will	have	concrete	behavior	on	it	that	includes	utility	methods
that	various	tasks	can	use	(read:	delegate	to!).	Then,	for	each	task	("XYZ",	"ABC"),	you
define	an	object	to	hold	that	task-specific	data/behavior.	You	link	your	task-specific
object(s)	to	the		Task		utility	object,	allowing	them	to	delegate	to	it	when	they	need	to.

Basically,	you	think	about	performing	task	"XYZ"	as	needing	behaviors	from	two	sibling/peer
objects	(	XYZ		and		Task	)	to	accomplish	it.	But	rather	than	needing	to	compose	them
together,	via	class	copies,	we	can	keep	them	in	their	separate	objects,	and	we	can	allow
	XYZ		object	to	delegate	to		Task		when	needed.

Here's	some	simple	code	to	suggest	how	you	accomplish	that:
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var	Task	=	{

				setID:	function(ID)	{	this.id	=	ID;	},

				outputID:	function()	{	console.log(	this.id	);	}

};

//	make	`XYZ`	delegate	to	`Task`

var	XYZ	=	Object.create(	Task	);

XYZ.prepareTask	=	function(ID,Label)	{

				this.setID(	ID	);

				this.label	=	Label;

};

XYZ.outputTaskDetails	=	function()	{

				this.outputID();

				console.log(	this.label	);

};

//	ABC	=	Object.create(	Task	);

//	ABC	...	=	...

In	this	code,		Task		and		XYZ		are	not	classes	(or	functions),	they're	just	objects.		XYZ		is	set
up	via		Object.create(..)		to		[[Prototype]]		delegate	to	the		Task		object	(see	Chapter	5).

As	compared	to	class-orientation	(aka,	OO	--	object-oriented),	I	call	this	style	of	code
"OLOO"	(objects-linked-to-other-objects).	All	we	really	care	about	is	that	the		XYZ		object
delegates	to	the		Task		object	(as	does	the		ABC		object).

In	JavaScript,	the		[[Prototype]]		mechanism	links	objects	to	other	objects.	There	are	no
abstract	mechanisms	like	"classes",	no	matter	how	much	you	try	to	convince	yourself
otherwise.	It's	like	paddling	a	canoe	upstream:	you	can	do	it,	but	you're	choosing	to	go
against	the	natural	current,	so	it's	obviously	going	to	be	harder	to	get	where	you're	going.

Some	other	differences	to	note	with	OLOO	style	code:

1.	 Both		id		and		label		data	members	from	the	previous	class	example	are	data
properties	directly	on		XYZ		(neither	is	on		Task	).	In	general,	with		[[Prototype]]	
delegation	involved,	you	want	state	to	be	on	the	delegators	(	XYZ	,		ABC	),	not	on	the
delegate	(	Task	).

2.	 With	the	class	design	pattern,	we	intentionally	named		outputTask		the	same	on	both
parent	(	Task	)	and	child	(	XYZ	),	so	that	we	could	take	advantage	of	overriding
(polymorphism).	In	behavior	delegation,	we	do	the	opposite:	we	avoid	if	at	all	possible
naming	things	the	same	at	different	levels	of	the		[[Prototype]]		chain	(called
shadowing	--	see	Chapter	5),	because	having	those	name	collisions	creates
awkward/brittle	syntax	to	disambiguate	references	(see	Chapter	4),	and	we	want	to
avoid	that	if	we	can.
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This	design	pattern	calls	for	less	of	general	method	names	which	are	prone	to
overriding	and	instead	more	of	descriptive	method	names,	specific	to	the	type	of
behavior	each	object	is	doing.	This	can	actually	create	easier	to
understand/maintain	code,	because	the	names	of	methods	(not	only	at	definition
location	but	strewn	throughout	other	code)	are	more	obvious	(self	documenting).

3.	 	this.setID(ID);		inside	of	a	method	on	the		XYZ		object	first	looks	on		XYZ		for
	setID(..)	,	but	since	it	doesn't	find	a	method	of	that	name	on		XYZ	,		[[Prototype]]	
delegation	means	it	can	follow	the	link	to		Task		to	look	for		setID(..)	,	which	it	of
course	finds.	Moreover,	because	of	implicit	call-site		this		binding	rules	(see	Chapter
2),	when		setID(..)		runs,	even	though	the	method	was	found	on		Task	,	the		this	
binding	for	that	function	call	is		XYZ		exactly	as	we'd	expect	and	want.	We	see	the	same
thing	with		this.outputID()		later	in	the	code	listing.

In	other	words,	the	general	utility	methods	that	exist	on		Task		are	available	to	us	while
interacting	with		XYZ	,	because		XYZ		can	delegate	to		Task	.

Behavior	Delegation	means:	let	some	object	(	XYZ	)	provide	a	delegation	(to		Task	)	for
property	or	method	references	if	not	found	on	the	object	(	XYZ	).

This	is	an	extremely	powerful	design	pattern,	very	distinct	from	the	idea	of	parent	and	child
classes,	inheritance,	polymorphism,	etc.	Rather	than	organizing	the	objects	in	your	mind
vertically,	with	Parents	flowing	down	to	Children,	think	of	objects	side-by-side,	as	peers,	with
any	direction	of	delegation	links	between	the	objects	as	necessary.

Note:	Delegation	is	more	properly	used	as	an	internal	implementation	detail	rather	than
exposed	directly	in	the	API	design.	In	the	above	example,	we	don't	necessarily	intend	with
our	API	design	for	developers	to	call		XYZ.setID()		(though	we	can,	of	course!).	We	sorta
hide	the	delegation	as	an	internal	detail	of	our	API,	where		XYZ.prepareTask(..)		delegates	to
	Task.setID(..)	.	See	the	"Links	As	Fallbacks?"	discussion	in	Chapter	5	for	more	detail.

Mutual	Delegation	(Disallowed)

You	cannot	create	a	cycle	where	two	or	more	objects	are	mutually	delegated	(bi-
directionally)	to	each	other.	If	you	make		B		linked	to		A	,	and	then	try	to	link		A		to		B	,	you
will	get	an	error.

It's	a	shame	(not	terribly	surprising,	but	mildly	annoying)	that	this	is	disallowed.	If	you	made
a	reference	to	a	property/method	which	didn't	exist	in	either	place,	you'd	have	an	infinite
recursion	on	the		[[Prototype]]		loop.	But	if	all	references	were	strictly	present,	then		B	
could	delegate	to		A	,	and	vice	versa,	and	it	could	work.	This	would	mean	you	could	use
either	object	to	delegate	to	the	other,	for	various	tasks.	There	are	a	few	niche	use-cases
where	this	might	be	helpful.

Behavior	Delegation

417



But	it's	disallowed	because	engine	implementors	have	observed	that	it's	more	performant	to
check	for	(and	reject!)	the	infinite	circular	reference	once	at	set-time	rather	than	needing	to
have	the	performance	hit	of	that	guard	check	every	time	you	look-up	a	property	on	an	object.

Debugged

We'll	briefly	cover	a	subtle	detail	that	can	be	confusing	to	developers.	In	general,	the	JS
specification	does	not	control	how	browser	developer	tools	should	represent	specific
values/structures	to	a	developer,	so	each	browser/engine	is	free	to	interpret	such	things	as
they	see	fit.	As	such,	browsers/tools	don't	always	agree.	Specifically,	the	behavior	we	will
now	examine	is	currently	observed	only	in	Chrome's	Developer	Tools.

Consider	this	traditional	"class	constructor"	style	JS	code,	as	it	would	appear	in	the	console
of	Chrome	Developer	Tools:

function	Foo()	{}

var	a1	=	new	Foo();

a1;	//	Foo	{}

Let's	look	at	the	last	line	of	that	snippet:	the	output	of	evaluating	the		a1		expression,	which
prints		Foo	{}	.	If	you	try	this	same	code	in	Firefox,	you	will	likely	see		Object	{}	.	Why	the
difference?	What	do	these	outputs	mean?

Chrome	is	essentially	saying	"{}	is	an	empty	object	that	was	constructed	by	a	function	with
name	'Foo'".	Firefox	is	saying	"{}	is	an	empty	object	of	general	construction	from	Object".
The	subtle	difference	is	that	Chrome	is	actively	tracking,	as	an	internal	property,	the	name	of
the	actual	function	that	did	the	construction,	whereas	other	browsers	don't	track	that
additional	information.

It	would	be	tempting	to	attempt	to	explain	this	with	JavaScript	mechanisms:

function	Foo()	{}

var	a1	=	new	Foo();

a1.constructor;	//	Foo(){}

a1.constructor.name;	//	"Foo"

So,	is	that	how	Chrome	is	outputting	"Foo",	by	simply	examining	the	object's
	.constructor.name	?	Confusingly,	the	answer	is	both	"yes"	and	"no".

Consider	this	code:
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function	Foo()	{}

var	a1	=	new	Foo();

Foo.prototype.constructor	=	function	Gotcha(){};

a1.constructor;	//	Gotcha(){}

a1.constructor.name;	//	"Gotcha"

a1;	//	Foo	{}

Even	though	we	change		a1.constructor.name		to	legitimately	be	something	else	("Gotcha"),
Chrome's	console	still	uses	the	"Foo"	name.

So,	it	would	appear	the	answer	to	previous	question	(does	it	use		.constructor.name	?)	is	no,
it	must	track	it	somewhere	else,	internally.

But,	Not	so	fast!	Let's	see	how	this	kind	of	behavior	works	with	OLOO-style	code:

var	Foo	=	{};

var	a1	=	Object.create(	Foo	);

a1;	//	Object	{}

Object.defineProperty(	Foo,	"constructor",	{

				enumerable:	false,

				value:	function	Gotcha(){}

});

a1;	//	Gotcha	{}

Ah-ha!	Gotcha!	Here,	Chrome's	console	did	find	and	use	the		.constructor.name	.	Actually,
while	writing	this	book,	this	exact	behavior	was	identified	as	a	bug	in	Chrome,	and	by	the
time	you're	reading	this,	it	may	have	already	been	fixed.	So	you	may	instead	have	seen	the
corrected		a1;	//	Object	{}	.

Aside	from	that	bug,	the	internal	tracking	(apparently	only	for	debug	output	purposes)	of	the
"constructor	name"	that	Chrome	does	(shown	in	the	earlier	snippets)	is	an	intentional
Chrome-only	extension	of	behavior	beyond	what	the	JS	specification	calls	for.

If	you	don't	use	a	"constructor"	to	make	your	objects,	as	we've	discouraged	with	OLOO-style
code	here	in	this	chapter,	then	you'll	get	objects	that	Chrome	does	not	track	an	internal
"constructor	name"	for,	and	such	objects	will	correctly	only	be	outputted	as	"Object	{}",
meaning	"object	generated	from	Object()	construction".
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Don't	think	this	represents	a	drawback	of	OLOO-style	coding.	When	you	code	with	OLOO
and	behavior	delegation	as	your	design	pattern,	who	"constructed"	(that	is,	which	function
was	called	with		new	?)	some	object	is	an	irrelevant	detail.	Chrome's	specific	internal
"constructor	name"	tracking	is	really	only	useful	if	you're	fully	embracing	"class-style"	coding,
but	is	moot	if	you're	instead	embracing	OLOO	delegation.

Mental	Models	Compared

Now	that	you	can	see	a	difference	between	"class"	and	"delegation"	design	patterns,	at	least
theoretically,	let's	see	the	implications	these	design	patterns	have	on	the	mental	models	we
use	to	reason	about	our	code.

We'll	examine	some	more	theoretical	("Foo",	"Bar")	code,	and	compare	both	ways	(OO	vs.
OLOO)	of	implementing	the	code.	The	first	snippet	uses	the	classical	("prototypal")	OO	style:

function	Foo(who)	{

				this.me	=	who;

}

Foo.prototype.identify	=	function()	{

				return	"I	am	"	+	this.me;

};

function	Bar(who)	{

				Foo.call(	this,	who	);

}

Bar.prototype	=	Object.create(	Foo.prototype	);

Bar.prototype.speak	=	function()	{

				alert(	"Hello,	"	+	this.identify()	+	"."	);

};

var	b1	=	new	Bar(	"b1"	);

var	b2	=	new	Bar(	"b2"	);

b1.speak();

b2.speak();

Parent	class		Foo	,	inherited	by	child	class		Bar	,	which	is	then	instantiated	twice	as		b1		and
	b2	.	What	we	have	is		b1		delegating	to		Bar.prototype		which	delegates	to		Foo.prototype	.
This	should	look	fairly	familiar	to	you,	at	this	point.	Nothing	too	ground-breaking	going	on.

Now,	let's	implement	the	exact	same	functionality	using	OLOO	style	code:
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var	Foo	=	{

				init:	function(who)	{

								this.me	=	who;

				},

				identify:	function()	{

								return	"I	am	"	+	this.me;

				}

};

var	Bar	=	Object.create(	Foo	);

Bar.speak	=	function()	{

				alert(	"Hello,	"	+	this.identify()	+	"."	);

};

var	b1	=	Object.create(	Bar	);

b1.init(	"b1"	);

var	b2	=	Object.create(	Bar	);

b2.init(	"b2"	);

b1.speak();

b2.speak();

We	take	exactly	the	same	advantage	of		[[Prototype]]		delegation	from		b1		to		Bar		to
	Foo		as	we	did	in	the	previous	snippet	between		b1	,		Bar.prototype	,	and		Foo.prototype	.
We	still	have	the	same	3	objects	linked	together.

But,	importantly,	we've	greatly	simplified	all	the	other	stuff	going	on,	because	now	we	just	set
up	objects	linked	to	each	other,	without	needing	all	the	cruft	and	confusion	of	things	that
look	(but	don't	behave!)	like	classes,	with	constructors	and	prototypes	and		new		calls.

Ask	yourself:	if	I	can	get	the	same	functionality	with	OLOO	style	code	as	I	do	with	"class"
style	code,	but	OLOO	is	simpler	and	has	less	things	to	think	about,	isn't	OLOO	better?

Let's	examine	the	mental	models	involved	between	these	two	snippets.

First,	the	class-style	code	snippet	implies	this	mental	model	of	entities	and	their
relationships:
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Actually,	that's	a	little	unfair/misleading,	because	it's	showing	a	lot	of	extra	detail	that	you
don't	technically	need	to	know	at	all	times	(though	you	do	need	to	understand	it!).	One	take-
away	is	that	it's	quite	a	complex	series	of	relationships.	But	another	take-away:	if	you	spend
the	time	to	follow	those	relationship	arrows	around,	there's	an	amazing	amount	of	internal
consistency	in	JS's	mechanisms.

For	instance,	the	ability	of	a	JS	function	to	access		call(..)	,		apply(..)	,	and		bind(..)	
(see	Chapter	2)	is	because	functions	themselves	are	objects,	and	function-objects	also	have
a		[[Prototype]]		linkage,	to	the		Function.prototype		object,	which	defines	those	default
methods	that	any	function-object	can	delegate	to.	JS	can	do	those	things,	and	you	can	too!.

OK,	let's	now	look	at	a	slightly	simplified	version	of	that	diagram	which	is	a	little	more	"fair"
for	comparison	--	it	shows	only	the	relevant	entities	and	relationships.
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Still	pretty	complex,	eh?	The	dotted	lines	are	depicting	the	implied	relationships	when	you
setup	the	"inheritance"	between		Foo.prototype		and		Bar.prototype		and	haven't	yet	fixed
the	missing		.constructor		property	reference	(see	"Constructor	Redux"	in	Chapter	5).	Even
with	those	dotted	lines	removed,	the	mental	model	is	still	an	awful	lot	to	juggle	every	time
you	work	with	object	linkages.

Now,	let's	look	at	the	mental	model	for	OLOO-style	code:
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As	you	can	see	comparing	them,	it's	quite	obvious	that	OLOO-style	code	has	vastly	less
stuff	to	worry	about,	because	OLOO-style	code	embraces	the	fact	that	the	only	thing	we
ever	really	cared	about	was	the	objects	linked	to	other	objects.

All	the	other	"class"	cruft	was	a	confusing	and	complex	way	of	getting	the	same	end	result.
Remove	that	stuff,	and	things	get	much	simpler	(without	losing	any	capability).

Classes	vs.	Objects
We've	just	seen	various	theoretical	explorations	and	mental	models	of	"classes"	vs.
"behavior	delegation".	But,	let's	now	look	at	more	concrete	code	scenarios	to	show	how'd
you	actually	use	these	ideas.

We'll	first	examine	a	typical	scenario	in	front-end	web	dev:	creating	UI	widgets	(buttons,
drop-downs,	etc).

Widget	"Classes"
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Because	you're	probably	still	so	used	to	the	OO	design	pattern,	you'll	likely	immediately
think	of	this	problem	domain	in	terms	of	a	parent	class	(perhaps	called		Widget	)	with	all	the
common	base	widget	behavior,	and	then	child	derived	classes	for	specific	widget	types	(like
	Button	).

Note:	We're	going	to	use	jQuery	here	for	DOM	and	CSS	manipulation,	only	because	it's	a
detail	we	don't	really	care	about	for	the	purposes	of	our	current	discussion.	None	of	this
code	cares	which	JS	framework	(jQuery,	Dojo,	YUI,	etc),	if	any,	you	might	solve	such
mundane	tasks	with.

Let's	examine	how	we'd	implement	the	"class"	design	in	classic-style	pure	JS	without	any
"class"	helper	library	or	syntax:
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//	Parent	class

function	Widget(width,height)	{

				this.width	=	width	||	50;

				this.height	=	height	||	50;

				this.$elem	=	null;

}

Widget.prototype.render	=	function($where){

				if	(this.$elem)	{

								this.$elem.css(	{

												width:	this.width	+	"px",

												height:	this.height	+	"px"

								}	).appendTo(	$where	);

				}

};

//	Child	class

function	Button(width,height,label)	{

				//	"super"	constructor	call

				Widget.call(	this,	width,	height	);

				this.label	=	label	||	"Default";

				this.$elem	=	$(	"<button>"	).text(	this.label	);

}

//	make	`Button`	"inherit"	from	`Widget`

Button.prototype	=	Object.create(	Widget.prototype	);

//	override	base	"inherited"	`render(..)`

Button.prototype.render	=	function($where)	{

				//	"super"	call

				Widget.prototype.render.call(	this,	$where	);

				this.$elem.click(	this.onClick.bind(	this	)	);

};

Button.prototype.onClick	=	function(evt)	{

				console.log(	"Button	'"	+	this.label	+	"'	clicked!"	);

};

$(	document	).ready(	function(){

				var	$body	=	$(	document.body	);

				var	btn1	=	new	Button(	125,	30,	"Hello"	);

				var	btn2	=	new	Button(	150,	40,	"World"	);

				btn1.render(	$body	);

				btn2.render(	$body	);

}	);

OO	design	patterns	tell	us	to	declare	a	base		render(..)		in	the	parent	class,	then	override	it
in	our	child	class,	but	not	to	replace	it	per	se,	rather	to	augment	the	base	functionality	with
button-specific	behavior.
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Notice	the	ugliness	of	explicit	pseudo-polymorphism	(see	Chapter	4)	with		Widget.call		and
	Widget.prototype.render.call		references	for	faking	"super"	calls	from	the	child	"class"
methods	back	up	to	the	"parent"	class	base	methods.	Yuck.

ES6		class		sugar

We	cover	ES6		class		syntax	sugar	in	detail	in	Appendix	A,	but	let's	briefly	demonstrate	how
we'd	implement	the	same	code	using		class	:

class	Widget	{

				constructor(width,height)	{

								this.width	=	width	||	50;

								this.height	=	height	||	50;

								this.$elem	=	null;

				}

				render($where){

								if	(this.$elem)	{

												this.$elem.css(	{

																width:	this.width	+	"px",

																height:	this.height	+	"px"

												}	).appendTo(	$where	);

								}

				}

}

class	Button	extends	Widget	{

				constructor(width,height,label)	{

								super(	width,	height	);

								this.label	=	label	||	"Default";

								this.$elem	=	$(	"<button>"	).text(	this.label	);

				}

				render($where)	{

								super.render(	$where	);

								this.$elem.click(	this.onClick.bind(	this	)	);

				}

				onClick(evt)	{

								console.log(	"Button	'"	+	this.label	+	"'	clicked!"	);

				}

}

$(	document	).ready(	function(){

				var	$body	=	$(	document.body	);

				var	btn1	=	new	Button(	125,	30,	"Hello"	);

				var	btn2	=	new	Button(	150,	40,	"World"	);

				btn1.render(	$body	);

				btn2.render(	$body	);

}	);
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Undoubtedly,	a	number	of	the	syntax	uglies	of	the	previous	classical	approach	have	been
smoothed	over	with	ES6's		class	.	The	presence	of	a		super(..)		in	particular	seems	quite
nice	(though	when	you	dig	into	it,	it's	not	all	roses!).

Despite	syntactic	improvements,	these	are	not	real	classes,	as	they	still	operate	on	top	of
the		[[Prototype]]		mechanism.	They	suffer	from	all	the	same	mental-model	mismatches	we
explored	in	Chapters	4,	5	and	thus	far	in	this	chapter.	Appendix	A	will	expound	on	the	ES6
	class		syntax	and	its	implications	in	detail.	We'll	see	why	solving	syntax	hiccups	doesn't
substantially	solve	our	class	confusions	in	JS,	though	it	makes	a	valiant	effort	masquerading
as	a	solution!

Whether	you	use	the	classic	prototypal	syntax	or	the	new	ES6	sugar,	you've	still	made	a
choice	to	model	the	problem	domain	(UI	widgets)	with	"classes".	And	as	the	previous	few
chapters	try	to	demonstrate,	this	choice	in	JavaScript	is	opting	you	into	extra	headaches	and
mental	tax.

Delegating	Widget	Objects

Here's	our	simpler		Widget		/		Button		example,	using	OLOO	style	delegation:
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var	Widget	=	{

				init:	function(width,height){

								this.width	=	width	||	50;

								this.height	=	height	||	50;

								this.$elem	=	null;

				},

				insert:	function($where){

								if	(this.$elem)	{

												this.$elem.css(	{

																width:	this.width	+	"px",

																height:	this.height	+	"px"

												}	).appendTo(	$where	);

								}

				}

};

var	Button	=	Object.create(	Widget	);

Button.setup	=	function(width,height,label){

				//	delegated	call

				this.init(	width,	height	);

				this.label	=	label	||	"Default";

				this.$elem	=	$(	"<button>"	).text(	this.label	);

};

Button.build	=	function($where)	{

				//	delegated	call

				this.insert(	$where	);

				this.$elem.click(	this.onClick.bind(	this	)	);

};

Button.onClick	=	function(evt)	{

				console.log(	"Button	'"	+	this.label	+	"'	clicked!"	);

};

$(	document	).ready(	function(){

				var	$body	=	$(	document.body	);

				var	btn1	=	Object.create(	Button	);

				btn1.setup(	125,	30,	"Hello"	);

				var	btn2	=	Object.create(	Button	);

				btn2.setup(	150,	40,	"World"	);

				btn1.build(	$body	);

				btn2.build(	$body	);

}	);

With	this	OLOO-style	approach,	we	don't	think	of		Widget		as	a	parent	and		Button		as	a
child.	Rather,		Widget		is	just	an	object	and	is	sort	of	a	utility	collection	that	any	specific
type	of	widget	might	want	to	delegate	to,	and		Button		is	also	just	a	stand-alone	object
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(with	a	delegation	link	to		Widget	,	of	course!).

From	a	design	pattern	perspective,	we	didn't	share	the	same	method	name		render(..)		in
both	objects,	the	way	classes	suggest,	but	instead	we	chose	different	names	(	insert(..)	
and		build(..)	)	that	were	more	descriptive	of	what	task	each	does	specifically.	The
initialization	methods	are	called		init(..)		and		setup(..)	,	respectively,	for	the	same
reasons.

Not	only	does	this	delegation	design	pattern	suggest	different	and	more	descriptive	names
(rather	than	shared	and	more	generic	names),	but	doing	so	with	OLOO	happens	to	avoid	the
ugliness	of	the	explicit	pseudo-polymorphic	calls	(	Widget.call		and
	Widget.prototype.render.call	),	as	you	can	see	by	the	simple,	relative,	delegated	calls	to
	this.init(..)		and		this.insert(..)	.

Syntactically,	we	also	don't	have	any	constructors,		.prototype		or		new		present,	as	they	are,
in	fact,	just	unnecessary	cruft.

Now,	if	you're	paying	close	attention,	you	may	notice	that	what	was	previously	just	one	call
(	var	btn1	=	new	Button(..)	)	is	now	two	calls	(	var	btn1	=	Object.create(Button)		and
	btn1.setup(..)	).	Initially	this	may	seem	like	a	drawback	(more	code).

However,	even	this	is	something	that's	a	pro	of	OLOO	style	code	as	compared	to	classical
prototype	style	code.	How?

With	class	constructors,	you	are	"forced"	(not	really,	but	strongly	suggested)	to	do	both
construction	and	initialization	in	the	same	step.	However,	there	are	many	cases	where	being
able	to	do	these	two	steps	separately	(as	you	do	with	OLOO!)	is	more	flexible.

For	example,	let's	say	you	create	all	your	instances	in	a	pool	at	the	beginning	of	your
program,	but	you	wait	to	initialize	them	with	specific	setup	until	they	are	pulled	from	the	pool
and	used.	We	showed	the	two	calls	happening	right	next	to	each	other,	but	of	course	they
can	happen	at	very	different	times	and	in	very	different	parts	of	our	code,	as	needed.

OLOO	supports	better	the	principle	of	separation	of	concerns,	where	creation	and
initialization	are	not	necessarily	conflated	into	the	same	operation.

Simpler	Design
In	addition	to	OLOO	providing	ostensibly	simpler	(and	more	flexible!)	code,	behavior
delegation	as	a	pattern	can	actually	lead	to	simpler	code	architecture.	Let's	examine	one	last
example	that	illustrates	how	OLOO	simplifies	your	overall	design.

The	scenario	we'll	examine	is	two	controller	objects,	one	for	handling	the	login	form	of	a	web
page,	and	another	for	actually	handling	the	authentication	(communication)	with	the	server.
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We'll	need	a	utility	helper	for	making	the	Ajax	communication	to	the	server.	We'll	use	jQuery
(though	any	framework	would	do	fine),	since	it	handles	not	only	the	Ajax	for	us,	but	it	returns
a	promise-like	answer	so	that	we	can	listen	for	the	response	in	our	calling	code	with
	.then(..)	.

Note:	We	don't	cover	Promises	here,	but	we	will	cover	them	in	a	future	title	of	the	"You	Don't
Know	JS"	series.

Following	the	typical	class	design	pattern,	we'll	break	up	the	task	into	base	functionality	in	a
class	called		Controller	,	and	then	we'll	derive	two	child	classes,		LoginController		and
	AuthController	,	which	both	inherit	from		Controller		and	specialize	some	of	those	base
behaviors.

//	Parent	class

function	Controller()	{

				this.errors	=	[];

}

Controller.prototype.showDialog	=	function(title,msg)	{

				//	display	title	&	message	to	user	in	dialog

};

Controller.prototype.success	=	function(msg)	{

				this.showDialog(	"Success",	msg	);

};

Controller.prototype.failure	=	function(err)	{

				this.errors.push(	err	);

				this.showDialog(	"Error",	err	);

};
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//	Child	class

function	LoginController()	{

				Controller.call(	this	);

}

//	Link	child	class	to	parent

LoginController.prototype	=	Object.create(	Controller.prototype	);

LoginController.prototype.getUser	=	function()	{

				return	document.getElementById(	"login_username"	).value;

};

LoginController.prototype.getPassword	=	function()	{

				return	document.getElementById(	"login_password"	).value;

};

LoginController.prototype.validateEntry	=	function(user,pw)	{

				user	=	user	||	this.getUser();

				pw	=	pw	||	this.getPassword();

				if	(!(user	&&	pw))	{

								return	this.failure(	"Please	enter	a	username	&	password!"	);

				}

				else	if	(pw.length	<	5)	{

								return	this.failure(	"Password	must	be	5+	characters!"	);

				}

				//	got	here?	validated!

				return	true;

};

//	Override	to	extend	base	`failure()`

LoginController.prototype.failure	=	function(err)	{

				//	"super"	call

				Controller.prototype.failure.call(	this,	"Login	invalid:	"	+	err	);

};
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//	Child	class

function	AuthController(login)	{

				Controller.call(	this	);

				//	in	addition	to	inheritance,	we	also	need	composition

				this.login	=	login;

}

//	Link	child	class	to	parent

AuthController.prototype	=	Object.create(	Controller.prototype	);

AuthController.prototype.server	=	function(url,data)	{

				return	$.ajax(	{

								url:	url,

								data:	data

				}	);

};

AuthController.prototype.checkAuth	=	function()	{

				var	user	=	this.login.getUser();

				var	pw	=	this.login.getPassword();

				if	(this.login.validateEntry(	user,	pw	))	{

								this.server(	"/check-auth",{

												user:	user,

												pw:	pw

								}	)

								.then(	this.success.bind(	this	)	)

								.fail(	this.failure.bind(	this	)	);

				}

};

//	Override	to	extend	base	`success()`

AuthController.prototype.success	=	function()	{

				//	"super"	call

				Controller.prototype.success.call(	this,	"Authenticated!"	);

};

//	Override	to	extend	base	`failure()`

AuthController.prototype.failure	=	function(err)	{

				//	"super"	call

				Controller.prototype.failure.call(	this,	"Auth	Failed:	"	+	err	);

};

var	auth	=	new	AuthController(

				//	in	addition	to	inheritance,	we	also	need	composition

				new	LoginController()

);

auth.checkAuth();

We	have	base	behaviors	that	all	controllers	share,	which	are		success(..)	,		failure(..)	
and		showDialog(..)	.	Our	child	classes		LoginController		and		AuthController		override
	failure(..)		and		success(..)		to	augment	the	default	base	class	behavior.	Also	note	that
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	AuthController		needs	an	instance	of		LoginController		to	interact	with	the	login	form,	so
that	becomes	a	member	data	property.

The	other	thing	to	mention	is	that	we	chose	some	composition	to	sprinkle	in	on	top	of	the
inheritance.		AuthController		needs	to	know	about		LoginController	,	so	we	instantiate	it
(	new	LoginController()	)	and	keep	a	class	member	property	called		this.login		to	reference
it,	so	that		AuthController		can	invoke	behavior	on		LoginController	.

Note:	There	might	have	been	a	slight	temptation	to	make		AuthController		inherit	from
	LoginController	,	or	vice	versa,	such	that	we	had	virtual	composition	through	the
inheritance	chain.	But	this	is	a	strongly	clear	example	of	what's	wrong	with	class	inheritance
as	the	model	for	the	problem	domain,	because	neither		AuthController		nor
	LoginController		are	specializing	base	behavior	of	the	other,	so	inheritance	between	them
makes	little	sense	except	if	classes	are	your	only	design	pattern.	Instead,	we	layered	in
some	simple	composition	and	now	they	can	cooperate,	while	still	both	benefiting	from	the
inheritance	from	the	parent	base		Controller	.

If	you're	familiar	with	class-oriented	(OO)	design,	this	should	all	look	pretty	familiar	and
natural.

De-class-ified

But,	do	we	really	need	to	model	this	problem	with	a	parent		Controller		class,	two	child
classes,	and	some	composition?	Is	there	a	way	to	take	advantage	of	OLOO-style	behavior
delegation	and	have	a	much	simpler	design?	Yes!
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var	LoginController	=	{

				errors:	[],

				getUser:	function()	{

								return	document.getElementById(	"login_username"	).value;

				},

				getPassword:	function()	{

								return	document.getElementById(	"login_password"	).value;

				},

				validateEntry:	function(user,pw)	{

								user	=	user	||	this.getUser();

								pw	=	pw	||	this.getPassword();

								if	(!(user	&&	pw))	{

												return	this.failure(	"Please	enter	a	username	&	password!"	);

								}

								else	if	(pw.length	<	5)	{

												return	this.failure(	"Password	must	be	5+	characters!"	);

								}

								//	got	here?	validated!

								return	true;

				},

				showDialog:	function(title,msg)	{

								//	display	success	message	to	user	in	dialog

				},

				failure:	function(err)	{

								this.errors.push(	err	);

								this.showDialog(	"Error",	"Login	invalid:	"	+	err	);

				}

};
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//	Link	`AuthController`	to	delegate	to	`LoginController`

var	AuthController	=	Object.create(	LoginController	);

AuthController.errors	=	[];

AuthController.checkAuth	=	function()	{

				var	user	=	this.getUser();

				var	pw	=	this.getPassword();

				if	(this.validateEntry(	user,	pw	))	{

								this.server(	"/check-auth",{

												user:	user,

												pw:	pw

								}	)

								.then(	this.accepted.bind(	this	)	)

								.fail(	this.rejected.bind(	this	)	);

				}

};

AuthController.server	=	function(url,data)	{

				return	$.ajax(	{

								url:	url,

								data:	data

				}	);

};

AuthController.accepted	=	function()	{

				this.showDialog(	"Success",	"Authenticated!"	)

};

AuthController.rejected	=	function(err)	{

				this.failure(	"Auth	Failed:	"	+	err	);

};

Since		AuthController		is	just	an	object	(so	is		LoginController	),	we	don't	need	to	instantiate
(like		new	AuthController()	)	to	perform	our	task.	All	we	need	to	do	is:

AuthController.checkAuth();

Of	course,	with	OLOO,	if	you	do	need	to	create	one	or	more	additional	objects	in	the
delegation	chain,	that's	easy,	and	still	doesn't	require	anything	like	class	instantiation:

var	controller1	=	Object.create(	AuthController	);

var	controller2	=	Object.create(	AuthController	);

With	behavior	delegation,		AuthController		and		LoginController		are	just	objects,
horizontal	peers	of	each	other,	and	are	not	arranged	or	related	as	parents	and	children	in
class-orientation.	We	somewhat	arbitrarily	chose	to	have		AuthController		delegate	to
	LoginController		--	it	would	have	been	just	as	valid	for	the	delegation	to	go	the	reverse
direction.
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The	main	takeaway	from	this	second	code	listing	is	that	we	only	have	two	entities
(	LoginController		and		AuthController	),	not	three	as	before.

We	didn't	need	a	base		Controller		class	to	"share"	behavior	between	the	two,	because
delegation	is	a	powerful	enough	mechanism	to	give	us	the	functionality	we	need.	We	also,
as	noted	before,	don't	need	to	instantiate	our	classes	to	work	with	them,	because	there	are
no	classes,	just	the	objects	themselves.	Furthermore,	there's	no	need	for	composition	as
delegation	gives	the	two	objects	the	ability	to	cooperate	differentially	as	needed.

Lastly,	we	avoided	the	polymorphism	pitfalls	of	class-oriented	design	by	not	having	the
names		success(..)		and		failure(..)		be	the	same	on	both	objects,	which	would	have
required	ugly	explicit	pseudopolymorphism.	Instead,	we	called	them		accepted()		and
	rejected(..)		on		AuthController		--	slightly	more	descriptive	names	for	their	specific	tasks.

Bottom	line:	we	end	up	with	the	same	capability,	but	a	(significantly)	simpler	design.	That's
the	power	of	OLOO-style	code	and	the	power	of	the	behavior	delegation	design	pattern.

Nicer	Syntax
One	of	the	nicer	things	that	makes	ES6's		class		so	deceptively	attractive	(see	Appendix	A
on	why	to	avoid	it!)	is	the	short-hand	syntax	for	declaring	class	methods:

class	Foo	{

				methodName()	{	/*	..	*/	}

}

We	get	to	drop	the	word		function		from	the	declaration,	which	makes	JS	developers
everywhere	cheer!

And	you	may	have	noticed	and	been	frustrated	that	the	suggested	OLOO	syntax	above	has
lots	of		function		appearances,	which	seems	like	a	bit	of	a	detractor	to	the	goal	of	OLOO
simplification.	But	it	doesn't	have	to	be	that	way!

As	of	ES6,	we	can	use	concise	method	declarations	in	any	object	literal,	so	an	object	in
OLOO	style	can	be	declared	this	way	(same	short-hand	sugar	as	with		class		body	syntax):
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var	LoginController	=	{

				errors:	[],

				getUser()	{	//	Look	ma,	no	`function`!

								//	...

				},

				getPassword()	{

								//	...

				}

				//	...

};

About	the	only	difference	is	that	object	literals	will	still	require		,		comma	separators
between	elements	whereas		class		syntax	doesn't.	Pretty	minor	concession	in	the	whole
scheme	of	things.

Moreover,	as	of	ES6,	the	clunkier	syntax	you	use	(like	for	the		AuthController		definition),
where	you're	assigning	properties	individually	and	not	using	an	object	literal,	can	be	re-
written	using	an	object	literal	(so	that	you	can	use	concise	methods),	and	you	can	just
modify	that	object's		[[Prototype]]		with		Object.setPrototypeOf(..)	,	like	this:

//	use	nicer	object	literal	syntax	w/	concise	methods!

var	AuthController	=	{

				errors:	[],

				checkAuth()	{

								//	...

				},

				server(url,data)	{

								//	...

				}

				//	...

};

//	NOW,	link	`AuthController`	to	delegate	to	`LoginController`

Object.setPrototypeOf(	AuthController,	LoginController	);

OLOO-style	as	of	ES6,	with	concise	methods,	is	a	lot	friendlier	than	it	was	before	(and
even	then,	it	was	much	simpler	and	nicer	than	classical	prototype-style	code).	You	don't
have	to	opt	for	class	(complexity)	to	get	nice	clean	object	syntax!

Unlexical

There	is	one	drawback	to	concise	methods	that's	subtle	but	important	to	note.	Consider	this
code:
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var	Foo	=	{

				bar()	{	/*..*/	},

				baz:	function	baz()	{	/*..*/	}

};

Here's	the	syntactic	de-sugaring	that	expresses	how	that	code	will	operate:

var	Foo	=	{

				bar:	function()	{	/*..*/	},

				baz:	function	baz()	{	/*..*/	}

};

See	the	difference?	The		bar()		short-hand	became	an	anonymous	function	expression
(	function()..	)	attached	to	the		bar		property,	because	the	function	object	itself	has	no
name	identifier.	Compare	that	to	the	manually	specified	named	function	expression
(	function	baz()..	)	which	has	a	lexical	name	identifier		baz		in	addition	to	being	attached	to
a		.baz		property.

So	what?	In	the	"Scope	&	Closures"	title	of	this	"You	Don't	Know	JS"	book	series,	we	cover
the	three	main	downsides	of	anonymous	function	expressions	in	detail.	We'll	just	briefly
repeat	them	so	we	can	compare	to	the	concise	method	short-hand.

Lack	of	a		name		identifier	on	an	anonymous	function:

1.	 makes	debugging	stack	traces	harder
2.	 makes	self-referencing	(recursion,	event	(un)binding,	etc)	harder
3.	 makes	code	(a	little	bit)	harder	to	understand

Items	1	and	3	don't	apply	to	concise	methods.

Even	though	the	de-sugaring	uses	an	anonymous	function	expression	which	normally	would
have	no		name		in	stack	traces,	concise	methods	are	specified	to	set	the	internal		name	
property	of	the	function	object	accordingly,	so	stack	traces	should	be	able	to	use	it	(though
that's	implementation	dependent	so	not	guaranteed).

Item	2	is,	unfortunately,	still	a	drawback	to	concise	methods.	They	will	not	have	a	lexical
identifier	to	use	as	a	self-reference.	Consider:
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var	Foo	=	{

				bar:	function(x)	{

								if	(x	<	10)	{

												return	Foo.bar(	x	*	2	);

								}

								return	x;

				},

				baz:	function	baz(x)	{

								if	(x	<	10)	{

												return	baz(	x	*	2	);

								}

								return	x;

				}

};

The	manual		Foo.bar(x*2)		reference	above	kind	of	suffices	in	this	example,	but	there	are
many	cases	where	a	function	wouldn't	necessarily	be	able	to	do	that,	such	as	cases	where
the	function	is	being	shared	in	delegation	across	different	objects,	using		this		binding,	etc.
You	would	want	to	use	a	real	self-reference,	and	the	function	object's		name		identifier	is	the
best	way	to	accomplish	that.

Just	be	aware	of	this	caveat	for	concise	methods,	and	if	you	run	into	such	issues	with	lack	of
self-reference,	make	sure	to	forgo	the	concise	method	syntax	just	for	that	declaration	in
favor	of	the	manual	named	function	expression	declaration	form:		baz:	function	baz(){..}	.

Introspection
If	you've	spent	much	time	with	class	oriented	programming	(either	in	JS	or	other	languages),
you're	probably	familiar	with	type	introspection:	inspecting	an	instance	to	find	out	what	kind
of	object	it	is.	The	primary	goal	of	type	introspection	with	class	instances	is	to	reason	about
the	structure/capabilities	of	the	object	based	on	how	it	was	created.

Consider	this	code	which	uses		instanceof		(see	Chapter	5)	for	introspecting	on	an	object
	a1		to	infer	its	capability:
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function	Foo()	{

				//	...

}

Foo.prototype.something	=	function(){

				//	...

}

var	a1	=	new	Foo();

//	later

if	(a1	instanceof	Foo)	{

				a1.something();

}

Because		Foo.prototype		(not		Foo	!)	is	in	the		[[Prototype]]		chain	(see	Chapter	5)	of		a1	,
the		instanceof		operator	(confusingly)	pretends	to	tell	us	that		a1		is	an	instance	of	the		Foo	
"class".	With	this	knowledge,	we	then	assume	that		a1		has	the	capabilities	described	by	the
	Foo		"class".

Of	course,	there	is	no		Foo		class,	only	a	plain	old	normal	function		Foo	,	which	happens	to
have	a	reference	to	an	arbitrary	object	(	Foo.prototype	)	that		a1		happens	to	be	delegation-
linked	to.	By	its	syntax,		instanceof		pretends	to	be	inspecting	the	relationship	between		a1	
and		Foo	,	but	it's	actually	telling	us	whether		a1		and	(the	arbitrary	object	referenced	by)
	Foo.prototype		are	related.

The	semantic	confusion	(and	indirection)	of		instanceof		syntax	means	that	to	use
	instanceof	-based	introspection	to	ask	if	object		a1		is	related	to	the	capabilities	object	in
question,	you	have	to	have	a	function	that	holds	a	reference	to	that	object	--	you	can't	just
directly	ask	if	the	two	objects	are	related.

Recall	the	abstract		Foo		/		Bar		/		b1		example	from	earlier	in	this	chapter,	which	we'll
abbreviate	here:

function	Foo()	{	/*	..	*/	}

Foo.prototype...

function	Bar()	{	/*	..	*/	}

Bar.prototype	=	Object.create(	Foo.prototype	);

var	b1	=	new	Bar(	"b1"	);

For	type	introspection	purposes	on	the	entities	in	that	example,	using		instanceof		and
	.prototype		semantics,	here	are	the	various	checks	you	might	need	to	perform:
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//	relating	`Foo`	and	`Bar`	to	each	other

Bar.prototype	instanceof	Foo;	//	true

Object.getPrototypeOf(	Bar.prototype	)	===	Foo.prototype;	//	true

Foo.prototype.isPrototypeOf(	Bar.prototype	);	//	true

//	relating	`b1`	to	both	`Foo`	and	`Bar`

b1	instanceof	Foo;	//	true

b1	instanceof	Bar;	//	true

Object.getPrototypeOf(	b1	)	===	Bar.prototype;	//	true

Foo.prototype.isPrototypeOf(	b1	);	//	true

Bar.prototype.isPrototypeOf(	b1	);	//	true

It's	fair	to	say	that	some	of	that	kinda	sucks.	For	instance,	intuitively	(with	classes)	you	might
want	to	be	able	to	say	something	like		Bar	instanceof	Foo		(because	it's	easy	to	mix	up	what
"instance"	means	to	think	it	includes	"inheritance"),	but	that's	not	a	sensible	comparison	in
JS.	You	have	to	do		Bar.prototype	instanceof	Foo		instead.

Another	common,	but	perhaps	less	robust,	pattern	for	type	introspection,	which	many	devs
seem	to	prefer	over		instanceof	,	is	called	"duck	typing".	This	term	comes	from	the	adage,	"if
it	looks	like	a	duck,	and	it	quacks	like	a	duck,	it	must	be	a	duck".

Example:

if	(a1.something)	{

				a1.something();

}

Rather	than	inspecting	for	a	relationship	between		a1		and	an	object	that	holds	the
delegatable		something()		function,	we	assume	that	the	test	for		a1.something		passing
means		a1		has	the	capability	to	call		.something()		(regardless	of	if	it	found	the	method
directly	on		a1		or	delegated	to	some	other	object).	In	and	of	itself,	that	assumption	isn't	so
risky.

But	"duck	typing"	is	often	extended	to	make	other	assumptions	about	the	object's
capabilities	besides	what's	being	tested,	which	of	course	introduces	more	risk	(aka,	brittle
design)	into	the	test.

One	notable	example	of	"duck	typing"	comes	with	ES6	Promises	(which	as	an	earlier	note
explained	are	not	being	covered	in	this	book).

For	various	reasons,	there's	a	need	to	determine	if	any	arbitrary	object	reference	is	a
Promise,	but	the	way	that	test	is	done	is	to	check	if	the	object	happens	to	have	a		then()	
function	present	on	it.	In	other	words,	if	any	object	happens	to	have	a		then()		method,
ES6	Promises	will	assume	unconditionally	that	the	object	is	a	"thenable"	and	therefore	will
expect	it	to	behave	conformantly	to	all	standard	behaviors	of	Promises.
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If	you	have	any	non-Promise	object	that	happens	for	whatever	reason	to	have	a		then()	
method	on	it,	you	are	strongly	advised	to	keep	it	far	away	from	the	ES6	Promise	mechanism
to	avoid	broken	assumptions.

That	example	clearly	illustrates	the	perils	of	"duck	typing".	You	should	only	use	such
approaches	sparingly	and	in	controlled	conditions.

Turning	our	attention	once	again	back	to	OLOO-style	code	as	presented	here	in	this	chapter,
type	introspection	turns	out	to	be	much	cleaner.	Let's	recall	(and	abbreviate)	the		Foo		/		Bar	
/		b1		OLOO	example	from	earlier	in	the	chapter:

var	Foo	=	{	/*	..	*/	};

var	Bar	=	Object.create(	Foo	);

Bar...

var	b1	=	Object.create(	Bar	);

Using	this	OLOO	approach,	where	all	we	have	are	plain	objects	that	are	related	via
	[[Prototype]]		delegation,	here's	the	quite	simplified	type	introspection	we	might	use:

//	relating	`Foo`	and	`Bar`	to	each	other

Foo.isPrototypeOf(	Bar	);	//	true

Object.getPrototypeOf(	Bar	)	===	Foo;	//	true

//	relating	`b1`	to	both	`Foo`	and	`Bar`

Foo.isPrototypeOf(	b1	);	//	true

Bar.isPrototypeOf(	b1	);	//	true

Object.getPrototypeOf(	b1	)	===	Bar;	//	true

We're	not	using		instanceof		anymore,	because	it's	confusingly	pretending	to	have
something	to	do	with	classes.	Now,	we	just	ask	the	(informally	stated)	question,	"are	you	a
prototype	of	me?"	There's	no	more	indirection	necessary	with	stuff	like		Foo.prototype		or	the
painfully	verbose		Foo.prototype.isPrototypeOf(..)	.

I	think	it's	fair	to	say	these	checks	are	significantly	less	complicated/confusing	than	the
previous	set	of	introspection	checks.	Yet	again,	we	see	that	OLOO	is	simpler	than	(but
with	all	the	same	power	of)	class-style	coding	in	JavaScript.

Review	(TL;DR)
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Classes	and	inheritance	are	a	design	pattern	you	can	choose,	or	not	choose,	in	your
software	architecture.	Most	developers	take	for	granted	that	classes	are	the	only	(proper)
way	to	organize	code,	but	here	we've	seen	there's	another	less-commonly	talked	about
pattern	that's	actually	quite	powerful:	behavior	delegation.

Behavior	delegation	suggests	objects	as	peers	of	each	other,	which	delegate	amongst
themselves,	rather	than	parent	and	child	class	relationships.	JavaScript's		[[Prototype]]	
mechanism	is,	by	its	very	designed	nature,	a	behavior	delegation	mechanism.	That	means
we	can	either	choose	to	struggle	to	implement	class	mechanics	on	top	of	JS	(see	Chapters
4	and	5),	or	we	can	just	embrace	the	natural	state	of		[[Prototype]]		as	a	delegation
mechanism.

When	you	design	code	with	objects	only,	not	only	does	it	simplify	the	syntax	you	use,	but	it
can	actually	lead	to	simpler	code	architecture	design.

OLOO	(objects-linked-to-other-objects)	is	a	code	style	which	creates	and	relates	objects
directly	without	the	abstraction	of	classes.	OLOO	quite	naturally	implements		[[Prototype]]	-
based	behavior	delegation.
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Appendix	A:	ES6	 	class	
If	there's	any	take-away	message	from	the	second	half	of	this	book	(Chapters	4-6),	it's	that
classes	are	an	optional	design	pattern	for	code	(not	a	necessary	given),	and	that
furthermore	they	are	often	quite	awkward	to	implement	in	a		[[Prototype]]		language	like
JavaScript.

This	awkwardness	is	not	just	about	syntax,	although	that's	a	big	part	of	it.	Chapters	4	and	5
examined	quite	a	bit	of	syntactic	ugliness,	from	verbosity	of		.prototype		references
cluttering	the	code,	to	explicit	pseudo-polymorphism	(see	Chapter	4)	when	you	give
methods	the	same	name	at	different	levels	of	the	chain	and	try	to	implement	a	polymorphic
reference	from	a	lower-level	method	to	a	higher-level	method.		.constructor		being	wrongly
interpreted	as	"was	constructed	by"	and	yet	being	unreliable	for	that	definition	is	yet	another
syntactic	ugly.

But	the	problems	with	class	design	are	much	deeper.	Chapter	4	points	out	that	classes	in
traditional	class-oriented	languages	actually	produce	a	copy	action	from	parent	to	child	to
instance,	whereas	in		[[Prototype]]	,	the	action	is	not	a	copy,	but	rather	the	opposite	--	a
delegation	link.

When	compared	to	the	simplicity	of	OLOO-style	code	and	behavior	delegation	(see	Chapter
6),	which	embrace		[[Prototype]]		rather	than	hide	from	it,	classes	stand	out	as	a	sore
thumb	in	JS.

	class	

But	we	don't	need	to	re-argue	that	case	again.	I	re-mention	those	issues	briefly	only	so	that
you	keep	them	fresh	in	your	mind	now	that	we	turn	our	attention	to	the	ES6		class	
mechanism.	We'll	demonstrate	here	how	it	works,	and	look	at	whether	or	not		class		does
anything	substantial	to	address	any	of	those	"class"	concerns.

Let's	revisit	the		Widget		/		Button		example	from	Chapter	6:
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class	Widget	{

				constructor(width,height)	{

								this.width	=	width	||	50;

								this.height	=	height	||	50;

								this.$elem	=	null;

				}

				render($where){

								if	(this.$elem)	{

												this.$elem.css(	{

																width:	this.width	+	"px",

																height:	this.height	+	"px"

												}	).appendTo(	$where	);

								}

				}

}

class	Button	extends	Widget	{

				constructor(width,height,label)	{

								super(	width,	height	);

								this.label	=	label	||	"Default";

								this.$elem	=	$(	"<button>"	).text(	this.label	);

				}

				render($where)	{

								super.render(	$where	);

								this.$elem.click(	this.onClick.bind(	this	)	);

				}

				onClick(evt)	{

								console.log(	"Button	'"	+	this.label	+	"'	clicked!"	);

				}

}

Beyond	this	syntax	looking	nicer,	what	problems	does	ES6	solve?

1.	 There's	no	more	(well,	sorta,	see	below!)	references	to		.prototype		cluttering	the	code.
2.	 	Button		is	declared	directly	to	"inherit	from"	(aka		extends	)		Widget	,	instead	of	needing

to	use		Object.create(..)		to	replace	a		.prototype		object	that's	linked,	or	having	to	set
with		.__proto__		or		Object.setPrototypeOf(..)	.

3.	 	super(..)		now	gives	us	a	very	helpful	relative	polymorphism	capability,	so	that	any
method	at	one	level	of	the	chain	can	refer	relatively	one	level	up	the	chain	to	a	method
of	the	same	name.	This	includes	a	solution	to	the	note	from	Chapter	4	about	the
weirdness	of	constructors	not	belonging	to	their	class,	and	so	being	unrelated	--
	super()		works	inside	constructors	exactly	as	you'd	expect.

4.	 	class		literal	syntax	has	no	affordance	for	specifying	properties	(only	methods).	This
might	seem	limiting	to	some,	but	it's	expected	that	the	vast	majority	of	cases	where	a
property	(state)	exists	elsewhere	but	the	end-chain	"instances",	this	is	usually	a	mistake
and	surprising	(as	it's	state	that's	implicitly	"shared"	among	all	"instances").	So,	one
could	say	the		class		syntax	is	protecting	you	from	mistakes.
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5.	 	extends		lets	you	extend	even	built-in	object	(sub)types,	like		Array		or		RegExp	,	in	a
very	natural	way.	Doing	so	without		class	..	extends		has	long	been	an	exceedingly
complex	and	frustrating	task,	one	that	only	the	most	adept	of	framework	authors	have
ever	been	able	to	accurately	tackle.	Now,	it	will	be	rather	trivial!

In	all	fairness,	those	are	some	substantial	solutions	to	many	of	the	most	obvious	(syntactic)
issues	and	surprises	people	have	with	classical	prototype-style	code.

	class		Gotchas
It's	not	all	bubblegum	and	roses,	though.	There	are	still	some	deep	and	profoundly	troubling
issues	with	using	"classes"	as	a	design	pattern	in	JS.

Firstly,	the		class		syntax	may	convince	you	a	new	"class"	mechanism	exists	in	JS	as	of
ES6.	Not	so.		class		is,	mostly,	just	syntactic	sugar	on	top	of	the	existing		[[Prototype]]	
(delegation!)	mechanism.

That	means		class		is	not	actually	copying	definitions	statically	at	declaration	time	the	way	it
does	in	traditional	class-oriented	languages.	If	you	change/replace	a	method	(on	purpose	or
by	accident)	on	the	parent	"class",	the	child	"class"	and/or	instances	will	still	be	"affected",	in
that	they	didn't	get	copies	at	declaration	time,	they	are	all	still	using	the	live-delegation
model	based	on		[[Prototype]]	:

class	C	{

				constructor()	{

								this.num	=	Math.random();

				}

				rand()	{

								console.log(	"Random:	"	+	this.num	);

				}

}

var	c1	=	new	C();

c1.rand();	//	"Random:	0.4324299..."

C.prototype.rand	=	function()	{

				console.log(	"Random:	"	+	Math.round(	this.num	*	1000	));

};

var	c2	=	new	C();

c2.rand();	//	"Random:	867"

c1.rand();	//	"Random:	432"	--	oops!!!
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This	only	seems	like	reasonable	behavior	if	you	already	know	about	the	delegation	nature	of
things,	rather	than	expecting	copies	from	"real	classes".	So	the	question	to	ask	yourself	is,
why	are	you	choosing		class		syntax	for	something	fundamentally	different	from	classes?

Doesn't	the	ES6		class		syntax	just	make	it	harder	to	see	and	understand	the	difference
between	traditional	classes	and	delegated	objects?

	class		syntax	does	not	provide	a	way	to	declare	class	member	properties	(only	methods).
So	if	you	need	to	do	that	to	track	shared	state	among	instances,	then	you	end	up	going	back
to	the	ugly		.prototype		syntax,	like	this:

class	C	{

				constructor()	{

								//	make	sure	to	modify	the	shared	state,

								//	not	set	a	shadowed	property	on	the

								//	instances!

								C.prototype.count++;

								//	here,	`this.count`	works	as	expected

								//	via	delegation

								console.log(	"Hello:	"	+	this.count	);

				}

}

//	add	a	property	for	shared	state	directly	to

//	prototype	object

C.prototype.count	=	0;

var	c1	=	new	C();

//	Hello:	1

var	c2	=	new	C();

//	Hello:	2

c1.count	===	2;	//	true

c1.count	===	c2.count;	//	true

The	biggest	problem	here	is	that	it	betrays	the		class		syntax	by	exposing	(leakage!)
	.prototype		as	an	implementation	detail.

But,	we	also	still	have	the	surprise	gotcha	that		this.count++		would	implicitly	create	a
separate	shadowed		.count		property	on	both		c1		and		c2		objects,	rather	than	updating	the
shared	state.		class		offers	us	no	consolation	from	that	issue,	except	(presumably)	to	imply
by	lack	of	syntactic	support	that	you	shouldn't	be	doing	that	at	all.

Moreover,	accidental	shadowing	is	still	a	hazard:
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class	C	{

				constructor(id)	{

								//	oops,	gotcha,	we're	shadowing	`id()`	method

								//	with	a	property	value	on	the	instance

								this.id	=	id;

				}

				id()	{

								console.log(	"Id:	"	+	this.id	);

				}

}

var	c1	=	new	C(	"c1"	);

c1.id();	//	TypeError	--	`c1.id`	is	now	the	string	"c1"

There's	also	some	very	subtle	nuanced	issues	with	how		super		works.	You	might	assume
that		super		would	be	bound	in	an	analogous	way	to	how		this		gets	bound	(see	Chapter	2),
which	is	that		super		would	always	be	bound	to	one	level	higher	than	whatever	the	current
method's	position	in	the		[[Prototype]]		chain	is.

However,	for	performance	reasons	(	this		binding	is	already	expensive),		super		is	not
bound	dynamically.	It's	bound	sort	of	"statically",	as	declaration	time.	No	big	deal,	right?

Ehh...	maybe,	maybe	not.	If	you,	like	most	JS	devs,	start	assigning	functions	around	to
different	objects	(which	came	from		class		definitions),	in	various	different	ways,	you
probably	won't	be	very	aware	that	in	all	those	cases,	the		super		mechanism	under	the
covers	is	having	to	be	re-bound	each	time.

And	depending	on	what	sorts	of	syntactic	approaches	you	take	to	these	assignments,	there
may	very	well	be	cases	where	the		super		can't	be	properly	bound	(at	least,	not	where	you
suspect),	so	you	may	(at	time	of	writing,	TC39	discussion	is	ongoing	on	the	topic)	have	to
manually	bind		super		with		toMethod(..)		(kinda	like	you	have	to	do		bind(..)		for		this		--
see	Chapter	2).

You're	used	to	being	able	to	assign	around	methods	to	different	objects	to	automatically	take
advantage	of	the	dynamism	of		this		via	the	implicit	binding	rule	(see	Chapter	2).	But	the
same	will	likely	not	be	true	with	methods	that	use		super	.

Consider	what		super		should	do	here	(against		D		and		E	):
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class	P	{

				foo()	{	console.log(	"P.foo"	);	}

}

class	C	extends	P	{

				foo()	{

								super();

				}

}

var	c1	=	new	C();

c1.foo();	//	"P.foo"

var	D	=	{

				foo:	function()	{	console.log(	"D.foo"	);	}

};

var	E	=	{

				foo:	C.prototype.foo

};

//	Link	E	to	D	for	delegation

Object.setPrototypeOf(	E,	D	);

E.foo();	//	"P.foo"

If	you	were	thinking	(quite	reasonably!)	that		super		would	be	bound	dynamically	at	call-time,
you	might	expect	that		super()		would	automatically	recognize	that		E		delegates	to		D	,	so
	E.foo()		using		super()		should	call	to		D.foo()	.

Not	so.	For	performance	pragmatism	reasons,		super		is	not	late	bound	(aka,	dynamically
bound)	like		this		is.	Instead	it's	derived	at	call-time	from		[[HomeObject]].[[Prototype]]	,
where		[[HomeObject]]		is	statically	bound	at	creation	time.

In	this	particular	case,		super()		is	still	resolving	to		P.foo()	,	since	the	method's
	[[HomeObject]]		is	still		C		and		C.[[Prototype]]		is		P	.

There	will	probably	be	ways	to	manually	address	such	gotchas.	Using		toMethod(..)		to
bind/rebind	a	method's		[[HomeObject]]		(along	with	setting	the		[[Prototype]]		of	that
object!)	appears	to	work	in	this	scenario:
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var	D	=	{

				foo:	function()	{	console.log(	"D.foo"	);	}

};

//	Link	E	to	D	for	delegation

var	E	=	Object.create(	D	);

//	manually	bind	`foo`s	`[[HomeObject]]`	as

//	`E`,	and	`E.[[Prototype]]`	is	`D`,	so	thus

//	`super()`	is	`D.foo()`

E.foo	=	C.prototype.foo.toMethod(	E,	"foo"	);

E.foo();	//	"D.foo"

Note:		toMethod(..)		clones	the	method,	and	takes		homeObject		as	its	first	parameter	(which
is	why	we	pass		E	),	and	the	second	parameter	(optionally)	sets	a		name		for	the	new	method
(which	keep	at	"foo").

It	remains	to	be	seen	if	there	are	other	corner	case	gotchas	that	devs	will	run	into	beyond
this	scenario.	Regardless,	you	will	have	to	be	diligent	and	stay	aware	of	which	places	the
engine	automatically	figures	out		super		for	you,	and	which	places	you	have	to	manually	take
care	of	it.	Ugh!

Static	>	Dynamic?
But	the	biggest	problem	of	all	about	ES6		class		is	that	all	these	various	gotchas	mean
	class		sorta	opts	you	into	a	syntax	which	seems	to	imply	(like	traditional	classes)	that	once
you	declare	a		class	,	it's	a	static	definition	of	a	(future	instantiated)	thing.	You	completely
lose	sight	of	the	fact	that		C		is	an	object,	a	concrete	thing,	which	you	can	directly	interact
with.

In	traditional	class-oriented	languages,	you	never	adjust	the	definition	of	a	class	later,	so	the
class	design	pattern	doesn't	suggest	such	capabilities.	But	one	of	the	most	powerful	parts
of	JS	is	that	it	is	dynamic,	and	the	definition	of	any	object	is	(unless	you	make	it	immutable)
a	fluid	and	mutable	thing.

	class		seems	to	imply	you	shouldn't	do	such	things,	by	forcing	you	into	the	uglier
	.prototype		syntax	to	do	so,	or	forcing	you	to	think	about		super		gotchas,	etc.	It	also	offers
very	little	support	for	any	of	the	pitfalls	that	this	dynamism	can	bring.

In	other	words,	it's	as	if		class		is	telling	you:	"dynamic	is	too	hard,	so	it's	probably	not	a
good	idea.	Here's	a	static-looking	syntax,	so	code	your	stuff	statically."
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What	a	sad	commentary	on	JavaScript:	dynamic	is	too	hard,	let's	pretend	to	be	(but	not
actually	be!)	static.

These	are	the	reasons	why	ES6		class		is	masquerading	as	a	nice	solution	to	syntactic
headaches,	but	it's	actually	muddying	the	waters	further	and	making	things	worse	for	JS	and
for	clear	and	concise	understanding.

Note:	If	you	use	the		.bind(..)		utility	to	make	a	hard-bound	function	(see	Chapter	2),	the
function	created	is	not	subclassable	with	ES6		extend		like	normal	functions	are.

Review	(TL;DR)
	class		does	a	very	good	job	of	pretending	to	fix	the	problems	with	the	class/inheritance
design	pattern	in	JS.	But	it	actually	does	the	opposite:	it	hides	many	of	the	problems,	and
introduces	other	subtle	but	dangerous	ones.

	class		contributes	to	the	ongoing	confusion	of	"class"	in	JavaScript	which	has	plagued	the
language	for	nearly	two	decades.	In	some	respects,	it	asks	more	questions	than	it	answers,
and	it	feels	in	totality	like	a	very	unnatural	fit	on	top	of	the	elegant	simplicity	of	the
	[[Prototype]]		mechanism.

Bottom	line:	if	ES6		class		makes	it	harder	to	robustly	leverage		[[Prototype]]	,	and	hides
the	most	important	nature	of	the	JS	object	mechanism	--	the	live	delegation	links	between
objects	--	shouldn't	we	see		class		as	creating	more	troubles	than	it	solves,	and	just
relegate	it	to	an	anti-pattern?

I	can't	really	answer	that	question	for	you.	But	I	hope	this	book	has	fully	explored	the	issue
at	a	deeper	level	than	you've	ever	gone	before,	and	has	given	you	the	information	you	need
to	answer	it	yourself.

ES6	class

452



Async	&	Performance

453



One	of	the	most	important	and	yet	often	misunderstood	parts	of	programming	in	a	language
like	JavaScript	is	how	to	express	and	manipulate	program	behavior	spread	out	over	a	period
of	time.

This	is	not	just	about	what	happens	from	the	beginning	of	a		for		loop	to	the	end	of	a		for	
loop,	which	of	course	takes	some	time	(microseconds	to	milliseconds)	to	complete.	It's	about
what	happens	when	part	of	your	program	runs	now,	and	another	part	of	your	program	runs
later	--	there's	a	gap	between	now	and	later	where	your	program	isn't	actively	executing.

Practically	all	nontrivial	programs	ever	written	(especially	in	JS)	have	in	some	way	or
another	had	to	manage	this	gap,	whether	that	be	in	waiting	for	user	input,	requesting	data
from	a	database	or	file	system,	sending	data	across	the	network	and	waiting	for	a	response,
or	performing	a	repeated	task	at	a	fixed	interval	of	time	(like	animation).	In	all	these	various
ways,	your	program	has	to	manage	state	across	the	gap	in	time.	As	they	famously	say	in
London	(of	the	chasm	between	the	subway	door	and	the	platform):	"mind	the	gap."

In	fact,	the	relationship	between	the	now	and	later	parts	of	your	program	is	at	the	heart	of
asynchronous	programming.

Asynchronous	programming	has	been	around	since	the	beginning	of	JS,	for	sure.	But	most
JS	developers	have	never	really	carefully	considered	exactly	how	and	why	it	crops	up	in
their	programs,	or	explored	various	other	ways	to	handle	it.	The	good	enough	approach	has
always	been	the	humble	callback	function.	Many	to	this	day	will	insist	that	callbacks	are
more	than	sufficient.

But	as	JS	continues	to	grow	in	both	scope	and	complexity,	to	meet	the	ever-widening
demands	of	a	first-class	programming	language	that	runs	in	browsers	and	servers	and	every
conceivable	device	in	between,	the	pains	by	which	we	manage	asynchrony	are	becoming
increasingly	crippling,	and	they	cry	out	for	approaches	that	are	both	more	capable	and	more
reason-able.

While	this	all	may	seem	rather	abstract	right	now,	I	assure	you	we'll	tackle	it	more
completely	and	concretely	as	we	go	on	through	this	book.	We'll	explore	a	variety	of
emerging	techniques	for	async	JavaScript	programming	over	the	next	several	chapters.

But	before	we	can	get	there,	we're	going	to	have	to	understand	much	more	deeply	what
asynchrony	is	and	how	it	operates	in	JS.

A	Program	in	Chunks
You	may	write	your	JS	program	in	one	.js	file,	but	your	program	is	almost	certainly
comprised	of	several	chunks,	only	one	of	which	is	going	to	execute	now,	and	the	rest	of
which	will	execute	later.	The	most	common	unit	of	chunk	is	the		function	.
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The	problem	most	developers	new	to	JS	seem	to	have	is	that	later	doesn't	happen	strictly
and	immediately	after	now.	In	other	words,	tasks	that	cannot	complete	now	are,	by
definition,	going	to	complete	asynchronously,	and	thus	we	will	not	have	blocking	behavior	as
you	might	intuitively	expect	or	want.

Consider:

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

var	data	=	ajax(	"http://some.url.1"	);

console.log(	data	);

//	Oops!	`data`	generally	won't	have	the	Ajax	results

You're	probably	aware	that	standard	Ajax	requests	don't	complete	synchronously,	which
means	the		ajax(..)		function	does	not	yet	have	any	value	to	return	back	to	be	assigned	to
	data		variable.	If		ajax(..)		could	block	until	the	response	came	back,	then	the		data	=	..	
assignment	would	work	fine.

But	that's	not	how	we	do	Ajax.	We	make	an	asynchronous	Ajax	request	now,	and	we	won't
get	the	results	back	until	later.

The	simplest	(but	definitely	not	only,	or	necessarily	even	best!)	way	of	"waiting"	from	now
until	later	is	to	use	a	function,	commonly	called	a	callback	function:

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	function	myCallbackFunction(data){

				console.log(	data	);	//	Yay,	I	gots	me	some	`data`!

}	);

Warning:	You	may	have	heard	that	it's	possible	to	make	synchronous	Ajax	requests.	While
that's	technically	true,	you	should	never,	ever	do	it,	under	any	circumstances,	because	it
locks	the	browser	UI	(buttons,	menus,	scrolling,	etc.)	and	prevents	any	user	interaction
whatsoever.	This	is	a	terrible	idea,	and	should	always	be	avoided.

Before	you	protest	in	disagreement,	no,	your	desire	to	avoid	the	mess	of	callbacks	is	not
justification	for	blocking,	synchronous	Ajax.

For	example,	consider	this	code:
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function	now()	{

				return	21;

}

function	later()	{

				answer	=	answer	*	2;

				console.log(	"Meaning	of	life:",	answer	);

}

var	answer	=	now();

setTimeout(	later,	1000	);	//	Meaning	of	life:	42

There	are	two	chunks	to	this	program:	the	stuff	that	will	run	now,	and	the	stuff	that	will	run
later.	It	should	be	fairly	obvious	what	those	two	chunks	are,	but	let's	be	super	explicit:

Now:

function	now()	{

				return	21;

}

function	later()	{	..	}

var	answer	=	now();

setTimeout(	later,	1000	);

Later:

answer	=	answer	*	2;

console.log(	"Meaning	of	life:",	answer	);

The	now	chunk	runs	right	away,	as	soon	as	you	execute	your	program.	But		setTimeout(..)	
also	sets	up	an	event	(a	timeout)	to	happen	later,	so	the	contents	of	the		later()		function
will	be	executed	at	a	later	time	(1,000	milliseconds	from	now).

Any	time	you	wrap	a	portion	of	code	into	a		function		and	specify	that	it	should	be	executed
in	response	to	some	event	(timer,	mouse	click,	Ajax	response,	etc.),	you	are	creating	a	later
chunk	of	your	code,	and	thus	introducing	asynchrony	to	your	program.

Async	Console
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There	is	no	specification	or	set	of	requirements	around	how	the		console.*		methods	work	--
they	are	not	officially	part	of	JavaScript,	but	are	instead	added	to	JS	by	the	hosting
environment	(see	the	Types	&	Grammar	title	of	this	book	series).

So,	different	browsers	and	JS	environments	do	as	they	please,	which	can	sometimes	lead	to
confusing	behavior.

In	particular,	there	are	some	browsers	and	some	conditions	that		console.log(..)		does	not
actually	immediately	output	what	it's	given.	The	main	reason	this	may	happen	is	because	I/O
is	a	very	slow	and	blocking	part	of	many	programs	(not	just	JS).	So,	it	may	perform	better
(from	the	page/UI	perspective)	for	a	browser	to	handle		console		I/O	asynchronously	in	the
background,	without	you	perhaps	even	knowing	that	occurred.

A	not	terribly	common,	but	possible,	scenario	where	this	could	be	observable	(not	from	code
itself	but	from	the	outside):

var	a	=	{

				index:	1

};

//	later

console.log(	a	);	//	??

//	even	later

a.index++;

We'd	normally	expect	to	see	the		a		object	be	snapshotted	at	the	exact	moment	of	the
	console.log(..)		statement,	printing	something	like		{	index:	1	}	,	such	that	in	the	next
statement	when		a.index++		happens,	it's	modifying	something	different	than,	or	just	strictly
after,	the	output	of		a	.

Most	of	the	time,	the	preceding	code	will	probably	produce	an	object	representation	in	your
developer	tools'	console	that's	what	you'd	expect.	But	it's	possible	this	same	code	could	run
in	a	situation	where	the	browser	felt	it	needed	to	defer	the	console	I/O	to	the	background,	in
which	case	it's	possible	that	by	the	time	the	object	is	represented	in	the	browser	console,	the
	a.index++		has	already	happened,	and	it	shows		{	index:	2	}	.

It's	a	moving	target	under	what	conditions	exactly		console		I/O	will	be	deferred,	or	even
whether	it	will	be	observable.	Just	be	aware	of	this	possible	asynchronicity	in	I/O	in	case	you
ever	run	into	issues	in	debugging	where	objects	have	been	modified	after	a
	console.log(..)		statement	and	yet	you	see	the	unexpected	modifications	show	up.

Note:	If	you	run	into	this	rare	scenario,	the	best	option	is	to	use	breakpoints	in	your	JS
debugger	instead	of	relying	on		console		output.	The	next	best	option	would	be	to	force	a
"snapshot"	of	the	object	in	question	by	serializing	it	to	a		string	,	like	with

Asynchrony:	Now	&	Later

457



	JSON.stringify(..)	.

Event	Loop
Let's	make	a	(perhaps	shocking)	claim:	despite	clearly	allowing	asynchronous	JS	code	(like
the	timeout	we	just	looked	at),	up	until	recently	(ES6),	JavaScript	itself	has	actually	never
had	any	direct	notion	of	asynchrony	built	into	it.

What!?	That	seems	like	a	crazy	claim,	right?	In	fact,	it's	quite	true.	The	JS	engine	itself	has
never	done	anything	more	than	execute	a	single	chunk	of	your	program	at	any	given
moment,	when	asked	to.

"Asked	to."	By	whom?	That's	the	important	part!

The	JS	engine	doesn't	run	in	isolation.	It	runs	inside	a	hosting	environment,	which	is	for
most	developers	the	typical	web	browser.	Over	the	last	several	years	(but	by	no	means
exclusively),	JS	has	expanded	beyond	the	browser	into	other	environments,	such	as
servers,	via	things	like	Node.js.	In	fact,	JavaScript	gets	embedded	into	all	kinds	of	devices
these	days,	from	robots	to	lightbulbs.

But	the	one	common	"thread"	(that's	a	not-so-subtle	asynchronous	joke,	for	what	it's	worth)
of	all	these	environments	is	that	they	have	a	mechanism	in	them	that	handles	executing
multiple	chunks	of	your	program	over	time,	at	each	moment	invoking	the	JS	engine,	called
the	"event	loop."

In	other	words,	the	JS	engine	has	had	no	innate	sense	of	time,	but	has	instead	been	an	on-
demand	execution	environment	for	any	arbitrary	snippet	of	JS.	It's	the	surrounding
environment	that	has	always	scheduled	"events"	(JS	code	executions).

So,	for	example,	when	your	JS	program	makes	an	Ajax	request	to	fetch	some	data	from	a
server,	you	set	up	the	"response"	code	in	a	function	(commonly	called	a	"callback"),	and	the
JS	engine	tells	the	hosting	environment,	"Hey,	I'm	going	to	suspend	execution	for	now,	but
whenever	you	finish	with	that	network	request,	and	you	have	some	data,	please	call	this
function	back."

The	browser	is	then	set	up	to	listen	for	the	response	from	the	network,	and	when	it	has
something	to	give	you,	it	schedules	the	callback	function	to	be	executed	by	inserting	it	into
the	event	loop.

So	what	is	the	event	loop?

Let's	conceptualize	it	first	through	some	fake-ish	code:
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//	`eventLoop`	is	an	array	that	acts	as	a	queue	(first-in,	first-out)

var	eventLoop	=	[	];

var	event;

//	keep	going	"forever"

while	(true)	{

				//	perform	a	"tick"

				if	(eventLoop.length	>	0)	{

								//	get	the	next	event	in	the	queue

								event	=	eventLoop.shift();

								//	now,	execute	the	next	event

								try	{

												event();

								}

								catch	(err)	{

												reportError(err);

								}

				}

}

This	is,	of	course,	vastly	simplified	pseudocode	to	illustrate	the	concepts.	But	it	should	be
enough	to	help	get	a	better	understanding.

As	you	can	see,	there's	a	continuously	running	loop	represented	by	the		while		loop,	and
each	iteration	of	this	loop	is	called	a	"tick."	For	each	tick,	if	an	event	is	waiting	on	the	queue,
it's	taken	off	and	executed.	These	events	are	your	function	callbacks.

It's	important	to	note	that		setTimeout(..)		doesn't	put	your	callback	on	the	event	loop
queue.	What	it	does	is	set	up	a	timer;	when	the	timer	expires,	the	environment	places	your
callback	into	the	event	loop,	such	that	some	future	tick	will	pick	it	up	and	execute	it.

What	if	there	are	already	20	items	in	the	event	loop	at	that	moment?	Your	callback	waits.	It
gets	in	line	behind	the	others	--	there's	not	normally	a	path	for	preempting	the	queue	and
skipping	ahead	in	line.	This	explains	why		setTimeout(..)		timers	may	not	fire	with	perfect
temporal	accuracy.	You're	guaranteed	(roughly	speaking)	that	your	callback	won't	fire	before
the	time	interval	you	specify,	but	it	can	happen	at	or	after	that	time,	depending	on	the	state
of	the	event	queue.

So,	in	other	words,	your	program	is	generally	broken	up	into	lots	of	small	chunks,	which
happen	one	after	the	other	in	the	event	loop	queue.	And	technically,	other	events	not	related
directly	to	your	program	can	be	interleaved	within	the	queue	as	well.

Note:	We	mentioned	"up	until	recently"	in	relation	to	ES6	changing	the	nature	of	where	the
event	loop	queue	is	managed.	It's	mostly	a	formal	technicality,	but	ES6	now	specifies	how
the	event	loop	works,	which	means	technically	it's	within	the	purview	of	the	JS	engine,	rather
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than	just	the	hosting	environment.	One	main	reason	for	this	change	is	the	introduction	of
ES6	Promises,	which	we'll	discuss	in	Chapter	3,	because	they	require	the	ability	to	have
direct,	fine-grained	control	over	scheduling	operations	on	the	event	loop	queue	(see	the
discussion	of		setTimeout(..0)		in	the	"Cooperation"	section).

Parallel	Threading
It's	very	common	to	conflate	the	terms	"async"	and	"parallel,"	but	they	are	actually	quite
different.	Remember,	async	is	about	the	gap	between	now	and	later.	But	parallel	is	about
things	being	able	to	occur	simultaneously.

The	most	common	tools	for	parallel	computing	are	processes	and	threads.	Processes	and
threads	execute	independently	and	may	execute	simultaneously:	on	separate	processors,	or
even	separate	computers,	but	multiple	threads	can	share	the	memory	of	a	single	process.

An	event	loop,	by	contrast,	breaks	its	work	into	tasks	and	executes	them	in	serial,
disallowing	parallel	access	and	changes	to	shared	memory.	Parallelism	and	"serialism"	can
coexist	in	the	form	of	cooperating	event	loops	in	separate	threads.

The	interleaving	of	parallel	threads	of	execution	and	the	interleaving	of	asynchronous	events
occur	at	very	different	levels	of	granularity.

For	example:

function	later()	{

				answer	=	answer	*	2;

				console.log(	"Meaning	of	life:",	answer	);

}

While	the	entire	contents	of		later()		would	be	regarded	as	a	single	event	loop	queue	entry,
when	thinking	about	a	thread	this	code	would	run	on,	there's	actually	perhaps	a	dozen
different	low-level	operations.	For	example,		answer	=	answer	*	2		requires	first	loading	the
current	value	of		answer	,	then	putting		2		somewhere,	then	performing	the	multiplication,
then	taking	the	result	and	storing	it	back	into		answer	.

In	a	single-threaded	environment,	it	really	doesn't	matter	that	the	items	in	the	thread	queue
are	low-level	operations,	because	nothing	can	interrupt	the	thread.	But	if	you	have	a	parallel
system,	where	two	different	threads	are	operating	in	the	same	program,	you	could	very	likely
have	unpredictable	behavior.

Consider:
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var	a	=	20;

function	foo()	{

				a	=	a	+	1;

}

function	bar()	{

				a	=	a	*	2;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

In	JavaScript's	single-threaded	behavior,	if		foo()		runs	before		bar()	,	the	result	is	that		a	
has		42	,	but	if		bar()		runs	before		foo()		the	result	in		a		will	be		41	.

If	JS	events	sharing	the	same	data	executed	in	parallel,	though,	the	problems	would	be
much	more	subtle.	Consider	these	two	lists	of	pseudocode	tasks	as	the	threads	that	could
respectively	run	the	code	in		foo()		and		bar()	,	and	consider	what	happens	if	they	are
running	at	exactly	the	same	time:

Thread	1	(	X		and		Y		are	temporary	memory	locations):

foo():

		a.	load	value	of	`a`	in	`X`

		b.	store	`1`	in	`Y`

		c.	add	`X`	and	`Y`,	store	result	in	`X`

		d.	store	value	of	`X`	in	`a`

Thread	2	(	X		and		Y		are	temporary	memory	locations):

bar():

		a.	load	value	of	`a`	in	`X`

		b.	store	`2`	in	`Y`

		c.	multiply	`X`	and	`Y`,	store	result	in	`X`

		d.	store	value	of	`X`	in	`a`

Now,	let's	say	that	the	two	threads	are	running	truly	in	parallel.	You	can	probably	spot	the
problem,	right?	They	use	shared	memory	locations		X		and		Y		for	their	temporary	steps.

What's	the	end	result	in		a		if	the	steps	happen	like	this?

Asynchrony:	Now	&	Later

461



1a		(load	value	of	`a`	in	`X`			==>	`20`)

2a		(load	value	of	`a`	in	`X`			==>	`20`)

1b		(store	`1`	in	`Y`			==>	`1`)

2b		(store	`2`	in	`Y`			==>	`2`)

1c		(add	`X`	and	`Y`,	store	result	in	`X`			==>	`22`)

1d		(store	value	of	`X`	in	`a`			==>	`22`)

2c		(multiply	`X`	and	`Y`,	store	result	in	`X`			==>	`44`)

2d		(store	value	of	`X`	in	`a`			==>	`44`)

The	result	in		a		will	be		44	.	But	what	about	this	ordering?

1a		(load	value	of	`a`	in	`X`			==>	`20`)

2a		(load	value	of	`a`	in	`X`			==>	`20`)

2b		(store	`2`	in	`Y`			==>	`2`)

1b		(store	`1`	in	`Y`			==>	`1`)

2c		(multiply	`X`	and	`Y`,	store	result	in	`X`			==>	`20`)

1c		(add	`X`	and	`Y`,	store	result	in	`X`			==>	`21`)

1d		(store	value	of	`X`	in	`a`			==>	`21`)

2d		(store	value	of	`X`	in	`a`			==>	`21`)

The	result	in		a		will	be		21	.

So,	threaded	programming	is	very	tricky,	because	if	you	don't	take	special	steps	to	prevent
this	kind	of	interruption/interleaving	from	happening,	you	can	get	very	surprising,
nondeterministic	behavior	that	frequently	leads	to	headaches.

JavaScript	never	shares	data	across	threads,	which	means	that	level	of	nondeterminism
isn't	a	concern.	But	that	doesn't	mean	JS	is	always	deterministic.	Remember	earlier,	where
the	relative	ordering	of		foo()		and		bar()		produces	two	different	results	(	41		or		42	)?

Note:	It	may	not	be	obvious	yet,	but	not	all	nondeterminism	is	bad.	Sometimes	it's	irrelevant,
and	sometimes	it's	intentional.	We'll	see	more	examples	of	that	throughout	this	and	the	next
few	chapters.

Run-to-Completion

Because	of	JavaScript's	single-threading,	the	code	inside	of		foo()		(and		bar()	)	is	atomic,
which	means	that	once		foo()		starts	running,	the	entirety	of	its	code	will	finish	before	any	of
the	code	in		bar()		can	run,	or	vice	versa.	This	is	called	"run-to-completion"	behavior.

In	fact,	the	run-to-completion	semantics	are	more	obvious	when		foo()		and		bar()		have
more	code	in	them,	such	as:
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var	a	=	1;

var	b	=	2;

function	foo()	{

				a++;

				b	=	b	*	a;

				a	=	b	+	3;

}

function	bar()	{

				b--;

				a	=	8	+	b;

				b	=	a	*	2;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

Because		foo()		can't	be	interrupted	by		bar()	,	and		bar()		can't	be	interrupted	by		foo()	,
this	program	only	has	two	possible	outcomes	depending	on	which	starts	running	first	--	if
threading	were	present,	and	the	individual	statements	in		foo()		and		bar()		could	be
interleaved,	the	number	of	possible	outcomes	would	be	greatly	increased!

Chunk	1	is	synchronous	(happens	now),	but	chunks	2	and	3	are	asynchronous	(happen
later),	which	means	their	execution	will	be	separated	by	a	gap	of	time.

Chunk	1:

var	a	=	1;

var	b	=	2;

Chunk	2	(	foo()	):

a++;

b	=	b	*	a;

a	=	b	+	3;

Chunk	3	(	bar()	):

b--;

a	=	8	+	b;

b	=	a	*	2;

Asynchrony:	Now	&	Later

463



Chunks	2	and	3	may	happen	in	either-first	order,	so	there	are	two	possible	outcomes	for	this
program,	as	illustrated	here:

Outcome	1:

var	a	=	1;

var	b	=	2;

//	foo()

a++;

b	=	b	*	a;

a	=	b	+	3;

//	bar()

b--;

a	=	8	+	b;

b	=	a	*	2;

a;	//	11

b;	//	22

Outcome	2:

var	a	=	1;

var	b	=	2;

//	bar()

b--;

a	=	8	+	b;

b	=	a	*	2;

//	foo()

a++;

b	=	b	*	a;

a	=	b	+	3;

a;	//	183

b;	//	180

Two	outcomes	from	the	same	code	means	we	still	have	nondeterminism!	But	it's	at	the
function	(event)	ordering	level,	rather	than	at	the	statement	ordering	level	(or,	in	fact,	the
expression	operation	ordering	level)	as	it	is	with	threads.	In	other	words,	it's	more
deterministic	than	threads	would	have	been.

As	applied	to	JavaScript's	behavior,	this	function-ordering	nondeterminism	is	the	common
term	"race	condition,"	as		foo()		and		bar()		are	racing	against	each	other	to	see	which	runs
first.	Specifically,	it's	a	"race	condition"	because	you	cannot	predict	reliably	how		a		and		b	
will	turn	out.
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Note:	If	there	was	a	function	in	JS	that	somehow	did	not	have	run-to-completion	behavior,
we	could	have	many	more	possible	outcomes,	right?	It	turns	out	ES6	introduces	just	such	a
thing	(see	Chapter	4	"Generators"),	but	don't	worry	right	now,	we'll	come	back	to	that!

Concurrency
Let's	imagine	a	site	that	displays	a	list	of	status	updates	(like	a	social	network	news	feed)
that	progressively	loads	as	the	user	scrolls	down	the	list.	To	make	such	a	feature	work
correctly,	(at	least)	two	separate	"processes"	will	need	to	be	executing	simultaneously	(i.e.,
during	the	same	window	of	time,	but	not	necessarily	at	the	same	instant).

Note:	We're	using	"process"	in	quotes	here	because	they	aren't	true	operating	system–level
processes	in	the	computer	science	sense.	They're	virtual	processes,	or	tasks,	that	represent
a	logically	connected,	sequential	series	of	operations.	We'll	simply	prefer	"process"	over
"task"	because	terminology-wise,	it	will	match	the	definitions	of	the	concepts	we're	exploring.

The	first	"process"	will	respond	to		onscroll		events	(making	Ajax	requests	for	new	content)
as	they	fire	when	the	user	has	scrolled	the	page	further	down.	The	second	"process"	will
receive	Ajax	responses	back	(to	render	content	onto	the	page).

Obviously,	if	a	user	scrolls	fast	enough,	you	may	see	two	or	more		onscroll		events	fired
during	the	time	it	takes	to	get	the	first	response	back	and	process,	and	thus	you're	going	to
have		onscroll		events	and	Ajax	response	events	firing	rapidly,	interleaved	with	each	other.

Concurrency	is	when	two	or	more	"processes"	are	executing	simultaneously	over	the	same
period,	regardless	of	whether	their	individual	constituent	operations	happen	in	parallel	(at	the
same	instant	on	separate	processors	or	cores)	or	not.	You	can	think	of	concurrency	then	as
"process"-level	(or	task-level)	parallelism,	as	opposed	to	operation-level	parallelism
(separate-processor	threads).

Note:	Concurrency	also	introduces	an	optional	notion	of	these	"processes"	interacting	with
each	other.	We'll	come	back	to	that	later.

For	a	given	window	of	time	(a	few	seconds	worth	of	a	user	scrolling),	let's	visualize	each
independent	"process"	as	a	series	of	events/operations:

"Process"	1	(	onscroll		events):
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onscroll,	request	1

onscroll,	request	2

onscroll,	request	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6

onscroll,	request	7

"Process"	2	(Ajax	response	events):

response	1

response	2

response	3

response	4

response	5

response	6

response	7

It's	quite	possible	that	an		onscroll		event	and	an	Ajax	response	event	could	be	ready	to	be
processed	at	exactly	the	same	moment.	For	example	let's	visualize	these	events	in	a
timeline:

onscroll,	request	1

onscroll,	request	2										response	1

onscroll,	request	3										response	2

response	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6										response	4

onscroll,	request	7

response	6

response	5

response	7

But,	going	back	to	our	notion	of	the	event	loop	from	earlier	in	the	chapter,	JS	is	only	going	to
be	able	to	handle	one	event	at	a	time,	so	either		onscroll,	request	2		is	going	to	happen	first
or		response	1		is	going	to	happen	first,	but	they	cannot	happen	at	literally	the	same	moment.
Just	like	kids	at	a	school	cafeteria,	no	matter	what	crowd	they	form	outside	the	doors,	they'll
have	to	merge	into	a	single	line	to	get	their	lunch!

Let's	visualize	the	interleaving	of	all	these	events	onto	the	event	loop	queue.

Event	Loop	Queue:
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onscroll,	request	1			<---	Process	1	starts

onscroll,	request	2

response	1												<---	Process	2	starts

onscroll,	request	3

response	2

response	3

onscroll,	request	4

onscroll,	request	5

onscroll,	request	6

response	4

onscroll,	request	7			<---	Process	1	finishes

response	6

response	5

response	7												<---	Process	2	finishes

"Process	1"	and	"Process	2"	run	concurrently	(task-level	parallel),	but	their	individual	events
run	sequentially	on	the	event	loop	queue.

By	the	way,	notice	how		response	6		and		response	5		came	back	out	of	expected	order?

The	single-threaded	event	loop	is	one	expression	of	concurrency	(there	are	certainly	others,
which	we'll	come	back	to	later).

Noninteracting

As	two	or	more	"processes"	are	interleaving	their	steps/events	concurrently	within	the	same
program,	they	don't	necessarily	need	to	interact	with	each	other	if	the	tasks	are	unrelated.	If
they	don't	interact,	nondeterminism	is	perfectly	acceptable.

For	example:

var	res	=	{};

function	foo(results)	{

				res.foo	=	results;

}

function	bar(results)	{

				res.bar	=	results;

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);
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	foo()		and		bar()		are	two	concurrent	"processes,"	and	it's	nondeterminate	which	order
they	will	be	fired	in.	But	we've	constructed	the	program	so	it	doesn't	matter	what	order	they
fire	in,	because	they	act	independently	and	as	such	don't	need	to	interact.

This	is	not	a	"race	condition"	bug,	as	the	code	will	always	work	correctly,	regardless	of	the
ordering.

Interaction

More	commonly,	concurrent	"processes"	will	by	necessity	interact,	indirectly	through	scope
and/or	the	DOM.	When	such	interaction	will	occur,	you	need	to	coordinate	these	interactions
to	prevent	"race	conditions,"	as	described	earlier.

Here's	a	simple	example	of	two	concurrent	"processes"	that	interact	because	of	implied
ordering,	which	is	only	sometimes	broken:

var	res	=	[];

function	response(data)	{

				res.push(	data	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

The	concurrent	"processes"	are	the	two		response()		calls	that	will	be	made	to	handle	the
Ajax	responses.	They	can	happen	in	either-first	order.

Let's	assume	the	expected	behavior	is	that		res[0]		has	the	results	of	the
	"http://some.url.1"		call,	and		res[1]		has	the	results	of	the		"http://some.url.2"		call.
Sometimes	that	will	be	the	case,	but	sometimes	they'll	be	flipped,	depending	on	which	call
finishes	first.	There's	a	pretty	good	likelihood	that	this	nondeterminism	is	a	"race	condition"
bug.

Note:	Be	extremely	wary	of	assumptions	you	might	tend	to	make	in	these	situations.	For
example,	it's	not	uncommon	for	a	developer	to	observe	that		"http://some.url.2"		is
"always"	much	slower	to	respond	than		"http://some.url.1"	,	perhaps	by	virtue	of	what	tasks
they're	doing	(e.g.,	one	performing	a	database	task	and	the	other	just	fetching	a	static	file),
so	the	observed	ordering	seems	to	always	be	as	expected.	Even	if	both	requests	go	to	the
same	server,	and	it	intentionally	responds	in	a	certain	order,	there's	no	real	guarantee	of
what	order	the	responses	will	arrive	back	in	the	browser.

So,	to	address	such	a	race	condition,	you	can	coordinate	ordering	interaction:
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var	res	=	[];

function	response(data)	{

				if	(data.url	==	"http://some.url.1")	{

								res[0]	=	data;

				}

				else	if	(data.url	==	"http://some.url.2")	{

								res[1]	=	data;

				}

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

Regardless	of	which	Ajax	response	comes	back	first,	we	inspect	the		data.url		(assuming
one	is	returned	from	the	server,	of	course!)	to	figure	out	which	position	the	response	data
should	occupy	in	the		res		array.		res[0]		will	always	hold	the		"http://some.url.1"		results
and		res[1]		will	always	hold	the		"http://some.url.2"		results.	Through	simple	coordination,
we	eliminated	the	"race	condition"	nondeterminism.

The	same	reasoning	from	this	scenario	would	apply	if	multiple	concurrent	function	calls	were
interacting	with	each	other	through	the	shared	DOM,	like	one	updating	the	contents	of	a
	<div>		and	the	other	updating	the	style	or	attributes	of	the		<div>		(e.g.,	to	make	the	DOM
element	visible	once	it	has	content).	You	probably	wouldn't	want	to	show	the	DOM	element
before	it	had	content,	so	the	coordination	must	ensure	proper	ordering	interaction.

Some	concurrency	scenarios	are	always	broken	(not	just	sometimes)	without	coordinated
interaction.	Consider:
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var	a,	b;

function	foo(x)	{

				a	=	x	*	2;

				baz();

}

function	bar(y)	{

				b	=	y	*	2;

				baz();

}

function	baz()	{

				console.log(a	+	b);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

In	this	example,	whether		foo()		or		bar()		fires	first,	it	will	always	cause		baz()		to	run	too
early	(either		a		or		b		will	still	be		undefined	),	but	the	second	invocation	of		baz()		will	work,
as	both		a		and		b		will	be	available.

There	are	different	ways	to	address	such	a	condition.	Here's	one	simple	way:

var	a,	b;

function	foo(x)	{

				a	=	x	*	2;

				if	(a	&&	b)	{

								baz();

				}

}

function	bar(y)	{

				b	=	y	*	2;

				if	(a	&&	b)	{

								baz();

				}

}

function	baz()	{

				console.log(	a	+	b	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);
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The		if	(a	&&	b)		conditional	around	the		baz()		call	is	traditionally	called	a	"gate,"	because
we're	not	sure	what	order		a		and		b		will	arrive,	but	we	wait	for	both	of	them	to	get	there
before	we	proceed	to	open	the	gate	(call		baz()	).

Another	concurrency	interaction	condition	you	may	run	into	is	sometimes	called	a	"race,"	but
more	correctly	called	a	"latch."	It's	characterized	by	"only	the	first	one	wins"	behavior.	Here,
nondeterminism	is	acceptable,	in	that	you	are	explicitly	saying	it's	OK	for	the	"race"	to	the
finish	line	to	have	only	one	winner.

Consider	this	broken	code:

var	a;

function	foo(x)	{

				a	=	x	*	2;

				baz();

}

function	bar(x)	{

				a	=	x	/	2;

				baz();

}

function	baz()	{

				console.log(	a	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

Whichever	one	(	foo()		or		bar()	)	fires	last	will	not	only	overwrite	the	assigned		a		value
from	the	other,	but	it	will	also	duplicate	the	call	to		baz()		(likely	undesired).

So,	we	can	coordinate	the	interaction	with	a	simple	latch,	to	let	only	the	first	one	through:
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var	a;

function	foo(x)	{

				if	(a	==	undefined)	{

								a	=	x	*	2;

								baz();

				}

}

function	bar(x)	{

				if	(a	==	undefined)	{

								a	=	x	/	2;

								baz();

				}

}

function	baz()	{

				console.log(	a	);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	foo	);

ajax(	"http://some.url.2",	bar	);

The		if	(a	==	undefined)		conditional	allows	only	the	first	of		foo()		or		bar()		through,	and
the	second	(and	indeed	any	subsequent)	calls	would	just	be	ignored.	There's	just	no	virtue
in	coming	in	second	place!

Note:	In	all	these	scenarios,	we've	been	using	global	variables	for	simplistic	illustration
purposes,	but	there's	nothing	about	our	reasoning	here	that	requires	it.	As	long	as	the
functions	in	question	can	access	the	variables	(via	scope),	they'll	work	as	intended.	Relying
on	lexically	scoped	variables	(see	the	Scope	&	Closures	title	of	this	book	series),	and	in	fact
global	variables	as	in	these	examples,	is	one	obvious	downside	to	these	forms	of
concurrency	coordination.	As	we	go	through	the	next	few	chapters,	we'll	see	other	ways	of
coordination	that	are	much	cleaner	in	that	respect.

Cooperation

Another	expression	of	concurrency	coordination	is	called	"cooperative	concurrency."	Here,
the	focus	isn't	so	much	on	interacting	via	value	sharing	in	scopes	(though	that's	obviously
still	allowed!).	The	goal	is	to	take	a	long-running	"process"	and	break	it	up	into	steps	or
batches	so	that	other	concurrent	"processes"	have	a	chance	to	interleave	their	operations
into	the	event	loop	queue.

For	example,	consider	an	Ajax	response	handler	that	needs	to	run	through	a	long	list	of
results	to	transform	the	values.	We'll	use		Array#map(..)		to	keep	the	code	shorter:
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var	res	=	[];

//	`response(..)`	receives	array	of	results	from	the	Ajax	call

function	response(data)	{

				//	add	onto	existing	`res`	array

				res	=	res.concat(

								//	make	a	new	transformed	array	with	all	`data`	values	doubled

								data.map(	function(val){

												return	val	*	2;

								}	)

				);

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

If		"http://some.url.1"		gets	its	results	back	first,	the	entire	list	will	be	mapped	into		res		all
at	once.	If	it's	a	few	thousand	or	less	records,	this	is	not	generally	a	big	deal.	But	if	it's	say
10	million	records,	that	can	take	a	while	to	run	(several	seconds	on	a	powerful	laptop,	much
longer	on	a	mobile	device,	etc.).

While	such	a	"process"	is	running,	nothing	else	in	the	page	can	happen,	including	no	other
	response(..)		calls,	no	UI	updates,	not	even	user	events	like	scrolling,	typing,	button
clicking,	and	the	like.	That's	pretty	painful.

So,	to	make	a	more	cooperatively	concurrent	system,	one	that's	friendlier	and	doesn't	hog
the	event	loop	queue,	you	can	process	these	results	in	asynchronous	batches,	after	each
one	"yielding"	back	to	the	event	loop	to	let	other	waiting	events	happen.

Here's	a	very	simple	approach:
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var	res	=	[];

//	`response(..)`	receives	array	of	results	from	the	Ajax	call

function	response(data)	{

				//	let's	just	do	1000	at	a	time

				var	chunk	=	data.splice(	0,	1000	);

				//	add	onto	existing	`res`	array

				res	=	res.concat(

								//	make	a	new	transformed	array	with	all	`chunk`	values	doubled

								chunk.map(	function(val){

												return	val	*	2;

								}	)

				);

				//	anything	left	to	process?

				if	(data.length	>	0)	{

								//	async	schedule	next	batch

								setTimeout(	function(){

												response(	data	);

								},	0	);

				}

}

//	ajax(..)	is	some	arbitrary	Ajax	function	given	by	a	library

ajax(	"http://some.url.1",	response	);

ajax(	"http://some.url.2",	response	);

We	process	the	data	set	in	maximum-sized	chunks	of	1,000	items.	By	doing	so,	we	ensure	a
short-running	"process,"	even	if	that	means	many	more	subsequent	"processes,"	as	the
interleaving	onto	the	event	loop	queue	will	give	us	a	much	more	responsive	(performant)
site/app.

Of	course,	we're	not	interaction-coordinating	the	ordering	of	any	of	these	"processes,"	so	the
order	of	results	in		res		won't	be	predictable.	If	ordering	was	required,	you'd	need	to	use
interaction	techniques	like	those	we	discussed	earlier,	or	ones	we	will	cover	in	later	chapters
of	this	book.

We	use	the		setTimeout(..0)		(hack)	for	async	scheduling,	which	basically	just	means	"stick
this	function	at	the	end	of	the	current	event	loop	queue."

Note:		setTimeout(..0)		is	not	technically	inserting	an	item	directly	onto	the	event	loop
queue.	The	timer	will	insert	the	event	at	its	next	opportunity.	For	example,	two	subsequent
	setTimeout(..0)		calls	would	not	be	strictly	guaranteed	to	be	processed	in	call	order,	so	it	is
possible	to	see	various	conditions	like	timer	drift	where	the	ordering	of	such	events	isn't
predictable.	In	Node.js,	a	similar	approach	is		process.nextTick(..)	.	Despite	how
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convenient	(and	usually	more	performant)	it	would	be,	there's	not	a	single	direct	way	(at
least	yet)	across	all	environments	to	ensure	async	event	ordering.	We	cover	this	topic	in
more	detail	in	the	next	section.

Jobs
As	of	ES6,	there's	a	new	concept	layered	on	top	of	the	event	loop	queue,	called	the	"Job
queue."	The	most	likely	exposure	you'll	have	to	it	is	with	the	asynchronous	behavior	of
Promises	(see	Chapter	3).

Unfortunately,	at	the	moment	it's	a	mechanism	without	an	exposed	API,	and	thus
demonstrating	it	is	a	bit	more	convoluted.	So	we're	going	to	have	to	just	describe	it
conceptually,	such	that	when	we	discuss	async	behavior	with	Promises	in	Chapter	3,	you'll
understand	how	those	actions	are	being	scheduled	and	processed.

So,	the	best	way	to	think	about	this	that	I've	found	is	that	the	"Job	queue"	is	a	queue
hanging	off	the	end	of	every	tick	in	the	event	loop	queue.	Certain	async-implied	actions	that
may	occur	during	a	tick	of	the	event	loop	will	not	cause	a	whole	new	event	to	be	added	to
the	event	loop	queue,	but	will	instead	add	an	item	(aka	Job)	to	the	end	of	the	current	tick's
Job	queue.

It's	kinda	like	saying,	"oh,	here's	this	other	thing	I	need	to	do	later,	but	make	sure	it	happens
right	away	before	anything	else	can	happen."

Or,	to	use	a	metaphor:	the	event	loop	queue	is	like	an	amusement	park	ride,	where	once
you	finish	the	ride,	you	have	to	go	to	the	back	of	the	line	to	ride	again.	But	the	Job	queue	is
like	finishing	the	ride,	but	then	cutting	in	line	and	getting	right	back	on.

A	Job	can	also	cause	more	Jobs	to	be	added	to	the	end	of	the	same	queue.	So,	it's
theoretically	possible	that	a	Job	"loop"	(a	Job	that	keeps	adding	another	Job,	etc.)	could	spin
indefinitely,	thus	starving	the	program	of	the	ability	to	move	on	to	the	next	event	loop	tick.
This	would	conceptually	be	almost	the	same	as	just	expressing	a	long-running	or	infinite
loop	(like		while	(true)	..	)	in	your	code.

Jobs	are	kind	of	like	the	spirit	of	the		setTimeout(..0)		hack,	but	implemented	in	such	a	way
as	to	have	a	much	more	well-defined	and	guaranteed	ordering:	later,	but	as	soon	as
possible.

Let's	imagine	an	API	for	scheduling	Jobs	(directly,	without	hacks),	and	call	it		schedule(..)	.
Consider:
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console.log(	"A"	);

setTimeout(	function(){

				console.log(	"B"	);

},	0	);

//	theoretical	"Job	API"

schedule(	function(){

				console.log(	"C"	);

				schedule(	function(){

								console.log(	"D"	);

				}	);

}	);

You	might	expect	this	to	print	out		A	B	C	D	,	but	instead	it	would	print	out		A	C	D	B	,	because
the	Jobs	happen	at	the	end	of	the	current	event	loop	tick,	and	the	timer	fires	to	schedule	for
the	next	event	loop	tick	(if	available!).

In	Chapter	3,	we'll	see	that	the	asynchronous	behavior	of	Promises	is	based	on	Jobs,	so	it's
important	to	keep	clear	how	that	relates	to	event	loop	behavior.

Statement	Ordering
The	order	in	which	we	express	statements	in	our	code	is	not	necessarily	the	same	order	as
the	JS	engine	will	execute	them.	That	may	seem	like	quite	a	strange	assertion	to	make,	so
we'll	just	briefly	explore	it.

But	before	we	do,	we	should	be	crystal	clear	on	something:	the	rules/grammar	of	the
language	(see	the	Types	&	Grammar	title	of	this	book	series)	dictate	a	very	predictable	and
reliable	behavior	for	statement	ordering	from	the	program	point	of	view.	So	what	we're	about
to	discuss	are	not	things	you	should	ever	be	able	to	observe	in	your	JS	program.

Warning:	If	you	are	ever	able	to	observe	compiler	statement	reordering	like	we're	about	to
illustrate,	that'd	be	a	clear	violation	of	the	specification,	and	it	would	unquestionably	be	due
to	a	bug	in	the	JS	engine	in	question	--	one	which	should	promptly	be	reported	and	fixed!
But	it's	vastly	more	common	that	you	suspect	something	crazy	is	happening	in	the	JS
engine,	when	in	fact	it's	just	a	bug	(probably	a	"race	condition"!)	in	your	own	code	--	so	look
there	first,	and	again	and	again.	The	JS	debugger,	using	breakpoints	and	stepping	through
code	line	by	line,	will	be	your	most	powerful	tool	for	sniffing	out	such	bugs	in	your	code.

Consider:
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var	a,	b;

a	=	10;

b	=	30;

a	=	a	+	1;

b	=	b	+	1;

console.log(	a	+	b	);	//	42

This	code	has	no	expressed	asynchrony	to	it	(other	than	the	rare		console		async	I/O
discussed	earlier!),	so	the	most	likely	assumption	is	that	it	would	process	line	by	line	in	top-
down	fashion.

But	it's	possible	that	the	JS	engine,	after	compiling	this	code	(yes,	JS	is	compiled	--	see	the
Scope	&	Closures	title	of	this	book	series!)	might	find	opportunities	to	run	your	code	faster
by	rearranging	(safely)	the	order	of	these	statements.	Essentially,	as	long	as	you	can't
observe	the	reordering,	anything's	fair	game.

For	example,	the	engine	might	find	it's	faster	to	actually	execute	the	code	like	this:

var	a,	b;

a	=	10;

a++;

b	=	30;

b++;

console.log(	a	+	b	);	//	42

Or	this:

var	a,	b;

a	=	11;

b	=	31;

console.log(	a	+	b	);	//	42

Or	even:

//	because	`a`	and	`b`	aren't	used	anymore,	we	can

//	inline	and	don't	even	need	them!

console.log(	42	);	//	42
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In	all	these	cases,	the	JS	engine	is	performing	safe	optimizations	during	its	compilation,	as
the	end	observable	result	will	be	the	same.

But	here's	a	scenario	where	these	specific	optimizations	would	be	unsafe	and	thus	couldn't
be	allowed	(of	course,	not	to	say	that	it's	not	optimized	at	all):

var	a,	b;

a	=	10;

b	=	30;

//	we	need	`a`	and	`b`	in	their	preincremented	state!

console.log(	a	*	b	);	//	300

a	=	a	+	1;

b	=	b	+	1;

console.log(	a	+	b	);	//	42

Other	examples	where	the	compiler	reordering	could	create	observable	side	effects	(and
thus	must	be	disallowed)	would	include	things	like	any	function	call	with	side	effects	(even
and	especially	getter	functions),	or	ES6	Proxy	objects	(see	the	ES6	&	Beyond	title	of	this
book	series).

Consider:

function	foo()	{

				console.log(	b	);

				return	1;

}

var	a,	b,	c;

//	ES5.1	getter	literal	syntax

c	=	{

				get	bar()	{

								console.log(	a	);

								return	1;

				}

};

a	=	10;

b	=	30;

a	+=	foo();																//	30

b	+=	c.bar;																//	11

console.log(	a	+	b	);				//	42
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If	it	weren't	for	the		console.log(..)		statements	in	this	snippet	(just	used	as	a	convenient
form	of	observable	side	effect	for	the	illustration),	the	JS	engine	would	likely	have	been	free,
if	it	wanted	to	(who	knows	if	it	would!?),	to	reorder	the	code	to:

//	...

a	=	10	+	foo();

b	=	30	+	c.bar;

//	...

While	JS	semantics	thankfully	protect	us	from	the	observable	nightmares	that	compiler
statement	reordering	would	seem	to	be	in	danger	of,	it's	still	important	to	understand	just
how	tenuous	a	link	there	is	between	the	way	source	code	is	authored	(in	top-down	fashion)
and	the	way	it	runs	after	compilation.

Compiler	statement	reordering	is	almost	a	micro-metaphor	for	concurrency	and	interaction.
As	a	general	concept,	such	awareness	can	help	you	understand	async	JS	code	flow	issues
better.

Review
A	JavaScript	program	is	(practically)	always	broken	up	into	two	or	more	chunks,	where	the
first	chunk	runs	now	and	the	next	chunk	runs	later,	in	response	to	an	event.	Even	though	the
program	is	executed	chunk-by-chunk,	all	of	them	share	the	same	access	to	the	program
scope	and	state,	so	each	modification	to	state	is	made	on	top	of	the	previous	state.

Whenever	there	are	events	to	run,	the	event	loop	runs	until	the	queue	is	empty.	Each
iteration	of	the	event	loop	is	a	"tick."	User	interaction,	IO,	and	timers	enqueue	events	on	the
event	queue.

At	any	given	moment,	only	one	event	can	be	processed	from	the	queue	at	a	time.	While	an
event	is	executing,	it	can	directly	or	indirectly	cause	one	or	more	subsequent	events.

Concurrency	is	when	two	or	more	chains	of	events	interleave	over	time,	such	that	from	a
high-level	perspective,	they	appear	to	be	running	simultaneously	(even	though	at	any	given
moment	only	one	event	is	being	processed).

It's	often	necessary	to	do	some	form	of	interaction	coordination	between	these	concurrent
"processes"	(as	distinct	from	operating	system	processes),	for	instance	to	ensure	ordering	or
to	prevent	"race	conditions."	These	"processes"	can	also	cooperate	by	breaking	themselves
into	smaller	chunks	and	to	allow	other	"process"	interleaving.
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In	Chapter	1,	we	explored	the	terminology	and	concepts	around	asynchronous	programming
in	JavaScript.	Our	focus	is	on	understanding	the	single-threaded	(one-at-a-time)	event	loop
queue	that	drives	all	"events"	(async	function	invocations).	We	also	explored	various	ways
that	concurrency	patterns	explain	the	relationships	(if	any!)	between	simultaneously	running
chains	of	events,	or	"processes"	(tasks,	function	calls,	etc.).

All	our	examples	in	Chapter	1	used	the	function	as	the	individual,	indivisible	unit	of
operations,	whereby	inside	the	function,	statements	run	in	predictable	order	(above	the
compiler	level!),	but	at	the	function-ordering	level,	events	(aka	async	function	invocations)
can	happen	in	a	variety	of	orders.

In	all	these	cases,	the	function	is	acting	as	a	"callback,"	because	it	serves	as	the	target	for
the	event	loop	to	"call	back	into"	the	program,	whenever	that	item	in	the	queue	is	processed.

As	you	no	doubt	have	observed,	callbacks	are	by	far	the	most	common	way	that	asynchrony
in	JS	programs	is	expressed	and	managed.	Indeed,	the	callback	is	the	most	fundamental
async	pattern	in	the	language.

Countless	JS	programs,	even	very	sophisticated	and	complex	ones,	have	been	written	upon
no	other	async	foundation	than	the	callback	(with	of	course	the	concurrency	interaction
patterns	we	explored	in	Chapter	1).	The	callback	function	is	the	async	work	horse	for
JavaScript,	and	it	does	its	job	respectably.

Except...	callbacks	are	not	without	their	shortcomings.	Many	developers	are	excited	by	the
promise	(pun	intended!)	of	better	async	patterns.	But	it's	impossible	to	effectively	use	any
abstraction	if	you	don't	understand	what	it's	abstracting,	and	why.

In	this	chapter,	we	will	explore	a	couple	of	those	in	depth,	as	motivation	for	why	more
sophisticated	async	patterns	(explored	in	subsequent	chapters	of	this	book)	are	necessary
and	desired.

Continuations
Let's	go	back	to	the	async	callback	example	we	started	with	in	Chapter	1,	but	let	me	slightly
modify	it	to	illustrate	a	point:

//	A

ajax(	"..",	function(..){

				//	C

}	);

//	B
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	//	A		and		//	B		represent	the	first	half	of	the	program	(aka	the	now),	and		//	C		marks	the
second	half	of	the	program	(aka	the	later).	The	first	half	executes	right	away,	and	then
there's	a	"pause"	of	indeterminate	length.	At	some	future	moment,	if	the	Ajax	call	completes,
then	the	program	will	pick	up	where	it	left	off,	and	continue	with	the	second	half.

In	other	words,	the	callback	function	wraps	or	encapsulates	the	continuation	of	the	program.

Let's	make	the	code	even	simpler:

//	A

setTimeout(	function(){

				//	C

},	1000	);

//	B

Stop	for	a	moment	and	ask	yourself	how	you'd	describe	(to	someone	else	less	informed
about	how	JS	works)	the	way	that	program	behaves.	Go	ahead,	try	it	out	loud.	It's	a	good
exercise	that	will	help	my	next	points	make	more	sense.

Most	readers	just	now	probably	thought	or	said	something	to	the	effect	of:	"Do	A,	then	set	up
a	timeout	to	wait	1,000	milliseconds,	then	once	that	fires,	do	C."	How	close	was	your
rendition?

You	might	have	caught	yourself	and	self-edited	to:	"Do	A,	setup	the	timeout	for	1,000
milliseconds,	then	do	B,	then	after	the	timeout	fires,	do	C."	That's	more	accurate	than	the
first	version.	Can	you	spot	the	difference?

Even	though	the	second	version	is	more	accurate,	both	versions	are	deficient	in	explaining
this	code	in	a	way	that	matches	our	brains	to	the	code,	and	the	code	to	the	JS	engine.	The
disconnect	is	both	subtle	and	monumental,	and	is	at	the	very	heart	of	understanding	the
shortcomings	of	callbacks	as	async	expression	and	management.

As	soon	as	we	introduce	a	single	continuation	(or	several	dozen	as	many	programs	do!)	in
the	form	of	a	callback	function,	we	have	allowed	a	divergence	to	form	between	how	our
brains	work	and	the	way	the	code	will	operate.	Any	time	these	two	diverge	(and	this	is	by	far
not	the	only	place	that	happens,	as	I'm	sure	you	know!),	we	run	into	the	inevitable	fact	that
our	code	becomes	harder	to	understand,	reason	about,	debug,	and	maintain.

Sequential	Brain
I'm	pretty	sure	most	of	you	readers	have	heard	someone	say	(even	made	the	claim
yourself),	"I'm	a	multitasker."	The	effects	of	trying	to	act	as	a	multitasker	range	from
humorous	(e.g.,	the	silly	patting-head-rubbing-stomach	kids'	game)	to	mundane	(chewing
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gum	while	walking)	to	downright	dangerous	(texting	while	driving).

But	are	we	multitaskers?	Can	we	really	do	two	conscious,	intentional	actions	at	once	and
think/reason	about	both	of	them	at	exactly	the	same	moment?	Does	our	highest	level	of
brain	functionality	have	parallel	multithreading	going	on?

The	answer	may	surprise	you:	probably	not.

That's	just	not	really	how	our	brains	appear	to	be	set	up.	We're	much	more	single	taskers
than	many	of	us	(especially	A-type	personalities!)	would	like	to	admit.	We	can	really	only
think	about	one	thing	at	any	given	instant.

I'm	not	talking	about	all	our	involuntary,	subconscious,	automatic	brain	functions,	such	as
heart	beating,	breathing,	and	eyelid	blinking.	Those	are	all	vital	tasks	to	our	sustained	life,
but	we	don't	intentionally	allocate	any	brain	power	to	them.	Thankfully,	while	we	obsess
about	checking	social	network	feeds	for	the	15th	time	in	three	minutes,	our	brain	carries	on
in	the	background	(threads!)	with	all	those	important	tasks.

We're	instead	talking	about	whatever	task	is	at	the	forefront	of	our	minds	at	the	moment.	For
me,	it's	writing	the	text	in	this	book	right	now.	Am	I	doing	any	other	higher	level	brain	function
at	exactly	this	same	moment?	Nope,	not	really.	I	get	distracted	quickly	and	easily	--	a	few
dozen	times	in	these	last	couple	of	paragraphs!

When	we	fake	multitasking,	such	as	trying	to	type	something	at	the	same	time	we're	talking
to	a	friend	or	family	member	on	the	phone,	what	we're	actually	most	likely	doing	is	acting	as
fast	context	switchers.	In	other	words,	we	switch	back	and	forth	between	two	or	more	tasks
in	rapid	succession,	simultaneously	progressing	on	each	task	in	tiny,	fast	little	chunks.	We
do	it	so	fast	that	to	the	outside	world	it	appears	as	if	we're	doing	these	things	in	parallel.

Does	that	sound	suspiciously	like	async	evented	concurrency	(like	the	sort	that	happens	in
JS)	to	you?!	If	not,	go	back	and	read	Chapter	1	again!

In	fact,	one	way	of	simplifying	(i.e.,	abusing)	the	massively	complex	world	of	neurology	into
something	I	can	remotely	hope	to	discuss	here	is	that	our	brains	work	kinda	like	the	event
loop	queue.

If	you	think	about	every	single	letter	(or	word)	I	type	as	a	single	async	event,	in	just	this
sentence	alone	there	are	several	dozen	opportunities	for	my	brain	to	be	interrupted	by	some
other	event,	such	as	from	my	senses,	or	even	just	my	random	thoughts.

I	don't	get	interrupted	and	pulled	to	another	"process"	at	every	opportunity	that	I	could	be
(thankfully	--	or	this	book	would	never	be	written!).	But	it	happens	often	enough	that	I	feel	my
own	brain	is	nearly	constantly	switching	to	various	different	contexts	(aka	"processes").	And
that's	an	awful	lot	like	how	the	JS	engine	would	probably	feel.
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Doing	Versus	Planning

OK,	so	our	brains	can	be	thought	of	as	operating	in	single-threaded	event	loop	queue	like
ways,	as	can	the	JS	engine.	That	sounds	like	a	good	match.

But	we	need	to	be	more	nuanced	than	that	in	our	analysis.	There's	a	big,	observable
difference	between	how	we	plan	various	tasks,	and	how	our	brains	actually	operate	those
tasks.

Again,	back	to	the	writing	of	this	text	as	my	metaphor.	My	rough	mental	outline	plan	here	is
to	keep	writing	and	writing,	going	sequentially	through	a	set	of	points	I	have	ordered	in	my
thoughts.	I	don't	plan	to	have	any	interruptions	or	nonlinear	activity	in	this	writing.	But	yet,
my	brain	is	nevertheless	switching	around	all	the	time.

Even	though	at	an	operational	level	our	brains	are	async	evented,	we	seem	to	plan	out	tasks
in	a	sequential,	synchronous	way.	"I	need	to	go	to	the	store,	then	buy	some	milk,	then	drop
off	my	dry	cleaning."

You'll	notice	that	this	higher	level	thinking	(planning)	doesn't	seem	very	async	evented	in	its
formulation.	In	fact,	it's	kind	of	rare	for	us	to	deliberately	think	solely	in	terms	of	events.
Instead,	we	plan	things	out	carefully,	sequentially	(A	then	B	then	C),	and	we	assume	to	an
extent	a	sort	of	temporal	blocking	that	forces	B	to	wait	on	A,	and	C	to	wait	on	B.

When	a	developer	writes	code,	they	are	planning	out	a	set	of	actions	to	occur.	If	they're	any
good	at	being	a	developer,	they're	carefully	planning	it	out.	"I	need	to	set		z		to	the	value	of
	x	,	and	then		x		to	the	value	of		y	,"	and	so	forth.

When	we	write	out	synchronous	code,	statement	by	statement,	it	works	a	lot	like	our	errands
to-do	list:

//	swap	`x`	and	`y`	(via	temp	variable	`z`)

z	=	x;

x	=	y;

y	=	z;

These	three	assignment	statements	are	synchronous,	so		x	=	y		waits	for		z	=	x		to	finish,
and		y	=	z		in	turn	waits	for		x	=	y		to	finish.	Another	way	of	saying	it	is	that	these	three
statements	are	temporally	bound	to	execute	in	a	certain	order,	one	right	after	the	other.
Thankfully,	we	don't	need	to	be	bothered	with	any	async	evented	details	here.	If	we	did,	the
code	gets	a	lot	more	complex,	quickly!

So	if	synchronous	brain	planning	maps	well	to	synchronous	code	statements,	how	well	do
our	brains	do	at	planning	out	asynchronous	code?
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It	turns	out	that	how	we	express	asynchrony	(with	callbacks)	in	our	code	doesn't	map	very
well	at	all	to	that	synchronous	brain	planning	behavior.

Can	you	actually	imagine	having	a	line	of	thinking	that	plans	out	your	to-do	errands	like	this?

"I	need	to	go	to	the	store,	but	on	the	way	I'm	sure	I'll	get	a	phone	call,	so	'Hi,	Mom',	and
while	she	starts	talking,	I'll	be	looking	up	the	store	address	on	GPS,	but	that'll	take	a
second	to	load,	so	I'll	turn	down	the	radio	so	I	can	hear	Mom	better,	then	I'll	realize	I
forgot	to	put	on	a	jacket	and	it's	cold	outside,	but	no	matter,	keep	driving	and	talking	to
Mom,	and	then	the	seatbelt	ding	reminds	me	to	buckle	up,	so	'Yes,	Mom,	I	am	wearing
my	seatbelt,	I	always	do!'.	Ah,	finally	the	GPS	got	the	directions,	now..."

As	ridiculous	as	that	sounds	as	a	formulation	for	how	we	plan	our	day	out	and	think	about
what	to	do	and	in	what	order,	nonetheless	it's	exactly	how	our	brains	operate	at	a	functional
level.	Remember,	that's	not	multitasking,	it's	just	fast	context	switching.

The	reason	it's	difficult	for	us	as	developers	to	write	async	evented	code,	especially	when	all
we	have	is	the	callback	to	do	it,	is	that	stream	of	consciousness	thinking/planning	is
unnatural	for	most	of	us.

We	think	in	step-by-step	terms,	but	the	tools	(callbacks)	available	to	us	in	code	are	not
expressed	in	a	step-by-step	fashion	once	we	move	from	synchronous	to	asynchronous.

And	that	is	why	it's	so	hard	to	accurately	author	and	reason	about	async	JS	code	with
callbacks:	because	it's	not	how	our	brain	planning	works.

Note:	The	only	thing	worse	than	not	knowing	why	some	code	breaks	is	not	knowing	why	it
worked	in	the	first	place!	It's	the	classic	"house	of	cards"	mentality:	"it	works,	but	not	sure
why,	so	nobody	touch	it!"	You	may	have	heard,	"Hell	is	other	people"	(Sartre),	and	the
programmer	meme	twist,	"Hell	is	other	people's	code."	I	believe	truly:	"Hell	is	not
understanding	my	own	code."	And	callbacks	are	one	main	culprit.

Nested/Chained	Callbacks

Consider:
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listen(	"click",	function	handler(evt){

				setTimeout(	function	request(){

								ajax(	"http://some.url.1",	function	response(text){

												if	(text	==	"hello")	{

																handler();

												}

												else	if	(text	==	"world")	{

																request();

												}

								}	);

				},	500)	;

}	);

There's	a	good	chance	code	like	that	is	recognizable	to	you.	We've	got	a	chain	of	three
functions	nested	together,	each	one	representing	a	step	in	an	asynchronous	series	(task,
"process").

This	kind	of	code	is	often	called	"callback	hell,"	and	sometimes	also	referred	to	as	the
"pyramid	of	doom"	(for	its	sideways-facing	triangular	shape	due	to	the	nested	indentation).

But	"callback	hell"	actually	has	almost	nothing	to	do	with	the	nesting/indentation.	It's	a	far
deeper	problem	than	that.	We'll	see	how	and	why	as	we	continue	through	the	rest	of	this
chapter.

First,	we're	waiting	for	the	"click"	event,	then	we're	waiting	for	the	timer	to	fire,	then	we're
waiting	for	the	Ajax	response	to	come	back,	at	which	point	it	might	do	it	all	again.

At	first	glance,	this	code	may	seem	to	map	its	asynchrony	naturally	to	sequential	brain
planning.

First	(now),	we:

listen(	"..",	function	handler(..){

				//	..

}	);

Then	later,	we:

setTimeout(	function	request(..){

				//	..

},	500)	;

Then	still	later,	we:
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ajax(	"..",	function	response(..){

				//	..

}	);

And	finally	(most	later),	we:

if	(	..	)	{

				//	..

}

else	..

But	there's	several	problems	with	reasoning	about	this	code	linearly	in	such	a	fashion.

First,	it's	an	accident	of	the	example	that	our	steps	are	on	subsequent	lines	(1,	2,	3,	and
4...).	In	real	async	JS	programs,	there's	often	a	lot	more	noise	cluttering	things	up,	noise	that
we	have	to	deftly	maneuver	past	in	our	brains	as	we	jump	from	one	function	to	the	next.
Understanding	the	async	flow	in	such	callback-laden	code	is	not	impossible,	but	it's	certainly
not	natural	or	easy,	even	with	lots	of	practice.

But	also,	there's	something	deeper	wrong,	which	isn't	evident	just	in	that	code	example.	Let
me	make	up	another	scenario	(pseudocode-ish)	to	illustrate	it:

doA(	function(){

				doB();

				doC(	function(){

								doD();

				}	)

				doE();

}	);

doF();

While	the	experienced	among	you	will	correctly	identify	the	true	order	of	operations	here,	I'm
betting	it	is	more	than	a	little	confusing	at	first	glance,	and	takes	some	concerted	mental
cycles	to	arrive	at.	The	operations	will	happen	in	this	order:

	doA()	

	doF()	

	doB()	

	doC()	

	doE()	

	doD()	
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Did	you	get	that	right	the	very	first	time	you	glanced	at	the	code?

OK,	some	of	you	are	thinking	I	was	unfair	in	my	function	naming,	to	intentionally	lead	you
astray.	I	swear	I	was	just	naming	in	top-down	appearance	order.	But	let	me	try	again:

doA(	function(){

				doC();

				doD(	function(){

								doF();

				}	)

				doE();

}	);

doB();

Now,	I've	named	them	alphabetically	in	order	of	actual	execution.	But	I	still	bet,	even	with
experience	now	in	this	scenario,	tracing	through	the		A	->	B	->	C	->	D	->	E	->	F		order
doesn't	come	natural	to	many	if	any	of	you	readers.	Certainly	your	eyes	do	an	awful	lot	of
jumping	up	and	down	the	code	snippet,	right?

But	even	if	that	all	comes	natural	to	you,	there's	still	one	more	hazard	that	could	wreak
havoc.	Can	you	spot	what	it	is?

What	if		doA(..)		or		doD(..)		aren't	actually	async,	the	way	we	obviously	assumed	them	to
be?	Uh	oh,	now	the	order	is	different.	If	they're	both	sync	(and	maybe	only	sometimes,
depending	on	the	conditions	of	the	program	at	the	time),	the	order	is	now		A	->	C	->	D	->	F
->	E	->	B	.

That	sound	you	just	heard	faintly	in	the	background	is	the	sighs	of	thousands	of	JS
developers	who	just	had	a	face-in-hands	moment.

Is	nesting	the	problem?	Is	that	what	makes	it	so	hard	to	trace	the	async	flow?	That's	part	of
it,	certainly.

But	let	me	rewrite	the	previous	nested	event/timeout/Ajax	example	without	using	nesting:
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listen(	"click",	handler	);

function	handler()	{

				setTimeout(	request,	500	);

}

function	request(){

				ajax(	"http://some.url.1",	response	);

}

function	response(text){

				if	(text	==	"hello")	{

								handler();

				}

				else	if	(text	==	"world")	{

								request();

				}

}

This	formulation	of	the	code	is	not	hardly	as	recognizable	as	having	the	nesting/indentation
woes	of	its	previous	form,	and	yet	it's	every	bit	as	susceptible	to	"callback	hell."	Why?

As	we	go	to	linearly	(sequentially)	reason	about	this	code,	we	have	to	skip	from	one
function,	to	the	next,	to	the	next,	and	bounce	all	around	the	code	base	to	"see"	the	sequence
flow.	And	remember,	this	is	simplified	code	in	sort	of	best-case	fashion.	We	all	know	that	real
async	JS	program	code	bases	are	often	fantastically	more	jumbled,	which	makes	such
reasoning	orders	of	magnitude	more	difficult.

Another	thing	to	notice:	to	get	steps	2,	3,	and	4	linked	together	so	they	happen	in
succession,	the	only	affordance	callbacks	alone	gives	us	is	to	hardcode	step	2	into	step	1,
step	3	into	step	2,	step	4	into	step	3,	and	so	on.	The	hardcoding	isn't	necessarily	a	bad
thing,	if	it	really	is	a	fixed	condition	that	step	2	should	always	lead	to	step	3.

But	the	hardcoding	definitely	makes	the	code	a	bit	more	brittle,	as	it	doesn't	account	for
anything	going	wrong	that	might	cause	a	deviation	in	the	progression	of	steps.	For	example,
if	step	2	fails,	step	3	never	gets	reached,	nor	does	step	2	retry,	or	move	to	an	alternate	error
handling	flow,	and	so	on.

All	of	these	issues	are	things	you	can	manually	hardcode	into	each	step,	but	that	code	is
often	very	repetitive	and	not	reusable	in	other	steps	or	in	other	async	flows	in	your	program.

Even	though	our	brains	might	plan	out	a	series	of	tasks	in	a	sequential	type	of	way	(this,
then	this,	then	this),	the	evented	nature	of	our	brain	operation	makes	recovery/retry/forking
of	flow	control	almost	effortless.	If	you're	out	running	errands,	and	you	realize	you	left	a
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shopping	list	at	home,	it	doesn't	end	the	day	because	you	didn't	plan	that	ahead	of	time.
Your	brain	routes	around	this	hiccup	easily:	you	go	home,	get	the	list,	then	head	right	back
out	to	the	store.

But	the	brittle	nature	of	manually	hardcoded	callbacks	(even	with	hardcoded	error	handling)
is	often	far	less	graceful.	Once	you	end	up	specifying	(aka	pre-planning)	all	the	various
eventualities/paths,	the	code	becomes	so	convoluted	that	it's	hard	to	ever	maintain	or
update	it.

That	is	what	"callback	hell"	is	all	about!	The	nesting/indentation	are	basically	a	side	show,	a
red	herring.

And	as	if	all	that's	not	enough,	we	haven't	even	touched	what	happens	when	two	or	more
chains	of	these	callback	continuations	are	happening	simultaneously,	or	when	the	third	step
branches	out	into	"parallel"	callbacks	with	gates	or	latches,	or...	OMG,	my	brain	hurts,	how
about	yours!?

Are	you	catching	the	notion	here	that	our	sequential,	blocking	brain	planning	behaviors	just
don't	map	well	onto	callback-oriented	async	code?	That's	the	first	major	deficiency	to
articulate	about	callbacks:	they	express	asynchrony	in	code	in	ways	our	brains	have	to	fight
just	to	keep	in	sync	with	(pun	intended!).

Trust	Issues
The	mismatch	between	sequential	brain	planning	and	callback-driven	async	JS	code	is	only
part	of	the	problem	with	callbacks.	There's	something	much	deeper	to	be	concerned	about.

Let's	once	again	revisit	the	notion	of	a	callback	function	as	the	continuation	(aka	the	second
half)	of	our	program:

//	A

ajax(	"..",	function(..){

				//	C

}	);

//	B

	//	A		and		//	B		happen	now,	under	the	direct	control	of	the	main	JS	program.	But		//	C	
gets	deferred	to	happen	later,	and	under	the	control	of	another	party	--	in	this	case,	the
	ajax(..)		function.	In	a	basic	sense,	that	sort	of	hand-off	of	control	doesn't	regularly	cause
lots	of	problems	for	programs.
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But	don't	be	fooled	by	its	infrequency	that	this	control	switch	isn't	a	big	deal.	In	fact,	it's	one
of	the	worst	(and	yet	most	subtle)	problems	about	callback-driven	design.	It	revolves	around
the	idea	that	sometimes		ajax(..)		(i.e.,	the	"party"	you	hand	your	callback	continuation	to)
is	not	a	function	that	you	wrote,	or	that	you	directly	control.	Many	times	it's	a	utility	provided
by	some	third	party.

We	call	this	"inversion	of	control,"	when	you	take	part	of	your	program	and	give	over	control
of	its	execution	to	another	third	party.	There's	an	unspoken	"contract"	that	exists	between
your	code	and	the	third-party	utility	--	a	set	of	things	you	expect	to	be	maintained.

Tale	of	Five	Callbacks

It	might	not	be	terribly	obvious	why	this	is	such	a	big	deal.	Let	me	construct	an	exaggerated
scenario	to	illustrate	the	hazards	of	trust	at	play.

Imagine	you're	a	developer	tasked	with	building	out	an	ecommerce	checkout	system	for	a
site	that	sells	expensive	TVs.	You	already	have	all	the	various	pages	of	the	checkout	system
built	out	just	fine.	On	the	last	page,	when	the	user	clicks	"confirm"	to	buy	the	TV,	you	need	to
call	a	third-party	function	(provided	say	by	some	analytics	tracking	company)	so	that	the	sale
can	be	tracked.

You	notice	that	they've	provided	what	looks	like	an	async	tracking	utility,	probably	for	the
sake	of	performance	best	practices,	which	means	you	need	to	pass	in	a	callback	function.	In
this	continuation	that	you	pass	in,	you	will	have	the	final	code	that	charges	the	customer's
credit	card	and	displays	the	thank	you	page.

This	code	might	look	like:

analytics.trackPurchase(	purchaseData,	function(){

				chargeCreditCard();

				displayThankyouPage();

}	);

Easy	enough,	right?	You	write	the	code,	test	it,	everything	works,	and	you	deploy	to
production.	Everyone's	happy!

Six	months	go	by	and	no	issues.	You've	almost	forgotten	you	even	wrote	that	code.	One
morning,	you're	at	a	coffee	shop	before	work,	casually	enjoying	your	latte,	when	you	get	a
panicked	call	from	your	boss	insisting	you	drop	the	coffee	and	rush	into	work	right	away.

When	you	arrive,	you	find	out	that	a	high-profile	customer	has	had	his	credit	card	charged
five	times	for	the	same	TV,	and	he's	understandably	upset.	Customer	service	has	already
issued	an	apology	and	processed	a	refund.	But	your	boss	demands	to	know	how	this	could
possibly	have	happened.	"Don't	we	have	tests	for	stuff	like	this!?"
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You	don't	even	remember	the	code	you	wrote.	But	you	dig	back	in	and	start	trying	to	find	out
what	could	have	gone	awry.

After	digging	through	some	logs,	you	come	to	the	conclusion	that	the	only	explanation	is	that
the	analytics	utility	somehow,	for	some	reason,	called	your	callback	five	times	instead	of
once.	Nothing	in	their	documentation	mentions	anything	about	this.

Frustrated,	you	contact	customer	support,	who	of	course	is	as	astonished	as	you	are.	They
agree	to	escalate	it	to	their	developers,	and	promise	to	get	back	to	you.	The	next	day,	you
receive	a	lengthy	email	explaining	what	they	found,	which	you	promptly	forward	to	your
boss.

Apparently,	the	developers	at	the	analytics	company	had	been	working	on	some
experimental	code	that,	under	certain	conditions,	would	retry	the	provided	callback	once	per
second,	for	five	seconds,	before	failing	with	a	timeout.	They	had	never	intended	to	push	that
into	production,	but	somehow	they	did,	and	they're	totally	embarrassed	and	apologetic.	They
go	into	plenty	of	detail	about	how	they've	identified	the	breakdown	and	what	they'll	do	to
ensure	it	never	happens	again.	Yadda,	yadda.

What's	next?

You	talk	it	over	with	your	boss,	but	he's	not	feeling	particularly	comfortable	with	the	state	of
things.	He	insists,	and	you	reluctantly	agree,	that	you	can't	trust	them	anymore	(that's	what
bit	you),	and	that	you'll	need	to	figure	out	how	to	protect	the	checkout	code	from	such	a
vulnerability	again.

After	some	tinkering,	you	implement	some	simple	ad	hoc	code	like	the	following,	which	the
team	seems	happy	with:

var	tracked	=	false;

analytics.trackPurchase(	purchaseData,	function(){

				if	(!tracked)	{

								tracked	=	true;

								chargeCreditCard();

								displayThankyouPage();

				}

}	);

Note:	This	should	look	familiar	to	you	from	Chapter	1,	because	we're	essentially	creating	a
latch	to	handle	if	there	happen	to	be	multiple	concurrent	invocations	of	our	callback.

But	then	one	of	your	QA	engineers	asks,	"what	happens	if	they	never	call	the	callback?"
Oops.	Neither	of	you	had	thought	about	that.
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You	begin	to	chase	down	the	rabbit	hole,	and	think	of	all	the	possible	things	that	could	go
wrong	with	them	calling	your	callback.	Here's	roughly	the	list	you	come	up	with	of	ways	the
analytics	utility	could	misbehave:

Call	the	callback	too	early	(before	it's	been	tracked)
Call	the	callback	too	late	(or	never)
Call	the	callback	too	few	or	too	many	times	(like	the	problem	you	encountered!)
Fail	to	pass	along	any	necessary	environment/parameters	to	your	callback
Swallow	any	errors/exceptions	that	may	happen
...

That	should	feel	like	a	troubling	list,	because	it	is.	You're	probably	slowly	starting	to	realize
that	you're	going	to	have	to	invent	an	awful	lot	of	ad	hoc	logic	in	each	and	every	single
callback	that's	passed	to	a	utility	you're	not	positive	you	can	trust.

Now	you	realize	a	bit	more	completely	just	how	hellish	"callback	hell"	is.

Not	Just	Others'	Code

Some	of	you	may	be	skeptical	at	this	point	whether	this	is	as	big	a	deal	as	I'm	making	it	out
to	be.	Perhaps	you	don't	interact	with	truly	third-party	utilities	much	if	at	all.	Perhaps	you	use
versioned	APIs	or	self-host	such	libraries,	so	that	its	behavior	can't	be	changed	out	from
underneath	you.

So,	contemplate	this:	can	you	even	really	trust	utilities	that	you	do	theoretically	control	(in
your	own	code	base)?

Think	of	it	this	way:	most	of	us	agree	that	at	least	to	some	extent	we	should	build	our	own
internal	functions	with	some	defensive	checks	on	the	input	parameters,	to	reduce/prevent
unexpected	issues.

Overly	trusting	of	input:

function	addNumbers(x,y)	{

				//	+	is	overloaded	with	coercion	to	also	be

				//	string	concatenation,	so	this	operation

				//	isn't	strictly	safe	depending	on	what's

				//	passed	in.

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	"2121"

Defensive	against	untrusted	input:
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function	addNumbers(x,y)	{

				//	ensure	numerical	input

				if	(typeof	x	!=	"number"	||	typeof	y	!=	"number")	{

								throw	Error(	"Bad	parameters"	);

				}

				//	if	we	get	here,	+	will	safely	do	numeric	addition

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	Error:	"Bad	parameters"

Or	perhaps	still	safe	but	friendlier:

function	addNumbers(x,y)	{

				//	ensure	numerical	input

				x	=	Number(	x	);

				y	=	Number(	y	);

				//	+	will	safely	do	numeric	addition

				return	x	+	y;

}

addNumbers(	21,	21	);				//	42

addNumbers(	21,	"21"	);				//	42

However	you	go	about	it,	these	sorts	of	checks/normalizations	are	fairly	common	on	function
inputs,	even	with	code	we	theoretically	entirely	trust.	In	a	crude	sort	of	way,	it's	like	the
programming	equivalent	of	the	geopolitical	principle	of	"Trust	But	Verify."

So,	doesn't	it	stand	to	reason	that	we	should	do	the	same	thing	about	composition	of	async
function	callbacks,	not	just	with	truly	external	code	but	even	with	code	we	know	is	generally
"under	our	own	control"?	Of	course	we	should.

But	callbacks	don't	really	offer	anything	to	assist	us.	We	have	to	construct	all	that	machinery
ourselves,	and	it	often	ends	up	being	a	lot	of	boilerplate/overhead	that	we	repeat	for	every
single	async	callback.

The	most	troublesome	problem	with	callbacks	is	inversion	of	control	leading	to	a	complete
breakdown	along	all	those	trust	lines.

If	you	have	code	that	uses	callbacks,	especially	but	not	exclusively	with	third-party	utilities,
and	you're	not	already	applying	some	sort	of	mitigation	logic	for	all	these	inversion	of	control
trust	issues,	your	code	has	bugs	in	it	right	now	even	though	they	may	not	have	bitten	you
yet.	Latent	bugs	are	still	bugs.
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Hell	indeed.

Trying	to	Save	Callbacks
There	are	several	variations	of	callback	design	that	have	attempted	to	address	some	(not
all!)	of	the	trust	issues	we've	just	looked	at.	It's	a	valiant,	but	doomed,	effort	to	save	the
callback	pattern	from	imploding	on	itself.

For	example,	regarding	more	graceful	error	handling,	some	API	designs	provide	for	split
callbacks	(one	for	the	success	notification,	one	for	the	error	notification):

function	success(data)	{

				console.log(	data	);

}

function	failure(err)	{

				console.error(	err	);

}

ajax(	"http://some.url.1",	success,	failure	);

In	APIs	of	this	design,	often	the		failure()		error	handler	is	optional,	and	if	not	provided	it
will	be	assumed	you	want	the	errors	swallowed.	Ugh.

Note:	This	split-callback	design	is	what	the	ES6	Promise	API	uses.	We'll	cover	ES6
Promises	in	much	more	detail	in	the	next	chapter.

Another	common	callback	pattern	is	called	"error-first	style"	(sometimes	called	"Node	style,"
as	it's	also	the	convention	used	across	nearly	all	Node.js	APIs),	where	the	first	argument	of
a	single	callback	is	reserved	for	an	error	object	(if	any).	If	success,	this	argument	will	be
empty/falsy	(and	any	subsequent	arguments	will	be	the	success	data),	but	if	an	error	result
is	being	signaled,	the	first	argument	is	set/truthy	(and	usually	nothing	else	is	passed):

function	response(err,data)	{

				//	error?

				if	(err)	{

								console.error(	err	);

				}

				//	otherwise,	assume	success

				else	{

								console.log(	data	);

				}

}

ajax(	"http://some.url.1",	response	);
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In	both	of	these	cases,	several	things	should	be	observed.

First,	it	has	not	really	resolved	the	majority	of	trust	issues	like	it	may	appear.	There's	nothing
about	either	callback	that	prevents	or	filters	unwanted	repeated	invocations.	Moreover,
things	are	worse	now,	because	you	may	get	both	success	and	error	signals,	or	neither,	and
you	still	have	to	code	around	either	of	those	conditions.

Also,	don't	miss	the	fact	that	while	it's	a	standard	pattern	you	can	employ,	it's	definitely	more
verbose	and	boilerplate-ish	without	much	reuse,	so	you're	going	to	get	weary	of	typing	all
that	out	for	every	single	callback	in	your	application.

What	about	the	trust	issue	of	never	being	called?	If	this	is	a	concern	(and	it	probably	should
be!),	you	likely	will	need	to	set	up	a	timeout	that	cancels	the	event.	You	could	make	a	utility
(proof-of-concept	only	shown)	to	help	you	with	that:

function	timeoutify(fn,delay)	{

				var	intv	=	setTimeout(	function(){

												intv	=	null;

												fn(	new	Error(	"Timeout!"	)	);

								},	delay	)

				;

				return	function()	{

								//	timeout	hasn't	happened	yet?

								if	(intv)	{

												clearTimeout(	intv	);

												fn.apply(	this,	[	null	].concat(	[].slice.call(	arguments	)	)	);

								}

				};

}

Here's	how	you	use	it:

//	using	"error-first	style"	callback	design

function	foo(err,data)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	data	);

				}

}

ajax(	"http://some.url.1",	timeoutify(	foo,	500	)	);
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Another	trust	issue	is	being	called	"too	early."	In	application-specific	terms,	this	may	actually
involve	being	called	before	some	critical	task	is	complete.	But	more	generally,	the	problem	is
evident	in	utilities	that	can	either	invoke	the	callback	you	provide	now	(synchronously),	or
later	(asynchronously).

This	nondeterminism	around	the	sync-or-async	behavior	is	almost	always	going	to	lead	to
very	difficult	to	track	down	bugs.	In	some	circles,	the	fictional	insanity-inducing	monster
named	Zalgo	is	used	to	describe	the	sync/async	nightmares.	"Don't	release	Zalgo!"	is	a
common	cry,	and	it	leads	to	very	sound	advice:	always	invoke	callbacks	asynchronously,
even	if	that's	"right	away"	on	the	next	turn	of	the	event	loop,	so	that	all	callbacks	are
predictably	async.

Note:	For	more	information	on	Zalgo,	see	Oren	Golan's	"Don't	Release	Zalgo!"
(https://github.com/oren/oren.github.io/blob/master/posts/zalgo.md)	and	Isaac	Z.	Schlueter's
"Designing	APIs	for	Asynchrony"	(http://blog.izs.me/post/59142742143/designing-apis-for-
asynchrony).

Consider:

function	result(data)	{

				console.log(	a	);

}

var	a	=	0;

ajax(	"..pre-cached-url..",	result	);

a++;

Will	this	code	print		0		(sync	callback	invocation)	or		1		(async	callback	invocation)?
Depends...	on	the	conditions.

You	can	see	just	how	quickly	the	unpredictability	of	Zalgo	can	threaten	any	JS	program.	So
the	silly-sounding	"never	release	Zalgo"	is	actually	incredibly	common	and	solid	advice.
Always	be	asyncing.

What	if	you	don't	know	whether	the	API	in	question	will	always	execute	async?	You	could
invent	a	utility	like	this		asyncify(..)		proof-of-concept:
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function	asyncify(fn)	{

				var	orig_fn	=	fn,

								intv	=	setTimeout(	function(){

												intv	=	null;

												if	(fn)	fn();

								},	0	)

				;

				fn	=	null;

				return	function()	{

								//	firing	too	quickly,	before	`intv`	timer	has	fired	to

								//	indicate	async	turn	has	passed?

								if	(intv)	{

												fn	=	orig_fn.bind.apply(

																orig_fn,

																//	add	the	wrapper's	`this`	to	the	`bind(..)`

																//	call	parameters,	as	well	as	currying	any

																//	passed	in	parameters

																[this].concat(	[].slice.call(	arguments	)	)

												);

								}

								//	already	async

								else	{

												//	invoke	original	function

												orig_fn.apply(	this,	arguments	);

								}

				};

}

You	use		asyncify(..)		like	this:

function	result(data)	{

				console.log(	a	);

}

var	a	=	0;

ajax(	"..pre-cached-url..",	asyncify(	result	)	);

a++;

Whether	the	Ajax	request	is	in	the	cache	and	resolves	to	try	to	call	the	callback	right	away,
or	must	be	fetched	over	the	wire	and	thus	complete	later	asynchronously,	this	code	will
always	output		1		instead	of		0		--		result(..)		cannot	help	but	be	invoked	asynchronously,
which	means	the		a++		has	a	chance	to	run	before		result(..)		does.

Yay,	another	trust	issued	"solved"!	But	it's	inefficient,	and	yet	again	more	bloated	boilerplate
to	weigh	your	project	down.
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That's	just	the	story,	over	and	over	again,	with	callbacks.	They	can	do	pretty	much	anything
you	want,	but	you	have	to	be	willing	to	work	hard	to	get	it,	and	oftentimes	this	effort	is	much
more	than	you	can	or	should	spend	on	such	code	reasoning.

You	might	find	yourself	wishing	for	built-in	APIs	or	other	language	mechanics	to	address
these	issues.	Finally	ES6	has	arrived	on	the	scene	with	some	great	answers,	so	keep
reading!

Review
Callbacks	are	the	fundamental	unit	of	asynchrony	in	JS.	But	they're	not	enough	for	the
evolving	landscape	of	async	programming	as	JS	matures.

First,	our	brains	plan	things	out	in	sequential,	blocking,	single-threaded	semantic	ways,	but
callbacks	express	asynchronous	flow	in	a	rather	nonlinear,	nonsequential	way,	which	makes
reasoning	properly	about	such	code	much	harder.	Bad	to	reason	about	code	is	bad	code
that	leads	to	bad	bugs.

We	need	a	way	to	express	asynchrony	in	a	more	synchronous,	sequential,	blocking	manner,
just	like	our	brains	do.

Second,	and	more	importantly,	callbacks	suffer	from	inversion	of	control	in	that	they	implicitly
give	control	over	to	another	party	(often	a	third-party	utility	not	in	your	control!)	to	invoke	the
continuation	of	your	program.	This	control	transfer	leads	us	to	a	troubling	list	of	trust	issues,
such	as	whether	the	callback	is	called	more	times	than	we	expect.

Inventing	ad	hoc	logic	to	solve	these	trust	issues	is	possible,	but	it's	more	difficult	than	it
should	be,	and	it	produces	clunkier	and	harder	to	maintain	code,	as	well	as	code	that	is
likely	insufficiently	protected	from	these	hazards	until	you	get	visibly	bitten	by	the	bugs.

We	need	a	generalized	solution	to	all	of	the	trust	issues,	one	that	can	be	reused	for	as
many	callbacks	as	we	create	without	all	the	extra	boilerplate	overhead.

We	need	something	better	than	callbacks.	They've	served	us	well	to	this	point,	but	the	future
of	JavaScript	demands	more	sophisticated	and	capable	async	patterns.	The	subsequent
chapters	in	this	book	will	dive	into	those	emerging	evolutions.
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In	Chapter	2,	we	identified	two	major	categories	of	deficiencies	with	using	callbacks	to
express	program	asynchrony	and	manage	concurrency:	lack	of	sequentiality	and	lack	of
trustability.	Now	that	we	understand	the	problems	more	intimately,	it's	time	we	turn	our
attention	to	patterns	that	can	address	them.

The	issue	we	want	to	address	first	is	the	inversion	of	control,	the	trust	that	is	so	fragilely	held
and	so	easily	lost.

Recall	that	we	wrap	up	the	continuation	of	our	program	in	a	callback	function,	and	hand	that
callback	over	to	another	party	(potentially	even	external	code)	and	just	cross	our	fingers	that
it	will	do	the	right	thing	with	the	invocation	of	the	callback.

We	do	this	because	we	want	to	say,	"here's	what	happens	later,	after	the	current	step
finishes."

But	what	if	we	could	uninvert	that	inversion	of	control?	What	if	instead	of	handing	the
continuation	of	our	program	to	another	party,	we	could	expect	it	to	return	us	a	capability	to
know	when	its	task	finishes,	and	then	our	code	could	decide	what	to	do	next?

This	paradigm	is	called	Promises.

Promises	are	starting	to	take	the	JS	world	by	storm,	as	developers	and	specification	writers
alike	desperately	seek	to	untangle	the	insanity	of	callback	hell	in	their	code/design.	In	fact,
most	new	async	APIs	being	added	to	JS/DOM	platform	are	being	built	on	Promises.	So	it's
probably	a	good	idea	to	dig	in	and	learn	them,	don't	you	think!?

Note:	The	word	"immediately"	will	be	used	frequently	in	this	chapter,	generally	to	refer	to
some	Promise	resolution	action.	However,	in	essentially	all	cases,	"immediately"	means	in
terms	of	the	Job	queue	behavior	(see	Chapter	1),	not	in	the	strictly	synchronous	now	sense.

What	Is	a	Promise?
When	developers	decide	to	learn	a	new	technology	or	pattern,	usually	their	first	step	is
"Show	me	the	code!"	It's	quite	natural	for	us	to	just	jump	in	feet	first	and	learn	as	we	go.

But	it	turns	out	that	some	abstractions	get	lost	on	the	APIs	alone.	Promises	are	one	of	those
tools	where	it	can	be	painfully	obvious	from	how	someone	uses	it	whether	they	understand
what	it's	for	and	about	versus	just	learning	and	using	the	API.

So	before	I	show	the	Promise	code,	I	want	to	fully	explain	what	a	Promise	really	is
conceptually.	I	hope	this	will	then	guide	you	better	as	you	explore	integrating	Promise	theory
into	your	own	async	flow.

With	that	in	mind,	let's	look	at	two	different	analogies	for	what	a	Promise	is.
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Future	Value

Imagine	this	scenario:	I	walk	up	to	the	counter	at	a	fast-food	restaurant,	and	place	an	order
for	a	cheeseburger.	I	hand	the	cashier	$1.47.	By	placing	my	order	and	paying	for	it,	I've
made	a	request	for	a	value	back	(the	cheeseburger).	I've	started	a	transaction.

But	often,	the	cheeseburger	is	not	immediately	available	for	me.	The	cashier	hands	me
something	in	place	of	my	cheeseburger:	a	receipt	with	an	order	number	on	it.	This	order
number	is	an	IOU	("I	owe	you")	promise	that	ensures	that	eventually,	I	should	receive	my
cheeseburger.

So	I	hold	onto	my	receipt	and	order	number.	I	know	it	represents	my	future	cheeseburger,	so
I	don't	need	to	worry	about	it	anymore	--	aside	from	being	hungry!

While	I	wait,	I	can	do	other	things,	like	send	a	text	message	to	a	friend	that	says,	"Hey,	can
you	come	join	me	for	lunch?	I'm	going	to	eat	a	cheeseburger."

I	am	reasoning	about	my	future	cheeseburger	already,	even	though	I	don't	have	it	in	my
hands	yet.	My	brain	is	able	to	do	this	because	it's	treating	the	order	number	as	a	placeholder
for	the	cheeseburger.	The	placeholder	essentially	makes	the	value	time	independent.	It's	a
future	value.

Eventually,	I	hear,	"Order	113!"	and	I	gleefully	walk	back	up	to	the	counter	with	receipt	in
hand.	I	hand	my	receipt	to	the	cashier,	and	I	take	my	cheeseburger	in	return.

In	other	words,	once	my	future	value	was	ready,	I	exchanged	my	value-promise	for	the	value
itself.

But	there's	another	possible	outcome.	They	call	my	order	number,	but	when	I	go	to	retrieve
my	cheeseburger,	the	cashier	regretfully	informs	me,	"I'm	sorry,	but	we	appear	to	be	all	out
of	cheeseburgers."	Setting	aside	the	customer	frustration	of	this	scenario	for	a	moment,	we
can	see	an	important	characteristic	of	future	values:	they	can	either	indicate	a	success	or
failure.

Every	time	I	order	a	cheeseburger,	I	know	that	I'll	either	get	a	cheeseburger	eventually,	or	I'll
get	the	sad	news	of	the	cheeseburger	shortage,	and	I'll	have	to	figure	out	something	else	to
eat	for	lunch.

Note:	In	code,	things	are	not	quite	as	simple,	because	metaphorically	the	order	number	may
never	be	called,	in	which	case	we're	left	indefinitely	in	an	unresolved	state.	We'll	come	back
to	dealing	with	that	case	later.

Values	Now	and	Later

This	all	might	sound	too	mentally	abstract	to	apply	to	your	code.	So	let's	be	more	concrete.
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However,	before	we	can	introduce	how	Promises	work	in	this	fashion,	we're	going	to	derive
in	code	that	we	already	understand	--	callbacks!	--	how	to	handle	these	future	values.

When	you	write	code	to	reason	about	a	value,	such	as	performing	math	on	a		number	,
whether	you	realize	it	or	not,	you've	been	assuming	something	very	fundamental	about	that
value,	which	is	that	it's	a	concrete	now	value	already:

var	x,	y	=	2;

console.log(	x	+	y	);	//	NaN		<--	because	`x`	isn't	set	yet

The		x	+	y		operation	assumes	both		x		and		y		are	already	set.	In	terms	we'll	expound	on
shortly,	we	assume	the		x		and		y		values	are	already	resolved.

It	would	be	nonsense	to	expect	that	the		+		operator	by	itself	would	somehow	be	magically
capable	of	detecting	and	waiting	around	until	both		x		and		y		are	resolved	(aka	ready),	only
then	to	do	the	operation.	That	would	cause	chaos	in	the	program	if	different	statements
finished	now	and	others	finished	later,	right?

How	could	you	possibly	reason	about	the	relationships	between	two	statements	if	either	one
(or	both)	of	them	might	not	be	finished	yet?	If	statement	2	relies	on	statement	1	being
finished,	there	are	just	two	outcomes:	either	statement	1	finished	right	now	and	everything
proceeds	fine,	or	statement	1	didn't	finish	yet,	and	thus	statement	2	is	going	to	fail.

If	this	sort	of	thing	sounds	familiar	from	Chapter	1,	good!

Let's	go	back	to	our		x	+	y		math	operation.	Imagine	if	there	was	a	way	to	say,	"Add		x		and
	y	,	but	if	either	of	them	isn't	ready	yet,	just	wait	until	they	are.	Add	them	as	soon	as	you
can."

Your	brain	might	have	just	jumped	to	callbacks.	OK,	so...
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function	add(getX,getY,cb)	{

				var	x,	y;

				getX(	function(xVal){

								x	=	xVal;

								//	both	are	ready?

								if	(y	!=	undefined)	{

												cb(	x	+	y	);				//	send	along	sum

								}

				}	);

				getY(	function(yVal){

								y	=	yVal;

								//	both	are	ready?

								if	(x	!=	undefined)	{

												cb(	x	+	y	);				//	send	along	sum

								}

				}	);

}

//	`fetchX()`	and	`fetchY()`	are	sync	or	async

//	functions

add(	fetchX,	fetchY,	function(sum){

				console.log(	sum	);	//	that	was	easy,	huh?

}	);

Take	just	a	moment	to	let	the	beauty	(or	lack	thereof)	of	that	snippet	sink	in	(whistles
patiently).

While	the	ugliness	is	undeniable,	there's	something	very	important	to	notice	about	this	async
pattern.

In	that	snippet,	we	treated		x		and		y		as	future	values,	and	we	express	an	operation
	add(..)		that	(from	the	outside)	does	not	care	whether		x		or		y		or	both	are	available	right
away	or	not.	In	other	words,	it	normalizes	the	now	and	later,	such	that	we	can	rely	on	a
predictable	outcome	of	the		add(..)		operation.

By	using	an		add(..)		that	is	temporally	consistent	--	it	behaves	the	same	across	now	and
later	times	--	the	async	code	is	much	easier	to	reason	about.

To	put	it	more	plainly:	to	consistently	handle	both	now	and	later,	we	make	both	of	them	later:
all	operations	become	async.

Of	course,	this	rough	callbacks-based	approach	leaves	much	to	be	desired.	It's	just	a	first
tiny	step	toward	realizing	the	benefits	of	reasoning	about	future	values	without	worrying
about	the	time	aspect	of	when	it's	available	or	not.

Promise	Value
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We'll	definitely	go	into	a	lot	more	detail	about	Promises	later	in	the	chapter	--	so	don't	worry
if	some	of	this	is	confusing	--	but	let's	just	briefly	glimpse	at	how	we	can	express	the		x	+	y	
example	via		Promise	s:

function	add(xPromise,yPromise)	{

				//	`Promise.all([	..	])`	takes	an	array	of	promises,

				//	and	returns	a	new	promise	that	waits	on	them

				//	all	to	finish

				return	Promise.all(	[xPromise,	yPromise]	)

				//	when	that	promise	is	resolved,	let's	take	the

				//	received	`X`	and	`Y`	values	and	add	them	together.

				.then(	function(values){

								//	`values`	is	an	array	of	the	messages	from	the

								//	previously	resolved	promises

								return	values[0]	+	values[1];

				}	);

}

//	`fetchX()`	and	`fetchY()`	return	promises	for

//	their	respective	values,	which	may	be	ready

//	*now*	or	*later*.

add(	fetchX(),	fetchY()	)

//	we	get	a	promise	back	for	the	sum	of	those

//	two	numbers.

//	now	we	chain-call	`then(..)`	to	wait	for	the

//	resolution	of	that	returned	promise.

.then(	function(sum){

				console.log(	sum	);	//	that	was	easier!

}	);

There	are	two	layers	of	Promises	in	this	snippet.

	fetchX()		and		fetchY()		are	called	directly,	and	the	values	they	return	(promises!)	are
passed	into		add(..)	.	The	underlying	values	those	promises	represent	may	be	ready	now	or
later,	but	each	promise	normalizes	the	behavior	to	be	the	same	regardless.	We	reason
about		X		and		Y		values	in	a	time-independent	way.	They	are	future	values.

The	second	layer	is	the	promise	that		add(..)		creates	(via		Promise.all([	..	])	)	and
returns,	which	we	wait	on	by	calling		then(..)	.	When	the		add(..)		operation	completes,	our
	sum		future	value	is	ready	and	we	can	print	it	out.	We	hide	inside	of		add(..)		the	logic	for
waiting	on	the		X		and		Y		future	values.

Note:	Inside		add(..)	,	the		Promise.all([	..	])		call	creates	a	promise	(which	is	waiting	on
	promiseX		and		promiseY		to	resolve).	The	chained	call	to		.then(..)		creates	another
promise,	which	the		return	values[0]	+	values[1]		line	immediately	resolves	(with	the	result
of	the	addition).	Thus,	the		then(..)		call	we	chain	off	the	end	of	the		add(..)		call	--	at	the
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end	of	the	snippet	--	is	actually	operating	on	that	second	promise	returned,	rather	than	the
first	one	created	by		Promise.all([	..	])	.	Also,	though	we	are	not	chaining	off	the	end	of
that	second		then(..)	,	it	too	has	created	another	promise,	had	we	chosen	to	observe/use	it.
This	Promise	chaining	stuff	will	be	explained	in	much	greater	detail	later	in	this	chapter.

Just	like	with	cheeseburger	orders,	it's	possible	that	the	resolution	of	a	Promise	is	rejection
instead	of	fulfillment.	Unlike	a	fulfilled	Promise,	where	the	value	is	always	programmatic,	a
rejection	value	--	commonly	called	a	"rejection	reason"	--	can	either	be	set	directly	by	the
program	logic,	or	it	can	result	implicitly	from	a	runtime	exception.

With	Promises,	the		then(..)		call	can	actually	take	two	functions,	the	first	for	fulfillment	(as
shown	earlier),	and	the	second	for	rejection:

add(	fetchX(),	fetchY()	)

.then(

				//	fullfillment	handler

				function(sum)	{

								console.log(	sum	);

				},

				//	rejection	handler

				function(err)	{

								console.error(	err	);	//	bummer!

				}

);

If	something	went	wrong	getting		X		or		Y	,	or	something	somehow	failed	during	the	addition,
the	promise	that		add(..)		returns	is	rejected,	and	the	second	callback	error	handler	passed
to		then(..)		will	receive	the	rejection	value	from	the	promise.

Because	Promises	encapsulate	the	time-dependent	state	--	waiting	on	the	fulfillment	or
rejection	of	the	underlying	value	--	from	the	outside,	the	Promise	itself	is	time-independent,
and	thus	Promises	can	be	composed	(combined)	in	predictable	ways	regardless	of	the
timing	or	outcome	underneath.

Moreover,	once	a	Promise	is	resolved,	it	stays	that	way	forever	--	it	becomes	an	immutable
value	at	that	point	--	and	can	then	be	observed	as	many	times	as	necessary.

Note:	Because	a	Promise	is	externally	immutable	once	resolved,	it's	now	safe	to	pass	that
value	around	to	any	party	and	know	that	it	cannot	be	modified	accidentally	or	maliciously.
This	is	especially	true	in	relation	to	multiple	parties	observing	the	resolution	of	a	Promise.	It
is	not	possible	for	one	party	to	affect	another	party's	ability	to	observe	Promise	resolution.
Immutability	may	sound	like	an	academic	topic,	but	it's	actually	one	of	the	most	fundamental
and	important	aspects	of	Promise	design,	and	shouldn't	be	casually	passed	over.
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That's	one	of	the	most	powerful	and	important	concepts	to	understand	about	Promises.	With
a	fair	amount	of	work,	you	could	ad	hoc	create	the	same	effects	with	nothing	but	ugly
callback	composition,	but	that's	not	really	an	effective	strategy,	especially	because	you	have
to	do	it	over	and	over	again.

Promises	are	an	easily	repeatable	mechanism	for	encapsulating	and	composing	future
values.

Completion	Event

As	we	just	saw,	an	individual	Promise	behaves	as	a	future	value.	But	there's	another	way	to
think	of	the	resolution	of	a	Promise:	as	a	flow-control	mechanism	--	a	temporal	this-then-that
--	for	two	or	more	steps	in	an	asynchronous	task.

Let's	imagine	calling	a	function		foo(..)		to	perform	some	task.	We	don't	know	about	any	of
its	details,	nor	do	we	care.	It	may	complete	the	task	right	away,	or	it	may	take	a	while.

We	just	simply	need	to	know	when		foo(..)		finishes	so	that	we	can	move	on	to	our	next
task.	In	other	words,	we'd	like	a	way	to	be	notified	of		foo(..)	's	completion	so	that	we	can
continue.

In	typical	JavaScript	fashion,	if	you	need	to	listen	for	a	notification,	you'd	likely	think	of	that	in
terms	of	events.	So	we	could	reframe	our	need	for	notification	as	a	need	to	listen	for	a
completion	(or	continuation)	event	emitted	by		foo(..)	.

Note:	Whether	you	call	it	a	"completion	event"	or	a	"continuation	event"	depends	on	your
perspective.	Is	the	focus	more	on	what	happens	with		foo(..)	,	or	what	happens	after
	foo(..)		finishes?	Both	perspectives	are	accurate	and	useful.	The	event	notification	tells	us
that		foo(..)		has	completed,	but	also	that	it's	OK	to	continue	with	the	next	step.	Indeed,	the
callback	you	pass	to	be	called	for	the	event	notification	is	itself	what	we've	previously	called
a	continuation.	Because	completion	event	is	a	bit	more	focused	on	the		foo(..)	,	which
more	has	our	attention	at	present,	we	slightly	favor	completion	event	for	the	rest	of	this	text.

With	callbacks,	the	"notification"	would	be	our	callback	invoked	by	the	task	(	foo(..)	).	But
with	Promises,	we	turn	the	relationship	around,	and	expect	that	we	can	listen	for	an	event
from		foo(..)	,	and	when	notified,	proceed	accordingly.

First,	consider	some	pseudocode:
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foo(x)	{

				//	start	doing	something	that	could	take	a	while

}

foo(	42	)

on	(foo	"completion")	{

				//	now	we	can	do	the	next	step!

}

on	(foo	"error")	{

				//	oops,	something	went	wrong	in	`foo(..)`

}

We	call		foo(..)		and	then	we	set	up	two	event	listeners,	one	for		"completion"		and	one	for
	"error"		--	the	two	possible	final	outcomes	of	the		foo(..)		call.	In	essence,		foo(..)	
doesn't	even	appear	to	be	aware	that	the	calling	code	has	subscribed	to	these	events,	which
makes	for	a	very	nice	separation	of	concerns.

Unfortunately,	such	code	would	require	some	"magic"	of	the	JS	environment	that	doesn't
exist	(and	would	likely	be	a	bit	impractical).	Here's	the	more	natural	way	we	could	express
that	in	JS:

function	foo(x)	{

				//	start	doing	something	that	could	take	a	while

				//	make	a	`listener`	event	notification

				//	capability	to	return

				return	listener;

}

var	evt	=	foo(	42	);

evt.on(	"completion",	function(){

				//	now	we	can	do	the	next	step!

}	);

evt.on(	"failure",	function(err){

				//	oops,	something	went	wrong	in	`foo(..)`

}	);

	foo(..)		expressly	creates	an	event	subscription	capability	to	return	back,	and	the	calling
code	receives	and	registers	the	two	event	handlers	against	it.
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The	inversion	from	normal	callback-oriented	code	should	be	obvious,	and	it's	intentional.
Instead	of	passing	the	callbacks	to		foo(..)	,	it	returns	an	event	capability	we	call		evt	,
which	receives	the	callbacks.

But	if	you	recall	from	Chapter	2,	callbacks	themselves	represent	an	inversion	of	control.	So
inverting	the	callback	pattern	is	actually	an	inversion	of	inversion,	or	an	uninversion	of
control	--	restoring	control	back	to	the	calling	code	where	we	wanted	it	to	be	in	the	first
place.

One	important	benefit	is	that	multiple	separate	parts	of	the	code	can	be	given	the	event
listening	capability,	and	they	can	all	independently	be	notified	of	when		foo(..)		completes
to	perform	subsequent	steps	after	its	completion:

var	evt	=	foo(	42	);

//	let	`bar(..)`	listen	to	`foo(..)`'s	completion

bar(	evt	);

//	also,	let	`baz(..)`	listen	to	`foo(..)`'s	completion

baz(	evt	);

Uninversion	of	control	enables	a	nicer	separation	of	concerns,	where		bar(..)		and
	baz(..)		don't	need	to	be	involved	in	how		foo(..)		is	called.	Similarly,		foo(..)		doesn't
need	to	know	or	care	that		bar(..)		and		baz(..)		exist	or	are	waiting	to	be	notified	when
	foo(..)		completes.

Essentially,	this		evt		object	is	a	neutral	third-party	negotiation	between	the	separate
concerns.

Promise	"Events"

As	you	may	have	guessed	by	now,	the		evt		event	listening	capability	is	an	analogy	for	a
Promise.

In	a	Promise-based	approach,	the	previous	snippet	would	have		foo(..)		creating	and
returning	a		Promise		instance,	and	that	promise	would	then	be	passed	to		bar(..)		and
	baz(..)	.

Note:	The	Promise	resolution	"events"	we	listen	for	aren't	strictly	events	(though	they
certainly	behave	like	events	for	these	purposes),	and	they're	not	typically	called
	"completion"		or		"error"	.	Instead,	we	use		then(..)		to	register	a		"then"		event.	Or
perhaps	more	precisely,		then(..)		registers		"fulfillment"		and/or		"rejection"		event(s),
though	we	don't	see	those	terms	used	explicitly	in	the	code.
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Consider:

function	foo(x)	{

				//	start	doing	something	that	could	take	a	while

				//	construct	and	return	a	promise

				return	new	Promise(	function(resolve,reject){

								//	eventually,	call	`resolve(..)`	or	`reject(..)`,

								//	which	are	the	resolution	callbacks	for

								//	the	promise.

				}	);

}

var	p	=	foo(	42	);

bar(	p	);

baz(	p	);

Note:	The	pattern	shown	with		new	Promise(	function(..){	..	}	)		is	generally	called	the
"revealing	constructor".	The	function	passed	in	is	executed	immediately	(not	async	deferred,
as	callbacks	to		then(..)		are),	and	it's	provided	two	parameters,	which	in	this	case	we've
named		resolve		and		reject	.	These	are	the	resolution	functions	for	the	promise.
	resolve(..)		generally	signals	fulfillment,	and		reject(..)		signals	rejection.

You	can	probably	guess	what	the	internals	of		bar(..)		and		baz(..)		might	look	like:

function	bar(fooPromise)	{

				//	listen	for	`foo(..)`	to	complete

				fooPromise.then(

								function(){

												//	`foo(..)`	has	now	finished,	so

												//	do	`bar(..)`'s	task

								},

								function(){

												//	oops,	something	went	wrong	in	`foo(..)`

								}

				);

}

//	ditto	for	`baz(..)`

Promise	resolution	doesn't	necessarily	need	to	involve	sending	along	a	message,	as	it	did
when	we	were	examining	Promises	as	future	values.	It	can	just	be	a	flow-control	signal,	as
used	in	the	previous	snippet.

Another	way	to	approach	this	is:
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function	bar()	{

				//	`foo(..)`	has	definitely	finished,	so

				//	do	`bar(..)`'s	task

}

function	oopsBar()	{

				//	oops,	something	went	wrong	in	`foo(..)`,

				//	so	`bar(..)`	didn't	run

}

//	ditto	for	`baz()`	and	`oopsBaz()`

var	p	=	foo(	42	);

p.then(	bar,	oopsBar	);

p.then(	baz,	oopsBaz	);

Note:	If	you've	seen	Promise-based	coding	before,	you	might	be	tempted	to	believe	that	the
last	two	lines	of	that	code	could	be	written	as		p.then(	..	).then(	..	)	,	using	chaining,
rather	than		p.then(..);	p.then(..)	.	That	would	have	an	entirely	different	behavior,	so	be
careful!	The	difference	might	not	be	clear	right	now,	but	it's	actually	a	different	async	pattern
than	we've	seen	thus	far:	splitting/forking.	Don't	worry!	We'll	come	back	to	this	point	later	in
this	chapter.

Instead	of	passing	the		p		promise	to		bar(..)		and		baz(..)	,	we	use	the	promise	to	control
when		bar(..)		and		baz(..)		will	get	executed,	if	ever.	The	primary	difference	is	in	the	error
handling.

In	the	first	snippet's	approach,		bar(..)		is	called	regardless	of	whether		foo(..)		succeeds
or	fails,	and	it	handles	its	own	fallback	logic	if	it's	notified	that		foo(..)		failed.	The	same	is
true	for		baz(..)	,	obviously.

In	the	second	snippet,		bar(..)		only	gets	called	if		foo(..)		succeeds,	and	otherwise
	oopsBar(..)		gets	called.	Ditto	for		baz(..)	.

Neither	approach	is	correct	per	se.	There	will	be	cases	where	one	is	preferred	over	the
other.

In	either	case,	the	promise		p		that	comes	back	from		foo(..)		is	used	to	control	what
happens	next.

Moreover,	the	fact	that	both	snippets	end	up	calling		then(..)		twice	against	the	same
promise		p		illustrates	the	point	made	earlier,	which	is	that	Promises	(once	resolved)	retain
their	same	resolution	(fulfillment	or	rejection)	forever,	and	can	subsequently	be	observed	as
many	times	as	necessary.
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Whenever		p		is	resolved,	the	next	step	will	always	be	the	same,	both	now	and	later.

Thenable	Duck	Typing
In	Promises-land,	an	important	detail	is	how	to	know	for	sure	if	some	value	is	a	genuine
Promise	or	not.	Or	more	directly,	is	it	a	value	that	will	behave	like	a	Promise?

Given	that	Promises	are	constructed	by	the		new	Promise(..)		syntax,	you	might	think	that		p
instanceof	Promise		would	be	an	acceptable	check.	But	unfortunately,	there	are	a	number	of
reasons	that's	not	totally	sufficient.

Mainly,	you	can	receive	a	Promise	value	from	another	browser	window	(iframe,	etc.),	which
would	have	its	own	Promise	different	from	the	one	in	the	current	window/frame,	and	that
check	would	fail	to	identify	the	Promise	instance.

Moreover,	a	library	or	framework	may	choose	to	vend	its	own	Promises	and	not	use	the
native	ES6		Promise		implementation	to	do	so.	In	fact,	you	may	very	well	be	using	Promises
with	libraries	in	older	browsers	that	have	no	Promise	at	all.

When	we	discuss	Promise	resolution	processes	later	in	this	chapter,	it	will	become	more
obvious	why	a	non-genuine-but-Promise-like	value	would	still	be	very	important	to	be	able	to
recognize	and	assimilate.	But	for	now,	just	take	my	word	for	it	that	it's	a	critical	piece	of	the
puzzle.

As	such,	it	was	decided	that	the	way	to	recognize	a	Promise	(or	something	that	behaves	like
a	Promise)	would	be	to	define	something	called	a	"thenable"	as	any	object	or	function	which
has	a		then(..)		method	on	it.	It	is	assumed	that	any	such	value	is	a	Promise-conforming
thenable.

The	general	term	for	"type	checks"	that	make	assumptions	about	a	value's	"type"	based	on
its	shape	(what	properties	are	present)	is	called	"duck	typing"	--	"If	it	looks	like	a	duck,	and
quacks	like	a	duck,	it	must	be	a	duck"	(see	the	Types	&	Grammar	title	of	this	book	series).
So	the	duck	typing	check	for	a	thenable	would	roughly	be:
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if	(

				p	!==	null	&&

				(

								typeof	p	===	"object"	||

								typeof	p	===	"function"

				)	&&

				typeof	p.then	===	"function"

)	{

				//	assume	it's	a	thenable!

}

else	{

				//	not	a	thenable

}

Yuck!	Setting	aside	the	fact	that	this	logic	is	a	bit	ugly	to	implement	in	various	places,	there's
something	deeper	and	more	troubling	going	on.

If	you	try	to	fulfill	a	Promise	with	any	object/function	value	that	happens	to	have	a		then(..)	
function	on	it,	but	you	weren't	intending	it	to	be	treated	as	a	Promise/thenable,	you're	out	of
luck,	because	it	will	automatically	be	recognized	as	thenable	and	treated	with	special	rules
(see	later	in	the	chapter).

This	is	even	true	if	you	didn't	realize	the	value	has	a		then(..)		on	it.	For	example:

var	o	=	{	then:	function(){}	};

//	make	`v`	be	`[[Prototype]]`-linked	to	`o`

var	v	=	Object.create(	o	);

v.someStuff	=	"cool";

v.otherStuff	=	"not	so	cool";

v.hasOwnProperty(	"then"	);								//	false

	v		doesn't	look	like	a	Promise	or	thenable	at	all.	It's	just	a	plain	object	with	some	properties
on	it.	You're	probably	just	intending	to	send	that	value	around	like	any	other	object.

But	unknown	to	you,		v		is	also		[[Prototype]]	-linked	(see	the	this	&	Object	Prototypes	title
of	this	book	series)	to	another	object		o	,	which	happens	to	have	a		then(..)		on	it.	So	the
thenable	duck	typing	checks	will	think	and	assume		v		is	a	thenable.	Uh	oh.

It	doesn't	even	need	to	be	something	as	directly	intentional	as	that:
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Object.prototype.then	=	function(){};

Array.prototype.then	=	function(){};

var	v1	=	{	hello:	"world"	};

var	v2	=	[	"Hello",	"World"	];

Both		v1		and		v2		will	be	assumed	to	be	thenables.	You	can't	control	or	predict	if	any	other
code	accidentally	or	maliciously	adds		then(..)		to		Object.prototype	,		Array.prototype	,	or
any	of	the	other	native	prototypes.	And	if	what's	specified	is	a	function	that	doesn't	call	either
of	its	parameters	as	callbacks,	then	any	Promise	resolved	with	such	a	value	will	just	silently
hang	forever!	Crazy.

Sound	implausible	or	unlikely?	Perhaps.

But	keep	in	mind	that	there	were	several	well-known	non-Promise	libraries	preexisting	in	the
community	prior	to	ES6	that	happened	to	already	have	a	method	on	them	called		then(..)	.
Some	of	those	libraries	chose	to	rename	their	own	methods	to	avoid	collision	(that	sucks!).
Others	have	simply	been	relegated	to	the	unfortunate	status	of	"incompatible	with	Promise-
based	coding"	in	reward	for	their	inability	to	change	to	get	out	of	the	way.

The	standards	decision	to	hijack	the	previously	nonreserved	--	and	completely	general-
purpose	sounding	--		then		property	name	means	that	no	value	(or	any	of	its	delegates),
either	past,	present,	or	future,	can	have	a		then(..)		function	present,	either	on	purpose	or
by	accident,	or	that	value	will	be	confused	for	a	thenable	in	Promises	systems,	which	will
probably	create	bugs	that	are	really	hard	to	track	down.

Warning:	I	do	not	like	how	we	ended	up	with	duck	typing	of	thenables	for	Promise
recognition.	There	were	other	options,	such	as	"branding"	or	even	"anti-branding";	what	we
got	seems	like	a	worst-case	compromise.	But	it's	not	all	doom	and	gloom.	Thenable	duck
typing	can	be	helpful,	as	we'll	see	later.	Just	beware	that	thenable	duck	typing	can	be
hazardous	if	it	incorrectly	identifies	something	as	a	Promise	that	isn't.

Promise	Trust
We've	now	seen	two	strong	analogies	that	explain	different	aspects	of	what	Promises	can	do
for	our	async	code.	But	if	we	stop	there,	we've	missed	perhaps	the	single	most	important
characteristic	that	the	Promise	pattern	establishes:	trust.

Whereas	the	future	values	and	completion	events	analogies	play	out	explicitly	in	the	code
patterns	we've	explored,	it	won't	be	entirely	obvious	why	or	how	Promises	are	designed	to
solve	all	of	the	inversion	of	control	trust	issues	we	laid	out	in	the	"Trust	Issues"	section	of
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Chapter	2.	But	with	a	little	digging,	we	can	uncover	some	important	guarantees	that	restore
the	confidence	in	async	coding	that	Chapter	2	tore	down!

Let's	start	by	reviewing	the	trust	issues	with	callbacks-only	coding.	When	you	pass	a
callback	to	a	utility		foo(..)	,	it	might:

Call	the	callback	too	early
Call	the	callback	too	late	(or	never)
Call	the	callback	too	few	or	too	many	times
Fail	to	pass	along	any	necessary	environment/parameters
swallow	any	errors/exceptions	that	may	happen

The	characteristics	of	Promises	are	intentionally	designed	to	provide	useful,	repeatable
answers	to	all	these	concerns.

Calling	Too	Early

Primarily,	this	is	a	concern	of	whether	code	can	introduce	Zalgo-like	effects	(see	Chapter	2),
where	sometimes	a	task	finishes	synchronously	and	sometimes	asynchronously,	which	can
lead	to	race	conditions.

Promises	by	definition	cannot	be	susceptible	to	this	concern,	because	even	an	immediately
fulfilled	Promise	(like		new	Promise(function(resolve){	resolve(42);	})	)	cannot	be	observed
synchronously.

That	is,	when	you	call		then(..)		on	a	Promise,	even	if	that	Promise	was	already	resolved,
the	callback	you	provide	to		then(..)		will	always	be	called	asynchronously	(for	more	on
this,	refer	back	to	"Jobs"	in	Chapter	1).

No	more	need	to	insert	your	own		setTimeout(..,0)		hacks.	Promises	prevent	Zalgo
automatically.

Calling	Too	Late

Similar	to	the	previous	point,	a	Promise's		then(..)		registered	observation	callbacks	are
automatically	scheduled	when	either		resolve(..)		or		reject(..)		are	called	by	the	Promise
creation	capability.	Those	scheduled	callbacks	will	predictably	be	fired	at	the	next
asynchronous	moment	(see	"Jobs"	in	Chapter	1).

It's	not	possible	for	synchronous	observation,	so	it's	not	possible	for	a	synchronous	chain	of
tasks	to	run	in	such	a	way	to	in	effect	"delay"	another	callback	from	happening	as	expected.
That	is,	when	a	Promise	is	resolved,	all		then(..)		registered	callbacks	on	it	will	be	called,	in
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order,	immediately	at	the	next	asynchronous	opportunity	(again,	see	"Jobs"	in	Chapter	1),
and	nothing	that	happens	inside	of	one	of	those	callbacks	can	affect/delay	the	calling	of	the
other	callbacks.

For	example:

p.then(	function(){

				p.then(	function(){

								console.log(	"C"	);

				}	);

				console.log(	"A"	);

}	);

p.then(	function(){

				console.log(	"B"	);

}	);

//	A	B	C

Here,		"C"		cannot	interrupt	and	precede		"B"	,	by	virtue	of	how	Promises	are	defined	to
operate.

Promise	Scheduling	Quirks

It's	important	to	note,	though,	that	there	are	lots	of	nuances	of	scheduling	where	the	relative
ordering	between	callbacks	chained	off	two	separate	Promises	is	not	reliably	predictable.

If	two	promises		p1		and		p2		are	both	already	resolved,	it	should	be	true	that		p1.then(..);
p2.then(..)		would	end	up	calling	the	callback(s)	for		p1		before	the	ones	for		p2	.	But	there
are	subtle	cases	where	that	might	not	be	true,	such	as	the	following:
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var	p3	=	new	Promise(	function(resolve,reject){

				resolve(	"B"	);

}	);

var	p1	=	new	Promise(	function(resolve,reject){

				resolve(	p3	);

}	);

var	p2	=	new	Promise(	function(resolve,reject){

				resolve(	"A"	);

}	);

p1.then(	function(v){

				console.log(	v	);

}	);

p2.then(	function(v){

				console.log(	v	);

}	);

//	A	B		<--	not		B	A		as	you	might	expect

We'll	cover	this	more	later,	but	as	you	can	see,		p1		is	resolved	not	with	an	immediate	value,
but	with	another	promise		p3		which	is	itself	resolved	with	the	value		"B"	.	The	specified
behavior	is	to	unwrap		p3		into		p1	,	but	asynchronously,	so		p1	's	callback(s)	are	behind
	p2	's	callback(s)	in	the	asynchronus	Job	queue	(see	Chapter	1).

To	avoid	such	nuanced	nightmares,	you	should	never	rely	on	anything	about	the
ordering/scheduling	of	callbacks	across	Promises.	In	fact,	a	good	practice	is	not	to	code	in
such	a	way	where	the	ordering	of	multiple	callbacks	matters	at	all.	Avoid	that	if	you	can.

Never	Calling	the	Callback

This	is	a	very	common	concern.	It's	addressable	in	several	ways	with	Promises.

First,	nothing	(not	even	a	JS	error)	can	prevent	a	Promise	from	notifying	you	of	its	resolution
(if	it's	resolved).	If	you	register	both	fulfillment	and	rejection	callbacks	for	a	Promise,	and	the
Promise	gets	resolved,	one	of	the	two	callbacks	will	always	be	called.

Of	course,	if	your	callbacks	themselves	have	JS	errors,	you	may	not	see	the	outcome	you
expect,	but	the	callback	will	in	fact	have	been	called.	We'll	cover	later	how	to	be	notified	of
an	error	in	your	callback,	because	even	those	don't	get	swallowed.

But	what	if	the	Promise	itself	never	gets	resolved	either	way?	Even	that	is	a	condition	that
Promises	provide	an	answer	for,	using	a	higher	level	abstraction	called	a	"race":
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//	a	utility	for	timing	out	a	Promise

function	timeoutPromise(delay)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){

												reject(	"Timeout!"	);

								},	delay	);

				}	);

}

//	setup	a	timeout	for	`foo()`

Promise.race(	[

				foo(),																				//	attempt	`foo()`

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)

.then(

				function(){

								//	`foo(..)`	fulfilled	in	time!

				},

				function(err){

								//	either	`foo()`	rejected,	or	it	just

								//	didn't	finish	in	time,	so	inspect

								//	`err`	to	know	which

				}

);

There	are	more	details	to	consider	with	this	Promise	timeout	pattern,	but	we'll	come	back	to
it	later.

Importantly,	we	can	ensure	a	signal	as	to	the	outcome	of		foo()	,	to	prevent	it	from	hanging
our	program	indefinitely.

Calling	Too	Few	or	Too	Many	Times

By	definition,	one	is	the	appropriate	number	of	times	for	the	callback	to	be	called.	The	"too
few"	case	would	be	zero	calls,	which	is	the	same	as	the	"never"	case	we	just	examined.

The	"too	many"	case	is	easy	to	explain.	Promises	are	defined	so	that	they	can	only	be
resolved	once.	If	for	some	reason	the	Promise	creation	code	tries	to	call		resolve(..)		or
	reject(..)		multiple	times,	or	tries	to	call	both,	the	Promise	will	accept	only	the	first
resolution,	and	will	silently	ignore	any	subsequent	attempts.

Because	a	Promise	can	only	be	resolved	once,	any		then(..)		registered	callbacks	will	only
ever	be	called	once	(each).

Of	course,	if	you	register	the	same	callback	more	than	once,	(e.g.,		p.then(f);	p.then(f);	),
it'll	be	called	as	many	times	as	it	was	registered.	The	guarantee	that	a	response	function	is
called	only	once	does	not	prevent	you	from	shooting	yourself	in	the	foot.
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Failing	to	Pass	Along	Any	Parameters/Environment

Promises	can	have,	at	most,	one	resolution	value	(fulfillment	or	rejection).

If	you	don't	explicitly	resolve	with	a	value	either	way,	the	value	is		undefined	,	as	is	typical	in
JS.	But	whatever	the	value,	it	will	always	be	passed	to	all	registered	(and	appropriate:
fulfillment	or	rejection)	callbacks,	either	now	or	in	the	future.

Something	to	be	aware	of:	If	you	call		resolve(..)		or		reject(..)		with	multiple	parameters,
all	subsequent	parameters	beyond	the	first	will	be	silently	ignored.	Although	that	might	seem
a	violation	of	the	guarantee	we	just	described,	it's	not	exactly,	because	it	constitutes	an
invalid	usage	of	the	Promise	mechanism.	Other	invalid	usages	of	the	API	(such	as	calling
	resolve(..)		multiple	times)	are	similarly	protected,	so	the	Promise	behavior	here	is
consistent	(if	not	a	tiny	bit	frustrating).

If	you	want	to	pass	along	multiple	values,	you	must	wrap	them	in	another	single	value	that
you	pass,	such	as	an		array		or	an		object	.

As	for	environment,	functions	in	JS	always	retain	their	closure	of	the	scope	in	which	they're
defined	(see	the	Scope	&	Closures	title	of	this	series),	so	they	of	course	would	continue	to
have	access	to	whatever	surrounding	state	you	provide.	Of	course,	the	same	is	true	of
callbacks-only	design,	so	this	isn't	a	specific	augmentation	of	benefit	from	Promises	--	but	it's
a	guarantee	we	can	rely	on	nonetheless.

Swallowing	Any	Errors/Exceptions

In	the	base	sense,	this	is	a	restatement	of	the	previous	point.	If	you	reject	a	Promise	with	a
reason	(aka	error	message),	that	value	is	passed	to	the	rejection	callback(s).

But	there's	something	much	bigger	at	play	here.	If	at	any	point	in	the	creation	of	a	Promise,
or	in	the	observation	of	its	resolution,	a	JS	exception	error	occurs,	such	as	a		TypeError		or
	ReferenceError	,	that	exception	will	be	caught,	and	it	will	force	the	Promise	in	question	to
become	rejected.

For	example:
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var	p	=	new	Promise(	function(resolve,reject){

				foo.bar();				//	`foo`	is	not	defined,	so	error!

				resolve(	42	);				//	never	gets	here	:(

}	);

p.then(

				function	fulfilled(){

								//	never	gets	here	:(

				},

				function	rejected(err){

								//	`err`	will	be	a	`TypeError`	exception	object

								//	from	the	`foo.bar()`	line.

				}

);

The	JS	exception	that	occurs	from		foo.bar()		becomes	a	Promise	rejection	that	you	can
catch	and	respond	to.

This	is	an	important	detail,	because	it	effectively	solves	another	potential	Zalgo	moment,
which	is	that	errors	could	create	a	synchronous	reaction	whereas	nonerrors	would	be
asynchronous.	Promises	turn	even	JS	exceptions	into	asynchronous	behavior,	thereby
reducing	the	race	condition	chances	greatly.

But	what	happens	if	a	Promise	is	fulfilled,	but	there's	a	JS	exception	error	during	the
observation	(in	a		then(..)		registered	callback)?	Even	those	aren't	lost,	but	you	may	find
how	they're	handled	a	bit	surprising,	until	you	dig	in	a	little	deeper:

var	p	=	new	Promise(	function(resolve,reject){

				resolve(	42	);

}	);

p.then(

				function	fulfilled(msg){

								foo.bar();

								console.log(	msg	);				//	never	gets	here	:(

				},

				function	rejected(err){

								//	never	gets	here	either	:(

				}

);

Wait,	that	makes	it	seem	like	the	exception	from		foo.bar()		really	did	get	swallowed.	Never
fear,	it	didn't.	But	something	deeper	is	wrong,	which	is	that	we've	failed	to	listen	for	it.	The
	p.then(..)		call	itself	returns	another	promise,	and	it's	that	promise	that	will	be	rejected	with
the		TypeError		exception.
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Why	couldn't	it	just	call	the	error	handler	we	have	defined	there?	Seems	like	a	logical
behavior	on	the	surface.	But	it	would	violate	the	fundamental	principle	that	Promises	are
immutable	once	resolved.		p		was	already	fulfilled	to	the	value		42	,	so	it	can't	later	be
changed	to	a	rejection	just	because	there's	an	error	in	observing		p	's	resolution.

Besides	the	principle	violation,	such	behavior	could	wreak	havoc,	if	say	there	were	multiple
	then(..)		registered	callbacks	on	the	promise		p	,	because	some	would	get	called	and
others	wouldn't,	and	it	would	be	very	opaque	as	to	why.

Trustable	Promise?

There's	one	last	detail	to	examine	to	establish	trust	based	on	the	Promise	pattern.

You've	no	doubt	noticed	that	Promises	don't	get	rid	of	callbacks	at	all.	They	just	change
where	the	callback	is	passed	to.	Instead	of	passing	a	callback	to		foo(..)	,	we	get
something	(ostensibly	a	genuine	Promise)	back	from		foo(..)	,	and	we	pass	the	callback	to
that	something	instead.

But	why	would	this	be	any	more	trustable	than	just	callbacks	alone?	How	can	we	be	sure	the
something	we	get	back	is	in	fact	a	trustable	Promise?	Isn't	it	basically	all	just	a	house	of
cards	where	we	can	trust	only	because	we	already	trusted?

One	of	the	most	important,	but	often	overlooked,	details	of	Promises	is	that	they	have	a
solution	to	this	issue	as	well.	Included	with	the	native	ES6		Promise		implementation	is
	Promise.resolve(..)	.

If	you	pass	an	immediate,	non-Promise,	non-thenable	value	to		Promise.resolve(..)	,	you
get	a	promise	that's	fulfilled	with	that	value.	In	other	words,	these	two	promises		p1		and		p2	
will	behave	basically	identically:

var	p1	=	new	Promise(	function(resolve,reject){

				resolve(	42	);

}	);

var	p2	=	Promise.resolve(	42	);

But	if	you	pass	a	genuine	Promise	to		Promise.resolve(..)	,	you	just	get	the	same	promise
back:

var	p1	=	Promise.resolve(	42	);

var	p2	=	Promise.resolve(	p1	);

p1	===	p2;	//	true
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Even	more	importantly,	if	you	pass	a	non-Promise	thenable	value	to		Promise.resolve(..)	,	it
will	attempt	to	unwrap	that	value,	and	the	unwrapping	will	keep	going	until	a	concrete	final
non-Promise-like	value	is	extracted.

Recall	our	previous	discussion	of	thenables?

Consider:

var	p	=	{

				then:	function(cb)	{

								cb(	42	);

				}

};

//	this	works	OK,	but	only	by	good	fortune

p

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	never	gets	here

				}

);

This		p		is	a	thenable,	but	it's	not	a	genuine	Promise.	Luckily,	it's	reasonable,	as	most	will
be.	But	what	if	you	got	back	instead	something	that	looked	like:

var	p	=	{

				then:	function(cb,errcb)	{

								cb(	42	);

								errcb(	"evil	laugh"	);

				}

};

p

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	oops,	shouldn't	have	run

								console.log(	err	);	//	evil	laugh

				}

);
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This		p		is	a	thenable	but	it's	not	so	well	behaved	of	a	promise.	Is	it	malicious?	Or	is	it	just
ignorant	of	how	Promises	should	work?	It	doesn't	really	matter,	to	be	honest.	In	either	case,
it's	not	trustable	as	is.

Nonetheless,	we	can	pass	either	of	these	versions	of		p		to		Promise.resolve(..)	,	and	we'll
get	the	normalized,	safe	result	we'd	expect:

Promise.resolve(	p	)

.then(

				function	fulfilled(val){

								console.log(	val	);	//	42

				},

				function	rejected(err){

								//	never	gets	here

				}

);

	Promise.resolve(..)		will	accept	any	thenable,	and	will	unwrap	it	to	its	non-thenable	value.
But	you	get	back	from		Promise.resolve(..)		a	real,	genuine	Promise	in	its	place,	one	that
you	can	trust.	If	what	you	passed	in	is	already	a	genuine	Promise,	you	just	get	it	right	back,
so	there's	no	downside	at	all	to	filtering	through		Promise.resolve(..)		to	gain	trust.

So	let's	say	we're	calling	a		foo(..)		utility	and	we're	not	sure	we	can	trust	its	return	value	to
be	a	well-behaving	Promise,	but	we	know	it's	at	least	a	thenable.		Promise.resolve(..)		will
give	us	a	trustable	Promise	wrapper	to	chain	off	of:

//	don't	just	do	this:

foo(	42	)

.then(	function(v){

				console.log(	v	);

}	);

//	instead,	do	this:

Promise.resolve(	foo(	42	)	)

.then(	function(v){

				console.log(	v	);

}	);

Note:	Another	beneficial	side	effect	of	wrapping		Promise.resolve(..)		around	any	function's
return	value	(thenable	or	not)	is	that	it's	an	easy	way	to	normalize	that	function	call	into	a
well-behaving	async	task.	If		foo(42)		returns	an	immediate	value	sometimes,	or	a	Promise
other	times,		Promise.resolve(	foo(42)	)		makes	sure	it's	always	a	Promise	result.	And
avoiding	Zalgo	makes	for	much	better	code.

Trust	Built
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Hopefully	the	previous	discussion	now	fully	"resolves"	(pun	intended)	in	your	mind	why	the
Promise	is	trustable,	and	more	importantly,	why	that	trust	is	so	critical	in	building	robust,
maintainable	software.

Can	you	write	async	code	in	JS	without	trust?	Of	course	you	can.	We	JS	developers	have
been	coding	async	with	nothing	but	callbacks	for	nearly	two	decades.

But	once	you	start	questioning	just	how	much	you	can	trust	the	mechanisms	you	build	upon
to	actually	be	predictable	and	reliable,	you	start	to	realize	callbacks	have	a	pretty	shaky	trust
foundation.

Promises	are	a	pattern	that	augments	callbacks	with	trustable	semantics,	so	that	the
behavior	is	more	reason-able	and	more	reliable.	By	uninverting	the	inversion	of	control	of
callbacks,	we	place	the	control	with	a	trustable	system	(Promises)	that	was	designed
specifically	to	bring	sanity	to	our	async.

Chain	Flow
We've	hinted	at	this	a	couple	of	times	already,	but	Promises	are	not	just	a	mechanism	for	a
single-step	this-then-that	sort	of	operation.	That's	the	building	block,	of	course,	but	it	turns
out	we	can	string	multiple	Promises	together	to	represent	a	sequence	of	async	steps.

The	key	to	making	this	work	is	built	on	two	behaviors	intrinsic	to	Promises:

Every	time	you	call		then(..)		on	a	Promise,	it	creates	and	returns	a	new	Promise,
which	we	can	chain	with.
Whatever	value	you	return	from	the		then(..)		call's	fulfillment	callback	(the	first
parameter)	is	automatically	set	as	the	fulfillment	of	the	chained	Promise	(from	the	first
point).

Let's	first	illustrate	what	that	means,	and	then	we'll	derive	how	that	helps	us	create	async
sequences	of	flow	control.	Consider	the	following:
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var	p	=	Promise.resolve(	21	);

var	p2	=	p.then(	function(v){

				console.log(	v	);				//	21

				//	fulfill	`p2`	with	value	`42`

				return	v	*	2;

}	);

//	chain	off	`p2`

p2.then(	function(v){

				console.log(	v	);				//	42

}	);

By	returning		v	*	2		(i.e.,		42	),	we	fulfill	the		p2		promise	that	the	first		then(..)		call	created
and	returned.	When		p2	's		then(..)		call	runs,	it's	receiving	the	fulfillment	from	the		return	v
*	2		statement.	Of	course,		p2.then(..)		creates	yet	another	promise,	which	we	could	have
stored	in	a		p3		variable.

But	it's	a	little	annoying	to	have	to	create	an	intermediate	variable		p2		(or		p3	,	etc.).
Thankfully,	we	can	easily	just	chain	these	together:

var	p	=	Promise.resolve(	21	);

p

.then(	function(v){

				console.log(	v	);				//	21

				//	fulfill	the	chained	promise	with	value	`42`

				return	v	*	2;

}	)

//	here's	the	chained	promise

.then(	function(v){

				console.log(	v	);				//	42

}	);

So	now	the	first		then(..)		is	the	first	step	in	an	async	sequence,	and	the	second		then(..)	
is	the	second	step.	This	could	keep	going	for	as	long	as	you	needed	it	to	extend.	Just	keep
chaining	off	a	previous		then(..)		with	each	automatically	created	Promise.

But	there's	something	missing	here.	What	if	we	want	step	2	to	wait	for	step	1	to	do
something	asynchronous?	We're	using	an	immediate		return		statement,	which	immediately
fulfills	the	chained	promise.

The	key	to	making	a	Promise	sequence	truly	async	capable	at	every	step	is	to	recall	how
	Promise.resolve(..)		operates	when	what	you	pass	to	it	is	a	Promise	or	thenable	instead	of
a	final	value.		Promise.resolve(..)		directly	returns	a	received	genuine	Promise,	or	it
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unwraps	the	value	of	a	received	thenable	--	and	keeps	going	recursively	while	it	keeps
unwrapping	thenables.

The	same	sort	of	unwrapping	happens	if	you		return		a	thenable	or	Promise	from	the
fulfillment	(or	rejection)	handler.	Consider:

var	p	=	Promise.resolve(	21	);

p.then(	function(v){

				console.log(	v	);				//	21

				//	create	a	promise	and	return	it

				return	new	Promise(	function(resolve,reject){

								//	fulfill	with	value	`42`

								resolve(	v	*	2	);

				}	);

}	)

.then(	function(v){

				console.log(	v	);				//	42

}	);

Even	though	we	wrapped		42		up	in	a	promise	that	we	returned,	it	still	got	unwrapped	and
ended	up	as	the	resolution	of	the	chained	promise,	such	that	the	second		then(..)		still
received		42	.	If	we	introduce	asynchrony	to	that	wrapping	promise,	everything	still	nicely
works	the	same:

var	p	=	Promise.resolve(	21	);

p.then(	function(v){

				console.log(	v	);				//	21

				//	create	a	promise	to	return

				return	new	Promise(	function(resolve,reject){

								//	introduce	asynchrony!

								setTimeout(	function(){

												//	fulfill	with	value	`42`

												resolve(	v	*	2	);

								},	100	);

				}	);

}	)

.then(	function(v){

				//	runs	after	the	100ms	delay	in	the	previous	step

				console.log(	v	);				//	42

}	);

That's	incredibly	powerful!	Now	we	can	construct	a	sequence	of	however	many	async	steps
we	want,	and	each	step	can	delay	the	next	step	(or	not!),	as	necessary.
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Of	course,	the	value	passing	from	step	to	step	in	these	examples	is	optional.	If	you	don't
return	an	explicit	value,	an	implicit		undefined		is	assumed,	and	the	promises	still	chain
together	the	same	way.	Each	Promise	resolution	is	thus	just	a	signal	to	proceed	to	the	next
step.

To	further	the	chain	illustration,	let's	generalize	a	delay-Promise	creation	(without	resolution
messages)	into	a	utility	we	can	reuse	for	multiple	steps:

function	delay(time)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	resolve,	time	);

				}	);

}

delay(	100	)	//	step	1

.then(	function	STEP2(){

				console.log(	"step	2	(after	100ms)"	);

				return	delay(	200	);

}	)

.then(	function	STEP3(){

				console.log(	"step	3	(after	another	200ms)"	);

}	)

.then(	function	STEP4(){

				console.log(	"step	4	(next	Job)"	);

				return	delay(	50	);

}	)

.then(	function	STEP5(){

				console.log(	"step	5	(after	another	50ms)"	);

}	)

...

Calling		delay(200)		creates	a	promise	that	will	fulfill	in	200ms,	and	then	we	return	that	from
the	first		then(..)		fulfillment	callback,	which	causes	the	second		then(..)	's	promise	to	wait
on	that	200ms	promise.

Note:	As	described,	technically	there	are	two	promises	in	that	interchange:	the	200ms-delay
promise	and	the	chained	promise	that	the	second		then(..)		chains	from.	But	you	may	find	it
easier	to	mentally	combine	these	two	promises	together,	because	the	Promise	mechanism
automatically	merges	their	states	for	you.	In	that	respect,	you	could	think	of		return
delay(200)		as	creating	a	promise	that	replaces	the	earlier-returned	chained	promise.

To	be	honest,	though,	sequences	of	delays	with	no	message	passing	isn't	a	terribly	useful
example	of	Promise	flow	control.	Let's	look	at	a	scenario	that's	a	little	more	practical.

Instead	of	timers,	let's	consider	making	Ajax	requests:
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//	assume	an	`ajax(	{url},	{callback}	)`	utility

//	Promise-aware	ajax

function	request(url)	{

				return	new	Promise(	function(resolve,reject){

								//	the	`ajax(..)`	callback	should	be	our

								//	promise's	`resolve(..)`	function

								ajax(	url,	resolve	);

				}	);

}

We	first	define	a		request(..)		utility	that	constructs	a	promise	to	represent	the	completion	of
the		ajax(..)		call:

request(	"http://some.url.1/"	)

.then(	function(response1){

				return	request(	"http://some.url.2/?v="	+	response1	);

}	)

.then(	function(response2){

				console.log(	response2	);

}	);

Note:	Developers	commonly	encounter	situations	in	which	they	want	to	do	Promise-aware
async	flow	control	with	utilities	that	are	not	themselves	Promise-enabled	(like		ajax(..)	
here,	which	expects	a	callback).	Although	the	native	ES6		Promise		mechanism	doesn't
automatically	solve	this	pattern	for	us,	practically	all	Promise	libraries	do.	They	usually	call
this	process	"lifting"	or	"promisifying"	or	some	variation	thereof.	We'll	come	back	to	this
technique	later.

Using	the	Promise-returning		request(..)	,	we	create	the	first	step	in	our	chain	implicitly	by
calling	it	with	the	first	URL,	and	chain	off	that	returned	promise	with	the	first		then(..)	.

Once		response1		comes	back,	we	use	that	value	to	construct	a	second	URL,	and	make	a
second		request(..)		call.	That	second		request(..)		promise	is		return	ed	so	that	the	third
step	in	our	async	flow	control	waits	for	that	Ajax	call	to	complete.	Finally,	we	print		response2	
once	it	returns.

The	Promise	chain	we	construct	is	not	only	a	flow	control	that	expresses	a	multistep	async
sequence,	but	it	also	acts	as	a	message	channel	to	propagate	messages	from	step	to	step.

What	if	something	went	wrong	in	one	of	the	steps	of	the	Promise	chain?	An	error/exception
is	on	a	per-Promise	basis,	which	means	it's	possible	to	catch	such	an	error	at	any	point	in
the	chain,	and	that	catching	acts	to	sort	of	"reset"	the	chain	back	to	normal	operation	at	that
point:
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//	step	1:

request(	"http://some.url.1/"	)

//	step	2:

.then(	function(response1){

				foo.bar();	//	undefined,	error!

				//	never	gets	here

				return	request(	"http://some.url.2/?v="	+	response1	);

}	)

//	step	3:

.then(

				function	fulfilled(response2){

								//	never	gets	here

				},

				//	rejection	handler	to	catch	the	error

				function	rejected(err){

								console.log(	err	);				//	`TypeError`	from	`foo.bar()`	error

								return	42;

				}

)

//	step	4:

.then(	function(msg){

				console.log(	msg	);								//	42

}	);

When	the	error	occurs	in	step	2,	the	rejection	handler	in	step	3	catches	it.	The	return	value
(	42		in	this	snippet),	if	any,	from	that	rejection	handler	fulfills	the	promise	for	the	next	step
(4),	such	that	the	chain	is	now	back	in	a	fulfillment	state.

Note:	As	we	discussed	earlier,	when	returning	a	promise	from	a	fulfillment	handler,	it's
unwrapped	and	can	delay	the	next	step.	That's	also	true	for	returning	promises	from
rejection	handlers,	such	that	if	the		return	42		in	step	3	instead	returned	a	promise,	that
promise	could	delay	step	4.	A	thrown	exception	inside	either	the	fulfillment	or	rejection
handler	of	a		then(..)		call	causes	the	next	(chained)	promise	to	be	immediately	rejected
with	that	exception.

If	you	call		then(..)		on	a	promise,	and	you	only	pass	a	fulfillment	handler	to	it,	an	assumed
rejection	handler	is	substituted:
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var	p	=	new	Promise(	function(resolve,reject){

				reject(	"Oops"	);

}	);

var	p2	=	p.then(

				function	fulfilled(){

								//	never	gets	here

				}

				//	assumed	rejection	handler,	if	omitted	or

				//	any	other	non-function	value	passed

				//	function(err)	{

				//					throw	err;

				//	}

);

As	you	can	see,	the	assumed	rejection	handler	simply	rethrows	the	error,	which	ends	up
forcing		p2		(the	chained	promise)	to	reject	with	the	same	error	reason.	In	essence,	this
allows	the	error	to	continue	propagating	along	a	Promise	chain	until	an	explicitly	defined
rejection	handler	is	encountered.

Note:	We'll	cover	more	details	of	error	handling	with	Promises	a	little	later,	because	there
are	other	nuanced	details	to	be	concerned	about.

If	a	proper	valid	function	is	not	passed	as	the	fulfillment	handler	parameter	to		then(..)	,
there's	also	a	default	handler	substituted:

var	p	=	Promise.resolve(	42	);

p.then(

				//	assumed	fulfillment	handler,	if	omitted	or

				//	any	other	non-function	value	passed

				//	function(v)	{

				//					return	v;

				//	}

				null,

				function	rejected(err){

								//	never	gets	here

				}

);

As	you	can	see,	the	default	fulfillment	handler	simply	passes	whatever	value	it	receives
along	to	the	next	step	(Promise).

Note:	The		then(null,function(err){	..	})		pattern	--	only	handling	rejections	(if	any)	but
letting	fulfillments	pass	through	--	has	a	shortcut	in	the	API:		catch(function(err){	..	})	.
We'll	cover		catch(..)		more	fully	in	the	next	section.
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Let's	review	briefly	the	intrinsic	behaviors	of	Promises	that	enable	chaining	flow	control:

A		then(..)		call	against	one	Promise	automatically	produces	a	new	Promise	to	return
from	the	call.
Inside	the	fulfillment/rejection	handlers,	if	you	return	a	value	or	an	exception	is	thrown,
the	new	returned	(chainable)	Promise	is	resolved	accordingly.
If	the	fulfillment	or	rejection	handler	returns	a	Promise,	it	is	unwrapped,	so	that	whatever
its	resolution	is	will	become	the	resolution	of	the	chained	Promise	returned	from	the
current		then(..)	.

While	chaining	flow	control	is	helpful,	it's	probably	most	accurate	to	think	of	it	as	a	side
benefit	of	how	Promises	compose	(combine)	together,	rather	than	the	main	intent.	As	we've
discussed	in	detail	several	times	already,	Promises	normalize	asynchrony	and	encapsulate
time-dependent	value	state,	and	that	is	what	lets	us	chain	them	together	in	this	useful	way.

Certainly,	the	sequential	expressiveness	of	the	chain	(this-then-this-then-this...)	is	a	big
improvement	over	the	tangled	mess	of	callbacks	as	we	identified	in	Chapter	2.	But	there's
still	a	fair	amount	of	boilerplate	(	then(..)		and		function(){	..	}	)	to	wade	through.	In	the
next	chapter,	we'll	see	a	significantly	nicer	pattern	for	sequential	flow	control	expressivity,
with	generators.

Terminology:	Resolve,	Fulfill,	and	Reject

There's	some	slight	confusion	around	the	terms	"resolve,"	"fulfill,"	and	"reject"	that	we	need
to	clear	up,	before	you	get	too	much	deeper	into	learning	about	Promises.	Let's	first	consider
the		Promise(..)		constructor:

var	p	=	new	Promise(	function(X,Y){

				//	X()	for	fulfillment

				//	Y()	for	rejection

}	);

As	you	can	see,	two	callbacks	(here	labeled		X		and		Y	)	are	provided.	The	first	is	usually
used	to	mark	the	Promise	as	fulfilled,	and	the	second	always	marks	the	Promise	as	rejected.
But	what's	the	"usually"	about,	and	what	does	that	imply	about	accurately	naming	those
parameters?

Ultimately,	it's	just	your	user	code	and	the	identifier	names	aren't	interpreted	by	the	engine	to
mean	anything,	so	it	doesn't	technically	matter;		foo(..)		and		bar(..)		are	equally
functional.	But	the	words	you	use	can	affect	not	only	how	you	are	thinking	about	the	code,
but	how	other	developers	on	your	team	will	think	about	it.	Thinking	wrongly	about	carefully
orchestrated	async	code	is	almost	surely	going	to	be	worse	than	the	spaghetti-callback
alternatives.
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So	it	actually	does	kind	of	matter	what	you	call	them.

The	second	parameter	is	easy	to	decide.	Almost	all	literature	uses		reject(..)		as	its	name,
and	because	that's	exactly	(and	only!)	what	it	does,	that's	a	very	good	choice	for	the	name.
I'd	strongly	recommend	you	always	use		reject(..)	.

But	there's	a	little	more	ambiguity	around	the	first	parameter,	which	in	Promise	literature	is
often	labeled		resolve(..)	.	That	word	is	obviously	related	to	"resolution,"	which	is	what's
used	across	the	literature	(including	this	book)	to	describe	setting	a	final	value/state	to	a
Promise.	We've	already	used	"resolve	the	Promise"	several	times	to	mean	either	fulfilling	or
rejecting	the	Promise.

But	if	this	parameter	seems	to	be	used	to	specifically	fulfill	the	Promise,	why	shouldn't	we
call	it		fulfill(..)		instead	of		resolve(..)		to	be	more	accurate?	To	answer	that	question,
let's	also	take	a	look	at	two	of	the		Promise		API	methods:

var	fulfilledPr	=	Promise.resolve(	42	);

var	rejectedPr	=	Promise.reject(	"Oops"	);

	Promise.resolve(..)		creates	a	Promise	that's	resolved	to	the	value	given	to	it.	In	this
example,		42		is	a	normal,	non-Promise,	non-thenable	value,	so	the	fulfilled	promise
	fulfilledPr		is	created	for	the	value		42	.		Promise.reject("Oops")		creates	the	rejected
promise		rejectedPr		for	the	reason		"Oops"	.

Let's	now	illustrate	why	the	word	"resolve"	(such	as	in		Promise.resolve(..)	)	is
unambiguous	and	indeed	more	accurate,	if	used	explicitly	in	a	context	that	could	result	in
either	fulfillment	or	rejection:

var	rejectedTh	=	{

				then:	function(resolved,rejected)	{

								rejected(	"Oops"	);

				}

};

var	rejectedPr	=	Promise.resolve(	rejectedTh	);

As	we	discussed	earlier	in	this	chapter,		Promise.resolve(..)		will	return	a	received	genuine
Promise	directly,	or	unwrap	a	received	thenable.	If	that	thenable	unwrapping	reveals	a
rejected	state,	the	Promise	returned	from		Promise.resolve(..)		is	in	fact	in	that	same
rejected	state.

So		Promise.resolve(..)		is	a	good,	accurate	name	for	the	API	method,	because	it	can
actually	result	in	either	fulfillment	or	rejection.
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The	first	callback	parameter	of	the		Promise(..)		constructor	will	unwrap	either	a	thenable
(identically	to		Promise.resolve(..)	)	or	a	genuine	Promise:

var	rejectedPr	=	new	Promise(	function(resolve,reject){

				//	resolve	this	promise	with	a	rejected	promise

				resolve(	Promise.reject(	"Oops"	)	);

}	);

rejectedPr.then(

				function	fulfilled(){

								//	never	gets	here

				},

				function	rejected(err){

								console.log(	err	);				//	"Oops"

				}

);

It	should	be	clear	now	that		resolve(..)		is	the	appropriate	name	for	the	first	callback
parameter	of	the		Promise(..)		constructor.

Warning:	The	previously	mentioned		reject(..)		does	not	do	the	unwrapping	that
	resolve(..)		does.	If	you	pass	a	Promise/thenable	value	to		reject(..)	,	that	untouched
value	will	be	set	as	the	rejection	reason.	A	subsequent	rejection	handler	would	receive	the
actual	Promise/thenable	you	passed	to		reject(..)	,	not	its	underlying	immediate	value.

But	now	let's	turn	our	attention	to	the	callbacks	provided	to		then(..)	.	What	should	they	be
called	(both	in	literature	and	in	code)?	I	would	suggest		fulfilled(..)		and		rejected(..)	:

function	fulfilled(msg)	{

				console.log(	msg	);

}

function	rejected(err)	{

				console.error(	err	);

}

p.then(

				fulfilled,

				rejected

);

In	the	case	of	the	first	parameter	to		then(..)	,	it's	unambiguously	always	the	fulfillment
case,	so	there's	no	need	for	the	duality	of	"resolve"	terminology.	As	a	side	note,	the	ES6
specification	uses		onFulfilled(..)		and		onRejected(..)		to	label	these	two	callbacks,	so
they	are	accurate	terms.
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Error	Handling
We've	already	seen	several	examples	of	how	Promise	rejection	--	either	intentional	through
calling		reject(..)		or	accidental	through	JS	exceptions	--	allows	saner	error	handling	in
asynchronous	programming.	Let's	circle	back	though	and	be	explicit	about	some	of	the
details	that	we	glossed	over.

The	most	natural	form	of	error	handling	for	most	developers	is	the	synchronous		try..catch	
construct.	Unfortunately,	it's	synchronous-only,	so	it	fails	to	help	in	async	code	patterns:

function	foo()	{

				setTimeout(	function(){

								baz.bar();

				},	100	);

}

try	{

				foo();

				//	later	throws	global	error	from	`baz.bar()`

}

catch	(err)	{

				//	never	gets	here

}

	try..catch		would	certainly	be	nice	to	have,	but	it	doesn't	work	across	async	operations.
That	is,	unless	there's	some	additional	environmental	support,	which	we'll	come	back	to	with
generators	in	Chapter	4.

In	callbacks,	some	standards	have	emerged	for	patterned	error	handling,	most	notably	the
"error-first	callback"	style:
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function	foo(cb)	{

				setTimeout(	function(){

								try	{

												var	x	=	baz.bar();

												cb(	null,	x	);	//	success!

								}

								catch	(err)	{

												cb(	err	);

								}

				},	100	);

}

foo(	function(err,val){

				if	(err)	{

								console.error(	err	);	//	bummer	:(

				}

				else	{

								console.log(	val	);

				}

}	);

Note:	The		try..catch		here	works	only	from	the	perspective	that	the		baz.bar()		call	will
either	succeed	or	fail	immediately,	synchronously.	If		baz.bar()		was	itself	its	own	async
completing	function,	any	async	errors	inside	it	would	not	be	catchable.

The	callback	we	pass	to		foo(..)		expects	to	receive	a	signal	of	an	error	by	the	reserved
first	parameter		err	.	If	present,	error	is	assumed.	If	not,	success	is	assumed.

This	sort	of	error	handling	is	technically	async	capable,	but	it	doesn't	compose	well	at	all.
Multiple	levels	of	error-first	callbacks	woven	together	with	these	ubiquitous		if		statement
checks	inevitably	will	lead	you	to	the	perils	of	callback	hell	(see	Chapter	2).

So	we	come	back	to	error	handling	in	Promises,	with	the	rejection	handler	passed	to
	then(..)	.	Promises	don't	use	the	popular	"error-first	callback"	design	style,	but	instead	use
"split	callbacks"	style;	there's	one	callback	for	fulfillment	and	one	for	rejection:

var	p	=	Promise.reject(	"Oops"	);

p.then(

				function	fulfilled(){

								//	never	gets	here

				},

				function	rejected(err){

								console.log(	err	);	//	"Oops"

				}

);
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While	this	pattern	of	error	handling	makes	fine	sense	on	the	surface,	the	nuances	of
Promise	error	handling	are	often	a	fair	bit	more	difficult	to	fully	grasp.

Consider:

var	p	=	Promise.resolve(	42	);

p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				},

				function	rejected(err){

								//	never	gets	here

				}

);

If	the		msg.toLowerCase()		legitimately	throws	an	error	(it	does!),	why	doesn't	our	error
handler	get	notified?	As	we	explained	earlier,	it's	because	that	error	handler	is	for	the		p	
promise,	which	has	already	been	fulfilled	with	value		42	.	The		p		promise	is	immutable,	so
the	only	promise	that	can	be	notified	of	the	error	is	the	one	returned	from		p.then(..)	,	which
in	this	case	we	don't	capture.

That	should	paint	a	clear	picture	of	why	error	handling	with	Promises	is	error-prone	(pun
intended).	It's	far	too	easy	to	have	errors	swallowed,	as	this	is	very	rarely	what	you'd	intend.

Warning:	If	you	use	the	Promise	API	in	an	invalid	way	and	an	error	occurs	that	prevents
proper	Promise	construction,	the	result	will	be	an	immediately	thrown	exception,	not	a
rejected	Promise.	Some	examples	of	incorrect	usage	that	fail	Promise	construction:		new
Promise(null)	,		Promise.all()	,		Promise.race(42)	,	and	so	on.	You	can't	get	a	rejected
Promise	if	you	don't	use	the	Promise	API	validly	enough	to	actually	construct	a	Promise	in
the	first	place!

Pit	of	Despair

Jeff	Atwood	noted	years	ago:	programming	languages	are	often	set	up	in	such	a	way	that	by
default,	developers	fall	into	the	"pit	of	despair"	(http://blog.codinghorror.com/falling-into-the-
pit-of-success/)	--	where	accidents	are	punished	--	and	that	you	have	to	try	harder	to	get	it
right.	He	implored	us	to	instead	create	a	"pit	of	success,"	where	by	default	you	fall	into
expected	(successful)	action,	and	thus	would	have	to	try	hard	to	fail.

Promise	error	handling	is	unquestionably	"pit	of	despair"	design.	By	default,	it	assumes	that
you	want	any	error	to	be	swallowed	by	the	Promise	state,	and	if	you	forget	to	observe	that
state,	the	error	silently	languishes/dies	in	obscurity	--	usually	despair.
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To	avoid	losing	an	error	to	the	silence	of	a	forgotten/discarded	Promise,	some	developers
have	claimed	that	a	"best	practice"	for	Promise	chains	is	to	always	end	your	chain	with	a
final		catch(..)	,	like:

var	p	=	Promise.resolve(	42	);

p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				}

)

.catch(	handleErrors	);

Because	we	didn't	pass	a	rejection	handler	to	the		then(..)	,	the	default	handler	was
substituted,	which	simply	propagates	the	error	to	the	next	promise	in	the	chain.	As	such,
both	errors	that	come	into		p	,	and	errors	that	come	after		p		in	its	resolution	(like	the
	msg.toLowerCase()		one)	will	filter	down	to	the	final		handleErrors(..)	.

Problem	solved,	right?	Not	so	fast!

What	happens	if		handleErrors(..)		itself	also	has	an	error	in	it?	Who	catches	that?	There's
still	yet	another	unattended	promise:	the	one		catch(..)		returns,	which	we	don't	capture
and	don't	register	a	rejection	handler	for.

You	can't	just	stick	another		catch(..)		on	the	end	of	that	chain,	because	it	too	could	fail.
The	last	step	in	any	Promise	chain,	whatever	it	is,	always	has	the	possibility,	even
decreasingly	so,	of	dangling	with	an	uncaught	error	stuck	inside	an	unobserved	Promise.

Sound	like	an	impossible	conundrum	yet?

Uncaught	Handling

It's	not	exactly	an	easy	problem	to	solve	completely.	There	are	other	ways	to	approach	it
which	many	would	say	are	better.

Some	Promise	libraries	have	added	methods	for	registering	something	like	a	"global
unhandled	rejection"	handler,	which	would	be	called	instead	of	a	globally	thrown	error.	But
their	solution	for	how	to	identify	an	error	as	"uncaught"	is	to	have	an	arbitrary-length	timer,
say	3	seconds,	running	from	time	of	rejection.	If	a	Promise	is	rejected	but	no	error	handler	is
registered	before	the	timer	fires,	then	it's	assumed	that	you	won't	ever	be	registering	a
handler,	so	it's	"uncaught."
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In	practice,	this	has	worked	well	for	many	libraries,	as	most	usage	patterns	don't	typically
call	for	significant	delay	between	Promise	rejection	and	observation	of	that	rejection.	But	this
pattern	is	troublesome	because	3	seconds	is	so	arbitrary	(even	if	empirical),	and	also
because	there	are	indeed	some	cases	where	you	want	a	Promise	to	hold	on	to	its
rejectedness	for	some	indefinite	period	of	time,	and	you	don't	really	want	to	have	your
"uncaught"	handler	called	for	all	those	false	positives	(not-yet-handled	"uncaught	errors").

Another	more	common	suggestion	is	that	Promises	should	have	a		done(..)		added	to	them,
which	essentially	marks	the	Promise	chain	as	"done."		done(..)		doesn't	create	and	return	a
Promise,	so	the	callbacks	passed	to		done(..)		are	obviously	not	wired	up	to	report
problems	to	a	chained	Promise	that	doesn't	exist.

So	what	happens	instead?	It's	treated	as	you	might	usually	expect	in	uncaught	error
conditions:	any	exception	inside	a		done(..)		rejection	handler	would	be	thrown	as	a	global
uncaught	error	(in	the	developer	console,	basically):

var	p	=	Promise.resolve(	42	);

p.then(

				function	fulfilled(msg){

								//	numbers	don't	have	string	functions,

								//	so	will	throw	an	error

								console.log(	msg.toLowerCase()	);

				}

)

.done(	null,	handleErrors	);

//	if	`handleErrors(..)`	caused	its	own	exception,	it	would

//	be	thrown	globally	here

This	might	sound	more	attractive	than	the	never-ending	chain	or	the	arbitrary	timeouts.	But
the	biggest	problem	is	that	it's	not	part	of	the	ES6	standard,	so	no	matter	how	good	it
sounds,	at	best	it's	a	lot	longer	way	off	from	being	a	reliable	and	ubiquitous	solution.

Are	we	just	stuck,	then?	Not	entirely.

Browsers	have	a	unique	capability	that	our	code	does	not	have:	they	can	track	and	know	for
sure	when	any	object	gets	thrown	away	and	garbage	collected.	So,	browsers	can	track
Promise	objects,	and	whenever	they	get	garbage	collected,	if	they	have	a	rejection	in	them,
the	browser	knows	for	sure	this	was	a	legitimate	"uncaught	error,"	and	can	thus	confidently
know	it	should	report	it	to	the	developer	console.

Note:	At	the	time	of	this	writing,	both	Chrome	and	Firefox	have	early	attempts	at	that	sort	of
"uncaught	rejection"	capability,	though	support	is	incomplete	at	best.
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However,	if	a	Promise	doesn't	get	garbage	collected	--	it's	exceedingly	easy	for	that	to
accidentally	happen	through	lots	of	different	coding	patterns	--	the	browser's	garbage
collection	sniffing	won't	help	you	know	and	diagnose	that	you	have	a	silently	rejected
Promise	laying	around.

Is	there	any	other	alternative?	Yes.

Pit	of	Success

The	following	is	just	theoretical,	how	Promises	could	be	someday	changed	to	behave.	I
believe	it	would	be	far	superior	to	what	we	currently	have.	And	I	think	this	change	would	be
possible	even	post-ES6	because	I	don't	think	it	would	break	web	compatibility	with	ES6
Promises.	Moreover,	it	can	be	polyfilled/prollyfilled	in,	if	you're	careful.	Let's	take	a	look:

Promises	could	default	to	reporting	(to	the	developer	console)	any	rejection,	on	the	next
Job	or	event	loop	tick,	if	at	that	exact	moment	no	error	handler	has	been	registered	for
the	Promise.
For	the	cases	where	you	want	a	rejected	Promise	to	hold	onto	its	rejected	state	for	an
indefinite	amount	of	time	before	observing,	you	could	call		defer()	,	which	suppresses
automatic	error	reporting	on	that	Promise.

If	a	Promise	is	rejected,	it	defaults	to	noisily	reporting	that	fact	to	the	developer	console
(instead	of	defaulting	to	silence).	You	can	opt	out	of	that	reporting	either	implicitly	(by
registering	an	error	handler	before	rejection),	or	explicitly	(with		defer()	).	In	either	case,	you
control	the	false	positives.

Consider:

var	p	=	Promise.reject(	"Oops"	).defer();

//	`foo(..)`	is	Promise-aware

foo(	42	)

.then(

				function	fulfilled(){

								return	p;

				},

				function	rejected(err){

								//	handle	`foo(..)`	error

				}

);

...

When	we	create		p	,	we	know	we're	going	to	wait	a	while	to	use/observe	its	rejection,	so	we
call		defer()		--	thus	no	global	reporting.		defer()		simply	returns	the	same	promise,	for
chaining	purposes.
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The	promise	returned	from		foo(..)		gets	an	error	handler	attached	right	away,	so	it's
implicitly	opted	out	and	no	global	reporting	for	it	occurs	either.

But	the	promise	returned	from	the		then(..)		call	has	no		defer()		or	error	handler	attached,
so	if	it	rejects	(from	inside	either	resolution	handler),	then	it	will	be	reported	to	the	developer
console	as	an	uncaught	error.

This	design	is	a	pit	of	success.	By	default,	all	errors	are	either	handled	or	reported	--	what
almost	all	developers	in	almost	all	cases	would	expect.	You	either	have	to	register	a	handler
or	you	have	to	intentionally	opt	out,	and	indicate	you	intend	to	defer	error	handling	until	later;
you're	opting	for	the	extra	responsibility	in	just	that	specific	case.

The	only	real	danger	in	this	approach	is	if	you		defer()		a	Promise	but	then	fail	to	actually
ever	observe/handle	its	rejection.

But	you	had	to	intentionally	call		defer()		to	opt	into	that	pit	of	despair	--	the	default	was	the
pit	of	success	--	so	there's	not	much	else	we	could	do	to	save	you	from	your	own	mistakes.

I	think	there's	still	hope	for	Promise	error	handling	(post-ES6).	I	hope	the	powers	that	be	will
rethink	the	situation	and	consider	this	alternative.	In	the	meantime,	you	can	implement	this
yourself	(a	challenging	exercise	for	the	reader!),	or	use	a	smarter	Promise	library	that	does
so	for	you!

Note:	This	exact	model	for	error	handling/reporting	is	implemented	in	my	asynquence
Promise	abstraction	library,	which	will	be	discussed	in	Appendix	A	of	this	book.

Promise	Patterns
We've	already	implicitly	seen	the	sequence	pattern	with	Promise	chains	(this-then-this-then-
that	flow	control)	but	there	are	lots	of	variations	on	asynchronous	patterns	that	we	can	build
as	abstractions	on	top	of	Promises.	These	patterns	serve	to	simplify	the	expression	of	async
flow	control	--	which	helps	make	our	code	more	reason-able	and	more	maintainable	--	even
in	the	most	complex	parts	of	our	programs.

Two	such	patterns	are	codified	directly	into	the	native	ES6		Promise		implementation,	so	we
get	them	for	free,	to	use	as	building	blocks	for	other	patterns.

Promise.all([	..	])

In	an	async	sequence	(Promise	chain),	only	one	async	task	is	being	coordinated	at	any
given	moment	--	step	2	strictly	follows	step	1,	and	step	3	strictly	follows	step	2.	But	what
about	doing	two	or	more	steps	concurrently	(aka	"in	parallel")?
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In	classic	programming	terminology,	a	"gate"	is	a	mechanism	that	waits	on	two	or	more
parallel/concurrent	tasks	to	complete	before	continuing.	It	doesn't	matter	what	order	they
finish	in,	just	that	all	of	them	have	to	complete	for	the	gate	to	open	and	let	the	flow	control
through.

In	the	Promise	API,	we	call	this	pattern		all([	..	])	.

Say	you	wanted	to	make	two	Ajax	requests	at	the	same	time,	and	wait	for	both	to	finish,
regardless	of	their	order,	before	making	a	third	Ajax	request.	Consider:

//	`request(..)`	is	a	Promise-aware	Ajax	utility,

//	like	we	defined	earlier	in	the	chapter

var	p1	=	request(	"http://some.url.1/"	);

var	p2	=	request(	"http://some.url.2/"	);

Promise.all(	[p1,p2]	)

.then(	function(msgs){

				//	both	`p1`	and	`p2`	fulfill	and	pass	in

				//	their	messages	here

				return	request(

								"http://some.url.3/?v="	+	msgs.join(",")

				);

}	)

.then(	function(msg){

				console.log(	msg	);

}	);

	Promise.all([	..	])		expects	a	single	argument,	an		array	,	consisting	generally	of	Promise
instances.	The	promise	returned	from	the		Promise.all([	..	])		call	will	receive	a	fulfillment
message	(	msgs		in	this	snippet)	that	is	an		array		of	all	the	fulfillment	messages	from	the
passed	in	promises,	in	the	same	order	as	specified	(regardless	of	fulfillment	order).

Note:	Technically,	the		array		of	values	passed	into		Promise.all([	..	])		can	include
Promises,	thenables,	or	even	immediate	values.	Each	value	in	the	list	is	essentially	passed
through		Promise.resolve(..)		to	make	sure	it's	a	genuine	Promise	to	be	waited	on,	so	an
immediate	value	will	just	be	normalized	into	a	Promise	for	that	value.	If	the		array		is	empty,
the	main	Promise	is	immediately	fulfilled.

The	main	promise	returned	from		Promise.all([	..	])		will	only	be	fulfilled	if	and	when	all	its
constituent	promises	are	fulfilled.	If	any	one	of	those	promises	instead	is	rejected,	the	main
	Promise.all([	..	])		promise	is	immediately	rejected,	discarding	all	results	from	any	other
promises.

Remember	to	always	attach	a	rejection/error	handler	to	every	promise,	even	and	especially
the	one	that	comes	back	from		Promise.all([	..	])	.
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Promise.race([	..	])

While		Promise.all([	..	])		coordinates	multiple	Promises	concurrently	and	assumes	all	are
needed	for	fulfillment,	sometimes	you	only	want	to	respond	to	the	"first	Promise	to	cross	the
finish	line,"	letting	the	other	Promises	fall	away.

This	pattern	is	classically	called	a	"latch,"	but	in	Promises	it's	called	a	"race."

Warning:	While	the	metaphor	of	"only	the	first	across	the	finish	line	wins"	fits	the	behavior
well,	unfortunately	"race"	is	kind	of	a	loaded	term,	because	"race	conditions"	are	generally
taken	as	bugs	in	programs	(see	Chapter	1).	Don't	confuse		Promise.race([	..	])		with	"race
condition."

	Promise.race([	..	])		also	expects	a	single		array		argument,	containing	one	or	more
Promises,	thenables,	or	immediate	values.	It	doesn't	make	much	practical	sense	to	have	a
race	with	immediate	values,	because	the	first	one	listed	will	obviously	win	--	like	a	foot	race
where	one	runner	starts	at	the	finish	line!

Similar	to		Promise.all([	..	])	,		Promise.race([	..	])		will	fulfill	if	and	when	any	Promise
resolution	is	a	fulfillment,	and	it	will	reject	if	and	when	any	Promise	resolution	is	a	rejection.

Warning:	A	"race"	requires	at	least	one	"runner,"	so	if	you	pass	an	empty		array	,	instead	of
immediately	resolving,	the	main		race([..])		Promise	will	never	resolve.	This	is	a	footgun!
ES6	should	have	specified	that	it	either	fulfills,	rejects,	or	just	throws	some	sort	of
synchronous	error.	Unfortunately,	because	of	precedence	in	Promise	libraries	predating	ES6
	Promise	,	they	had	to	leave	this	gotcha	in	there,	so	be	careful	never	to	send	in	an	empty
	array	.

Let's	revisit	our	previous	concurrent	Ajax	example,	but	in	the	context	of	a	race	between		p1	
and		p2	:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility,

//	like	we	defined	earlier	in	the	chapter

var	p1	=	request(	"http://some.url.1/"	);

var	p2	=	request(	"http://some.url.2/"	);

Promise.race(	[p1,p2]	)

.then(	function(msg){

				//	either	`p1`	or	`p2`	will	win	the	race

				return	request(

								"http://some.url.3/?v="	+	msg

				);

}	)

.then(	function(msg){

				console.log(	msg	);

}	);

Because	only	one	promise	wins,	the	fulfillment	value	is	a	single	message,	not	an		array		as
it	was	for		Promise.all([	..	])	.

Timeout	Race

We	saw	this	example	earlier,	illustrating	how		Promise.race([	..	])		can	be	used	to	express
the	"promise	timeout"	pattern:

//	`foo()`	is	a	Promise-aware	function

//	`timeoutPromise(..)`,	defined	ealier,	returns

//	a	Promise	that	rejects	after	a	specified	delay

//	setup	a	timeout	for	`foo()`

Promise.race(	[

				foo(),																				//	attempt	`foo()`

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)

.then(

				function(){

								//	`foo(..)`	fulfilled	in	time!

				},

				function(err){

								//	either	`foo()`	rejected,	or	it	just

								//	didn't	finish	in	time,	so	inspect

								//	`err`	to	know	which

				}

);

This	timeout	pattern	works	well	in	most	cases.	But	there	are	some	nuances	to	consider,	and
frankly	they	apply	to	both		Promise.race([	..	])		and		Promise.all([	..	])		equally.
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"Finally"

The	key	question	to	ask	is,	"What	happens	to	the	promises	that	get	discarded/ignored?"
We're	not	asking	that	question	from	the	performance	perspective	--	they	would	typically	end
up	garbage	collection	eligible	--	but	from	the	behavioral	perspective	(side	effects,	etc.).
Promises	cannot	be	canceled	--	and	shouldn't	be	as	that	would	destroy	the	external
immutability	trust	discussed	in	the	"Promise	Uncancelable"	section	later	in	this	chapter	--	so
they	can	only	be	silently	ignored.

But	what	if		foo()		in	the	previous	example	is	reserving	some	sort	of	resource	for	usage,	but
the	timeout	fires	first	and	causes	that	promise	to	be	ignored?	Is	there	anything	in	this	pattern
that	proactively	frees	the	reserved	resource	after	the	timeout,	or	otherwise	cancels	any	side
effects	it	may	have	had?	What	if	all	you	wanted	was	to	log	the	fact	that		foo()		timed	out?

Some	developers	have	proposed	that	Promises	need	a		finally(..)		callback	registration,
which	is	always	called	when	a	Promise	resolves,	and	allows	you	to	specify	any	cleanup	that
may	be	necessary.	This	doesn't	exist	in	the	specification	at	the	moment,	but	it	may	come	in
ES7+.	We'll	have	to	wait	and	see.

It	might	look	like:

var	p	=	Promise.resolve(	42	);

p.then(	something	)

.finally(	cleanup	)

.then(	another	)

.finally(	cleanup	);

Note:	In	various	Promise	libraries,		finally(..)		still	creates	and	returns	a	new	Promise	(to
keep	the	chain	going).	If	the		cleanup(..)		function	were	to	return	a	Promise,	it	would	be
linked	into	the	chain,	which	means	you	could	still	have	the	unhandled	rejection	issues	we
discussed	earlier.

In	the	meantime,	we	could	make	a	static	helper	utility	that	lets	us	observe	(without
interfering)	the	resolution	of	a	Promise:
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//	polyfill-safe	guard	check

if	(!Promise.observe)	{

				Promise.observe	=	function(pr,cb)	{

								//	side-observe	`pr`'s	resolution

								pr.then(

												function	fulfilled(msg){

																//	schedule	callback	async	(as	Job)

																Promise.resolve(	msg	).then(	cb	);

												},

												function	rejected(err){

																//	schedule	callback	async	(as	Job)

																Promise.resolve(	err	).then(	cb	);

												}

								);

								//	return	original	promise

								return	pr;

				};

}

Here's	how	we'd	use	it	in	the	timeout	example	from	before:

Promise.race(	[

				Promise.observe(

								foo(),																				//	attempt	`foo()`

								function	cleanup(msg){

												//	clean	up	after	`foo()`,	even	if	it

												//	didn't	finish	before	the	timeout

								}

				),

				timeoutPromise(	3000	)				//	give	it	3	seconds

]	)

This		Promise.observe(..)		helper	is	just	an	illustration	of	how	you	could	observe	the
completions	of	Promises	without	interfering	with	them.	Other	Promise	libraries	have	their
own	solutions.	Regardless	of	how	you	do	it,	you'll	likely	have	places	where	you	want	to
make	sure	your	Promises	aren't	just	silently	ignored	by	accident.

Variations	on	all([	..	])	and	race([	..	])

While	native	ES6	Promises	come	with	built-in		Promise.all([	..	])		and		Promise.race([	..
])	,	there	are	several	other	commonly	used	patterns	with	variations	on	those	semantics:

	none([	..	])		is	like		all([	..	])	,	but	fulfillments	and	rejections	are	transposed.	All
Promises	need	to	be	rejected	--	rejections	become	the	fulfillment	values	and	vice	versa.
	any([	..	])		is	like		all([	..	])	,	but	it	ignores	any	rejections,	so	only	one	needs	to
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fulfill	instead	of	all	of	them.
	first([	..	])		is	a	like	a	race	with		any([	..	])	,	which	is	that	it	ignores	any	rejections
and	fulfills	as	soon	as	the	first	Promise	fulfills.
	last([	..	])		is	like		first([	..	])	,	but	only	the	latest	fulfillment	wins.

Some	Promise	abstraction	libraries	provide	these,	but	you	could	also	define	them	yourself
using	the	mechanics	of	Promises,		race([	..	])		and		all([	..	])	.

For	example,	here's	how	we	could	define		first([	..	])	:

//	polyfill-safe	guard	check

if	(!Promise.first)	{

				Promise.first	=	function(prs)	{

								return	new	Promise(	function(resolve,reject){

												//	loop	through	all	promises

												prs.forEach(	function(pr){

																//	normalize	the	value

																Promise.resolve(	pr	)

																//	whichever	one	fulfills	first	wins,	and

																//	gets	to	resolve	the	main	promise

																.then(	resolve	);

												}	);

								}	);

				};

}

Note:	This	implementation	of		first(..)		does	not	reject	if	all	its	promises	reject;	it	simply
hangs,	much	like	a		Promise.race([])		does.	If	desired,	you	could	add	additional	logic	to
track	each	promise	rejection	and	if	all	reject,	call		reject()		on	the	main	promise.	We'll	leave
that	as	an	exercise	for	the	reader.

Concurrent	Iterations

Sometimes	you	want	to	iterate	over	a	list	of	Promises	and	perform	some	task	against	all	of
them,	much	like	you	can	do	with	synchronous		array	s	(e.g.,		forEach(..)	,		map(..)	,
	some(..)	,	and		every(..)	).	If	the	task	to	perform	against	each	Promise	is	fundamentally
synchronous,	these	work	fine,	just	as	we	used		forEach(..)		in	the	previous	snippet.

But	if	the	tasks	are	fundamentally	asynchronous,	or	can/should	otherwise	be	performed
concurrently,	you	can	use	async	versions	of	these	utilities	as	provided	by	many	libraries.

For	example,	let's	consider	an	asynchronous		map(..)		utility	that	takes	an		array		of	values
(could	be	Promises	or	anything	else),	plus	a	function	(task)	to	perform	against	each.
	map(..)		itself	returns	a	promise	whose	fulfillment	value	is	an		array		that	holds	(in	the
same	mapping	order)	the	async	fulfillment	value	from	each	task:
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if	(!Promise.map)	{

				Promise.map	=	function(vals,cb)	{

								//	new	promise	that	waits	for	all	mapped	promises

								return	Promise.all(

												//	note:	regular	array	`map(..)`,	turns

												//	the	array	of	values	into	an	array	of

												//	promises

												vals.map(	function(val){

																//	replace	`val`	with	a	new	promise	that

																//	resolves	after	`val`	is	async	mapped

																return	new	Promise(	function(resolve){

																				cb(	val,	resolve	);

																}	);

												}	)

								);

				};

}

Note:	In	this	implementation	of		map(..)	,	you	can't	signal	async	rejection,	but	if	a
synchronous	exception/error	occurs	inside	of	the	mapping	callback	(	cb(..)	),	the	main
	Promise.map(..)		returned	promise	would	reject.

Let's	illustrate	using		map(..)		with	a	list	of	Promises	(instead	of	simple	values):

var	p1	=	Promise.resolve(	21	);

var	p2	=	Promise.resolve(	42	);

var	p3	=	Promise.reject(	"Oops"	);

//	double	values	in	list	even	if	they're	in

//	Promises

Promise.map(	[p1,p2,p3],	function(pr,done){

				//	make	sure	the	item	itself	is	a	Promise

				Promise.resolve(	pr	)

				.then(

								//	extract	value	as	`v`

								function(v){

												//	map	fulfillment	`v`	to	new	value

												done(	v	*	2	);

								},

								//	or,	map	to	promise	rejection	message

								done

				);

}	)

.then(	function(vals){

				console.log(	vals	);				//	[42,84,"Oops"]

}	);

Promise	API	Recap
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Let's	review	the	ES6		Promise		API	that	we've	already	seen	unfold	in	bits	and	pieces
throughout	this	chapter.

Note:	The	following	API	is	native	only	as	of	ES6,	but	there	are	specification-compliant
polyfills	(not	just	extended	Promise	libraries)	which	can	define		Promise		and	all	its
associated	behavior	so	that	you	can	use	native	Promises	even	in	pre-ES6	browsers.	One
such	polyfill	is	"Native	Promise	Only"	(http://github.com/getify/native-promise-only),	which	I
wrote!

new	Promise(..)	Constructor

The	revealing	constructor		Promise(..)		must	be	used	with		new	,	and	must	be	provided	a
function	callback	that	is	synchronously/immediately	called.	This	function	is	passed	two
function	callbacks	that	act	as	resolution	capabilities	for	the	promise.	We	commonly	label
these		resolve(..)		and		reject(..)	:

var	p	=	new	Promise(	function(resolve,reject){

				//	`resolve(..)`	to	resolve/fulfill	the	promise

				//	`reject(..)`	to	reject	the	promise

}	);

	reject(..)		simply	rejects	the	promise,	but		resolve(..)		can	either	fulfill	the	promise	or
reject	it,	depending	on	what	it's	passed.	If		resolve(..)		is	passed	an	immediate,	non-
Promise,	non-thenable	value,	then	the	promise	is	fulfilled	with	that	value.

But	if		resolve(..)		is	passed	a	genuine	Promise	or	thenable	value,	that	value	is	unwrapped
recursively,	and	whatever	its	final	resolution/state	is	will	be	adopted	by	the	promise.

Promise.resolve(..)	and	Promise.reject(..)

A	shortcut	for	creating	an	already-rejected	Promise	is		Promise.reject(..)	,	so	these	two
promises	are	equivalent:

var	p1	=	new	Promise(	function(resolve,reject){

				reject(	"Oops"	);

}	);

var	p2	=	Promise.reject(	"Oops"	);

	Promise.resolve(..)		is	usually	used	to	create	an	already-fulfilled	Promise	in	a	similar	way
to		Promise.reject(..)	.	However,		Promise.resolve(..)		also	unwraps	thenable	values	(as
discussed	several	times	already).	In	that	case,	the	Promise	returned	adopts	the	final
resolution	of	the	thenable	you	passed	in,	which	could	either	be	fulfillment	or	rejection:

Promises

547

http://github.com/getify/native-promise-only


var	fulfilledTh	=	{

				then:	function(cb)	{	cb(	42	);	}

};

var	rejectedTh	=	{

				then:	function(cb,errCb)	{

								errCb(	"Oops"	);

				}

};

var	p1	=	Promise.resolve(	fulfilledTh	);

var	p2	=	Promise.resolve(	rejectedTh	);

//	`p1`	will	be	a	fulfilled	promise

//	`p2`	will	be	a	rejected	promise

And	remember,		Promise.resolve(..)		doesn't	do	anything	if	what	you	pass	is	already	a
genuine	Promise;	it	just	returns	the	value	directly.	So	there's	no	overhead	to	calling
	Promise.resolve(..)		on	values	that	you	don't	know	the	nature	of,	if	one	happens	to	already
be	a	genuine	Promise.

then(..)	and	catch(..)

Each	Promise	instance	(not	the		Promise		API	namespace)	has		then(..)		and		catch(..)	
methods,	which	allow	registering	of	fulfillment	and	rejection	handlers	for	the	Promise.	Once
the	Promise	is	resolved,	one	or	the	other	of	these	handlers	will	be	called,	but	not	both,	and	it
will	always	be	called	asynchronously	(see	"Jobs"	in	Chapter	1).

	then(..)		takes	one	or	two	parameters,	the	first	for	the	fulfillment	callback,	and	the	second
for	the	rejection	callback.	If	either	is	omitted	or	is	otherwise	passed	as	a	non-function	value,
a	default	callback	is	substituted	respectively.	The	default	fulfillment	callback	simply	passes
the	message	along,	while	the	default	rejection	callback	simply	rethrows	(propagates)	the
error	reason	it	receives.

	catch(..)		takes	only	the	rejection	callback	as	a	parameter,	and	automatically	substitutes
the	default	fulfillment	callback,	as	just	discussed.	In	other	words,	it's	equivalent	to
	then(null,..)	:

p.then(	fulfilled	);

p.then(	fulfilled,	rejected	);

p.catch(	rejected	);	//	or	`p.then(	null,	rejected	)`

Promises

548



	then(..)		and		catch(..)		also	create	and	return	a	new	promise,	which	can	be	used	to
express	Promise	chain	flow	control.	If	the	fulfillment	or	rejection	callbacks	have	an	exception
thrown,	the	returned	promise	is	rejected.	If	either	callback	returns	an	immediate,	non-
Promise,	non-thenable	value,	that	value	is	set	as	the	fulfillment	for	the	returned	promise.	If
the	fulfillment	handler	specifically	returns	a	promise	or	thenable	value,	that	value	is
unwrapped	and	becomes	the	resolution	of	the	returned	promise.

Promise.all([	..	])	and	Promise.race([	..	])

The	static	helpers		Promise.all([	..	])		and		Promise.race([	..	])		on	the	ES6		Promise	
API	both	create	a	Promise	as	their	return	value.	The	resolution	of	that	promise	is	controlled
entirely	by	the	array	of	promises	that	you	pass	in.

For		Promise.all([	..	])	,	all	the	promises	you	pass	in	must	fulfill	for	the	returned	promise	to
fulfill.	If	any	promise	is	rejected,	the	main	returned	promise	is	immediately	rejected,	too
(discarding	the	results	of	any	of	the	other	promises).	For	fulfillment,	you	receive	an		array		of
all	the	passed	in	promises'	fulfillment	values.	For	rejection,	you	receive	just	the	first	promise
rejection	reason	value.	This	pattern	is	classically	called	a	"gate":	all	must	arrive	before	the
gate	opens.

For		Promise.race([	..	])	,	only	the	first	promise	to	resolve	(fulfillment	or	rejection)	"wins,"
and	whatever	that	resolution	is	becomes	the	resolution	of	the	returned	promise.	This	pattern
is	classically	called	a	"latch":	first	one	to	open	the	latch	gets	through.	Consider:

var	p1	=	Promise.resolve(	42	);

var	p2	=	Promise.resolve(	"Hello	World"	);

var	p3	=	Promise.reject(	"Oops"	);

Promise.race(	[p1,p2,p3]	)

.then(	function(msg){

				console.log(	msg	);								//	42

}	);

Promise.all(	[p1,p2,p3]	)

.catch(	function(err){

				console.error(	err	);				//	"Oops"

}	);

Promise.all(	[p1,p2]	)

.then(	function(msgs){

				console.log(	msgs	);				//	[42,"Hello	World"]

}	);

Warning:	Be	careful!	If	an	empty		array		is	passed	to		Promise.all([	..	])	,	it	will	fulfill
immediately,	but		Promise.race([	..	])		will	hang	forever	and	never	resolve.
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The	ES6		Promise		API	is	pretty	simple	and	straightforward.	It's	at	least	good	enough	to
serve	the	most	basic	of	async	cases,	and	is	a	good	place	to	start	when	rearranging	your
code	from	callback	hell	to	something	better.

But	there's	a	whole	lot	of	async	sophistication	that	apps	often	demand	which	Promises
themselves	will	be	limited	in	addressing.	In	the	next	section,	we'll	dive	into	those	limitations
as	motivations	for	the	benefit	of	Promise	libraries.

Promise	Limitations
Many	of	the	details	we'll	discuss	in	this	section	have	already	been	alluded	to	in	this	chapter,
but	we'll	just	make	sure	to	review	these	limitations	specifically.

Sequence	Error	Handling

We	covered	Promise-flavored	error	handling	in	detail	earlier	in	this	chapter.	The	limitations	of
how	Promises	are	designed	--	how	they	chain,	specifically	--	creates	a	very	easy	pitfall
where	an	error	in	a	Promise	chain	can	be	silently	ignored	accidentally.

But	there's	something	else	to	consider	with	Promise	errors.	Because	a	Promise	chain	is
nothing	more	than	its	constituent	Promises	wired	together,	there's	no	entity	to	refer	to	the
entire	chain	as	a	single	thing,	which	means	there's	no	external	way	to	observe	any	errors
that	may	occur.

If	you	construct	a	Promise	chain	that	has	no	error	handling	in	it,	any	error	anywhere	in	the
chain	will	propagate	indefinitely	down	the	chain,	until	observed	(by	registering	a	rejection
handler	at	some	step).	So,	in	that	specific	case,	having	a	reference	to	the	last	promise	in	the
chain	is	enough	(	p		in	the	following	snippet),	because	you	can	register	a	rejection	handler
there,	and	it	will	be	notified	of	any	propagated	errors:

//	`foo(..)`,	`STEP2(..)`	and	`STEP3(..)`	are

//	all	promise-aware	utilities

var	p	=	foo(	42	)

.then(	STEP2	)

.then(	STEP3	);

Although	it	may	seem	sneakily	confusing,		p		here	doesn't	point	to	the	first	promise	in	the
chain	(the	one	from	the		foo(42)		call),	but	instead	from	the	last	promise,	the	one	that	comes
from	the		then(STEP3)		call.
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Also,	no	step	in	the	promise	chain	is	observably	doing	its	own	error	handling.	That	means
that	you	could	then	register	a	rejection	error	handler	on		p	,	and	it	would	be	notified	if	any
errors	occur	anywhere	in	the	chain:

p.catch(	handleErrors	);

But	if	any	step	of	the	chain	in	fact	does	its	own	error	handling	(perhaps	hidden/abstracted
away	from	what	you	can	see),	your		handleErrors(..)		won't	be	notified.	This	may	be	what
you	want	--	it	was,	after	all,	a	"handled	rejection"	--	but	it	also	may	not	be	what	you	want.
The	complete	lack	of	ability	to	be	notified	(of	"already	handled"	rejection	errors)	is	a	limitation
that	restricts	capabilities	in	some	use	cases.

It's	basically	the	same	limitation	that	exists	with	a		try..catch		that	can	catch	an	exception
and	simply	swallow	it.	So	this	isn't	a	limitation	unique	to	Promises,	but	it	is	something	we
might	wish	to	have	a	workaround	for.

Unfortunately,	many	times	there	is	no	reference	kept	for	the	intermediate	steps	in	a	Promise-
chain	sequence,	so	without	such	references,	you	cannot	attach	error	handlers	to	reliably
observe	the	errors.

Single	Value

Promises	by	definition	only	have	a	single	fulfillment	value	or	a	single	rejection	reason.	In
simple	examples,	this	isn't	that	big	of	a	deal,	but	in	more	sophisticated	scenarios,	you	may
find	this	limiting.

The	typical	advice	is	to	construct	a	values	wrapper	(such	as	an		object		or		array	)	to
contain	these	multiple	messages.	This	solution	works,	but	it	can	be	quite	awkward	and
tedious	to	wrap	and	unwrap	your	messages	with	every	single	step	of	your	Promise	chain.

Splitting	Values

Sometimes	you	can	take	this	as	a	signal	that	you	could/should	decompose	the	problem	into
two	or	more	Promises.

Imagine	you	have	a	utility		foo(..)		that	produces	two	values	(	x		and		y	)	asynchronously:
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function	getY(x)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){

												resolve(	(3	*	x)	-	1	);

								},	100	);

				}	);

}

function	foo(bar,baz)	{

				var	x	=	bar	*	baz;

				return	getY(	x	)

				.then(	function(y){

								//	wrap	both	values	into	container

								return	[x,y];

				}	);

}

foo(	10,	20	)

.then(	function(msgs){

				var	x	=	msgs[0];

				var	y	=	msgs[1];

				console.log(	x,	y	);				//	200	599

}	);

First,	let's	rearrange	what		foo(..)		returns	so	that	we	don't	have	to	wrap		x		and		y		into	a
single		array		value	to	transport	through	one	Promise.	Instead,	we	can	wrap	each	value	into
its	own	promise:

function	foo(bar,baz)	{

				var	x	=	bar	*	baz;

				//	return	both	promises

				return	[

								Promise.resolve(	x	),

								getY(	x	)

				];

}

Promise.all(

				foo(	10,	20	)

)

.then(	function(msgs){

				var	x	=	msgs[0];

				var	y	=	msgs[1];

				console.log(	x,	y	);

}	);
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Is	an		array		of	promises	really	better	than	an		array		of	values	passed	through	a	single
promise?	Syntactically,	it's	not	much	of	an	improvement.

But	this	approach	more	closely	embraces	the	Promise	design	theory.	It's	now	easier	in	the
future	to	refactor	to	split	the	calculation	of		x		and		y		into	separate	functions.	It's	cleaner
and	more	flexible	to	let	the	calling	code	decide	how	to	orchestrate	the	two	promises	--	using
	Promise.all([	..	])		here,	but	certainly	not	the	only	option	--	rather	than	to	abstract	such
details	away	inside	of		foo(..)	.

Unwrap/Spread	Arguments

The		var	x	=	..		and		var	y	=	..		assignments	are	still	awkward	overhead.	We	can	employ
some	functional	trickery	(hat	tip	to	Reginald	Braithwaite,	@raganwald	on	Twitter)	in	a	helper
utility:

function	spread(fn)	{

				return	Function.apply.bind(	fn,	null	);

}

Promise.all(

				foo(	10,	20	)

)

.then(

				spread(	function(x,y){

								console.log(	x,	y	);				//	200	599

				}	)

)

That's	a	bit	nicer!	Of	course,	you	could	inline	the	functional	magic	to	avoid	the	extra	helper:

Promise.all(

				foo(	10,	20	)

)

.then(	Function.apply.bind(

				function(x,y){

								console.log(	x,	y	);				//	200	599

				},

				null

)	);

These	tricks	may	be	neat,	but	ES6	has	an	even	better	answer	for	us:	destructuring.	The
array	destructuring	assignment	form	looks	like	this:
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Promise.all(

				foo(	10,	20	)

)

.then(	function(msgs){

				var	[x,y]	=	msgs;

				console.log(	x,	y	);				//	200	599

}	);

But	best	of	all,	ES6	offers	the	array	parameter	destructuring	form:

Promise.all(

				foo(	10,	20	)

)

.then(	function([x,y]){

				console.log(	x,	y	);				//	200	599

}	);

We've	now	embraced	the	one-value-per-Promise	mantra,	but	kept	our	supporting	boilerplate
to	a	minimum!

Note:	For	more	information	on	ES6	destructuring	forms,	see	the	ES6	&	Beyond	title	of	this
series.

Single	Resolution

One	of	the	most	intrinsic	behaviors	of	Promises	is	that	a	Promise	can	only	be	resolved	once
(fulfillment	or	rejection).	For	many	async	use	cases,	you're	only	retrieving	a	value	once,	so
this	works	fine.

But	there's	also	a	lot	of	async	cases	that	fit	into	a	different	model	--	one	that's	more	akin	to
events	and/or	streams	of	data.	It's	not	clear	on	the	surface	how	well	Promises	can	fit	into
such	use	cases,	if	at	all.	Without	a	significant	abstraction	on	top	of	Promises,	they	will
completely	fall	short	for	handling	multiple	value	resolution.

Imagine	a	scenario	where	you	might	want	to	fire	off	a	sequence	of	async	steps	in	response
to	a	stimulus	(like	an	event)	that	can	in	fact	happen	multiple	times,	like	a	button	click.

This	probably	won't	work	the	way	you	want:
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//	`click(..)`	binds	the	`"click"`	event	to	a	DOM	element

//	`request(..)`	is	the	previously	defined	Promise-aware	Ajax

var	p	=	new	Promise(	function(resolve,reject){

				click(	"#mybtn",	resolve	);

}	);

p.then(	function(evt){

				var	btnID	=	evt.currentTarget.id;

				return	request(	"http://some.url.1/?id="	+	btnID	);

}	)

.then(	function(text){

				console.log(	text	);

}	);

The	behavior	here	only	works	if	your	application	calls	for	the	button	to	be	clicked	just	once.	If
the	button	is	clicked	a	second	time,	the		p		promise	has	already	been	resolved,	so	the
second		resolve(..)		call	would	be	ignored.

Instead,	you'd	probably	need	to	invert	the	paradigm,	creating	a	whole	new	Promise	chain	for
each	event	firing:

click(	"#mybtn",	function(evt){

				var	btnID	=	evt.currentTarget.id;

				request(	"http://some.url.1/?id="	+	btnID	)

				.then(	function(text){

								console.log(	text	);

				}	);

}	);

This	approach	will	work	in	that	a	whole	new	Promise	sequence	will	be	fired	off	for	each
	"click"		event	on	the	button.

But	beyond	just	the	ugliness	of	having	to	define	the	entire	Promise	chain	inside	the	event
handler,	this	design	in	some	respects	violates	the	idea	of	separation	of	concerns/capabilities
(SoC).	You	might	very	well	want	to	define	your	event	handler	in	a	different	place	in	your	code
from	where	you	define	the	response	to	the	event	(the	Promise	chain).	That's	pretty	awkward
to	do	in	this	pattern,	without	helper	mechanisms.

Note:	Another	way	of	articulating	this	limitation	is	that	it'd	be	nice	if	we	could	construct	some
sort	of	"observable"	that	we	can	subscribe	a	Promise	chain	to.	There	are	libraries	that	have
created	these	abstractions	(such	as	RxJS	--	http://rxjs.codeplex.com/),	but	the	abstractions
can	seem	so	heavy	that	you	can't	even	see	the	nature	of	Promises	anymore.	Such	heavy
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abstraction	brings	important	questions	to	mind	such	as	whether	(sans	Promises)	these
mechanisms	are	as	trustable	as	Promises	themselves	have	been	designed	to	be.	We'll
revisit	the	"Observable"	pattern	in	Appendix	B.

Inertia

One	concrete	barrier	to	starting	to	use	Promises	in	your	own	code	is	all	the	code	that
currently	exists	which	is	not	already	Promise-aware.	If	you	have	lots	of	callback-based	code,
it's	far	easier	to	just	keep	coding	in	that	same	style.

"A	code	base	in	motion	(with	callbacks)	will	remain	in	motion	(with	callbacks)	unless	acted
upon	by	a	smart,	Promises-aware	developer."

Promises	offer	a	different	paradigm,	and	as	such,	the	approach	to	the	code	can	be
anywhere	from	just	a	little	different	to,	in	some	cases,	radically	different.	You	have	to	be
intentional	about	it,	because	Promises	will	not	just	naturally	shake	out	from	the	same	ol'
ways	of	doing	code	that	have	served	you	well	thus	far.

Consider	a	callback-based	scenario	like	the	following:

function	foo(x,y,cb)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								cb

				);

}

foo(	11,	31,	function(err,text)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	text	);

				}

}	);

Is	it	immediately	obvious	what	the	first	steps	are	to	convert	this	callback-based	code	to
Promise-aware	code?	Depends	on	your	experience.	The	more	practice	you	have	with	it,	the
more	natural	it	will	feel.	But	certainly,	Promises	don't	just	advertise	on	the	label	exactly	how
to	do	it	--	there's	no	one-size-fits-all	answer	--	so	the	responsibility	is	up	to	you.

As	we've	covered	before,	we	definitely	need	an	Ajax	utility	that	is	Promise-aware	instead	of
callback-based,	which	we	could	call		request(..)	.	You	can	make	your	own,	as	we	have
already.	But	the	overhead	of	having	to	manually	define	Promise-aware	wrappers	for	every
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callback-based	utility	makes	it	less	likely	you'll	choose	to	refactor	to	Promise-aware	coding
at	all.

Promises	offer	no	direct	answer	to	that	limitation.	Most	Promise	libraries	do	offer	a	helper,
however.	But	even	without	a	library,	imagine	a	helper	like	this:

//	polyfill-safe	guard	check

if	(!Promise.wrap)	{

				Promise.wrap	=	function(fn)	{

								return	function()	{

												var	args	=	[].slice.call(	arguments	);

												return	new	Promise(	function(resolve,reject){

																fn.apply(

																				null,

																				args.concat(	function(err,v){

																								if	(err)	{

																												reject(	err	);

																								}

																								else	{

																												resolve(	v	);

																								}

																				}	)

																);

												}	);

								};

				};

}

OK,	that's	more	than	just	a	tiny	trivial	utility.	However,	although	it	may	look	a	bit	intimidating,
it's	not	as	bad	as	you'd	think.	It	takes	a	function	that	expects	an	error-first	style	callback	as
its	last	parameter,	and	returns	a	new	one	that	automatically	creates	a	Promise	to	return,	and
substitutes	the	callback	for	you,	wired	up	to	the	Promise	fulfillment/rejection.

Rather	than	waste	too	much	time	talking	about	how	this		Promise.wrap(..)		helper	works,
let's	just	look	at	how	we	use	it:

var	request	=	Promise.wrap(	ajax	);

request(	"http://some.url.1/"	)

.then(	..	)

..

Wow,	that	was	pretty	easy!
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	Promise.wrap(..)		does	not	produce	a	Promise.	It	produces	a	function	that	will	produce
Promises.	In	a	sense,	a	Promise-producing	function	could	be	seen	as	a	"Promise	factory."	I
propose	"promisory"	as	the	name	for	such	a	thing	("Promise"	+	"factory").

The	act	of	wrapping	a	callback-expecting	function	to	be	a	Promise-aware	function	is
sometimes	referred	to	as	"lifting"	or	"promisifying".	But	there	doesn't	seem	to	be	a	standard
term	for	what	to	call	the	resultant	function	other	than	a	"lifted	function",	so	I	like	"promisory"
better	as	I	think	it's	more	descriptive.

Note:	Promisory	isn't	a	made-up	term.	It's	a	real	word,	and	its	definition	means	to	contain	or
convey	a	promise.	That's	exactly	what	these	functions	are	doing,	so	it	turns	out	to	be	a
pretty	perfect	terminology	match!

So,		Promise.wrap(ajax)		produces	an		ajax(..)		promisory	we	call		request(..)	,	and	that
promisory	produces	Promises	for	Ajax	responses.

If	all	functions	were	already	promisories,	we	wouldn't	need	to	make	them	ourselves,	so	the
extra	step	is	a	tad	bit	of	a	shame.	But	at	least	the	wrapping	pattern	is	(usually)	repeatable	so
we	can	put	it	into	a		Promise.wrap(..)		helper	as	shown	to	aid	our	promise	coding.

So	back	to	our	earlier	example,	we	need	a	promisory	for	both		ajax(..)		and		foo(..)	:

Promises

558



//	make	a	promisory	for	`ajax(..)`

var	request	=	Promise.wrap(	ajax	);

//	refactor	`foo(..)`,	but	keep	it	externally

//	callback-based	for	compatibility	with	other

//	parts	of	the	code	for	now	--	only	use

//	`request(..)`'s	promise	internally.

function	foo(x,y,cb)	{

				request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				)

				.then(

								function	fulfilled(text){

												cb(	null,	text	);

								},

								cb

				);

}

//	now,	for	this	code's	purposes,	make	a

//	promisory	for	`foo(..)`

var	betterFoo	=	Promise.wrap(	foo	);

//	and	use	the	promisory

betterFoo(	11,	31	)

.then(

				function	fulfilled(text){

								console.log(	text	);

				},

				function	rejected(err){

								console.error(	err	);

				}

);

Of	course,	while	we're	refactoring		foo(..)		to	use	our	new		request(..)		promisory,	we
could	just	make		foo(..)		a	promisory	itself,	instead	of	remaining	callback-based	and
needing	to	make	and	use	the	subsequent		betterFoo(..)		promisory.	This	decision	just
depends	on	whether		foo(..)		needs	to	stay	callback-based	compatible	with	other	parts	of
the	code	base	or	not.

Consider:
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//	`foo(..)`	is	now	also	a	promisory	because	it

//	delegates	to	the	`request(..)`	promisory

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

foo(	11,	31	)

.then(	..	)

..

While	ES6	Promises	don't	natively	ship	with	helpers	for	such	promisory	wrapping,	most
libraries	provide	them,	or	you	can	make	your	own.	Either	way,	this	particular	limitation	of
Promises	is	addressable	without	too	much	pain	(certainly	compared	to	the	pain	of	callback
hell!).

Promise	Uncancelable

Once	you	create	a	Promise	and	register	a	fulfillment	and/or	rejection	handler	for	it,	there's
nothing	external	you	can	do	to	stop	that	progression	if	something	else	happens	to	make	that
task	moot.

Note:	Many	Promise	abstraction	libraries	provide	facilities	to	cancel	Promises,	but	this	is	a
terrible	idea!	Many	developers	wish	Promises	had	natively	been	designed	with	external
cancelation	capability,	but	the	problem	is	that	it	would	let	one	consumer/observer	of	a
Promise	affect	some	other	consumer's	ability	to	observe	that	same	Promise.	This	violates
the	future-value's	trustability	(external	immutability),	but	morever	is	the	embodiment	of	the
"action	at	a	distance"	anti-pattern
(http://en.wikipedia.org/wiki/Action_at_a_distance_%28computer_programming%29).
Regardless	of	how	useful	it	seems,	it	will	actually	lead	you	straight	back	into	the	same
nightmares	as	callbacks.

Consider	our	Promise	timeout	scenario	from	earlier:
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var	p	=	foo(	42	);

Promise.race(	[

				p,

				timeoutPromise(	3000	)

]	)

.then(

				doSomething,

				handleError

);

p.then(	function(){

				//	still	happens	even	in	the	timeout	case	:(

}	);

The	"timeout"	was	external	to	the	promise		p	,	so		p		itself	keeps	going,	which	we	probably
don't	want.

One	option	is	to	invasively	define	your	resolution	callbacks:

var	OK	=	true;

var	p	=	foo(	42	);

Promise.race(	[

				p,

				timeoutPromise(	3000	)

				.catch(	function(err){

								OK	=	false;

								throw	err;

				}	)

]	)

.then(

				doSomething,

				handleError

);

p.then(	function(){

				if	(OK)	{

								//	only	happens	if	no	timeout!	:)

				}

}	);

This	is	ugly.	It	works,	but	it's	far	from	ideal.	Generally,	you	should	try	to	avoid	such
scenarios.
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But	if	you	can't,	the	ugliness	of	this	solution	should	be	a	clue	that	cancelation	is	a
functionality	that	belongs	at	a	higher	level	of	abstraction	on	top	of	Promises.	I'd	recommend
you	look	to	Promise	abstraction	libraries	for	assistance	rather	than	hacking	it	yourself.

Note:	My	asynquence	Promise	abstraction	library	provides	just	such	an	abstraction	and	an
	abort()		capability	for	the	sequence,	all	of	which	will	be	discussed	in	Appendix	A.

A	single	Promise	is	not	really	a	flow-control	mechanism	(at	least	not	in	a	very	meaningful
sense),	which	is	exactly	what	cancelation	refers	to;	that's	why	Promise	cancelation	would
feel	awkward.

By	contrast,	a	chain	of	Promises	taken	collectively	together	--	what	I	like	to	call	a	"sequence"
--	is	a	flow	control	expression,	and	thus	it's	appropriate	for	cancelation	to	be	defined	at	that
level	of	abstraction.

No	individual	Promise	should	be	cancelable,	but	it's	sensible	for	a	sequence	to	be
cancelable,	because	you	don't	pass	around	a	sequence	as	a	single	immutable	value	like	you
do	with	a	Promise.

Promise	Performance

This	particular	limitation	is	both	simple	and	complex.

Comparing	how	many	pieces	are	moving	with	a	basic	callback-based	async	task	chain
versus	a	Promise	chain,	it's	clear	Promises	have	a	fair	bit	more	going	on,	which	means	they
are	naturally	at	least	a	tiny	bit	slower.	Think	back	to	just	the	simple	list	of	trust	guarantees
that	Promises	offer,	as	compared	to	the	ad	hoc	solution	code	you'd	have	to	layer	on	top	of
callbacks	to	achieve	the	same	protections.

More	work	to	do,	more	guards	to	protect,	means	that	Promises	are	slower	as	compared	to
naked,	untrustable	callbacks.	That	much	is	obvious,	and	probably	simple	to	wrap	your	brain
around.

But	how	much	slower?	Well...	that's	actually	proving	to	be	an	incredibly	difficult	question	to
answer	absolutely,	across	the	board.

Frankly,	it's	kind	of	an	apples-to-oranges	comparison,	so	it's	probably	the	wrong	question	to
ask.	You	should	actually	compare	whether	an	ad-hoc	callback	system	with	all	the	same
protections	manually	layered	in	is	faster	than	a	Promise	implementation.

If	Promises	have	a	legitimate	performance	limitation,	it's	more	that	they	don't	really	offer	a
line-item	choice	as	to	which	trustability	protections	you	want/need	or	not	--	you	get	them	all,
always.
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Nevertheless,	if	we	grant	that	a	Promise	is	generally	a	little	bit	slower	than	its	non-Promise,
non-trustable	callback	equivalent	--	assuming	there	are	places	where	you	feel	you	can	justify
the	lack	of	trustability	--	does	that	mean	that	Promises	should	be	avoided	across	the	board,
as	if	your	entire	application	is	driven	by	nothing	but	must-be-utterly-the-fastest	code
possible?

Sanity	check:	if	your	code	is	legitimately	like	that,	is	JavaScript	even	the	right	language
for	such	tasks?	JavaScript	can	be	optimized	to	run	applications	very	performantly	(see
Chapter	5	and	Chapter	6).	But	is	obsessing	over	tiny	performance	tradeoffs	with	Promises,
in	light	of	all	the	benefits	they	offer,	really	appropriate?

Another	subtle	issue	is	that	Promises	make	everything	async,	which	means	that	some
immediately	(synchronously)	complete	steps	still	defer	advancement	of	the	next	step	to	a
Job	(see	Chapter	1).	That	means	that	it's	possible	that	a	sequence	of	Promise	tasks	could
complete	ever-so-slightly	slower	than	the	same	sequence	wired	up	with	callbacks.

Of	course,	the	question	here	is	this:	are	these	potential	slips	in	tiny	fractions	of	performance
worth	all	the	other	articulated	benefits	of	Promises	we've	laid	out	across	this	chapter?

My	take	is	that	in	virtually	all	cases	where	you	might	think	Promise	performance	is	slow
enough	to	be	concerned,	it's	actually	an	anti-pattern	to	optimize	away	the	benefits	of
Promise	trustability	and	composability	by	avoiding	them	altogether.

Instead,	you	should	default	to	using	them	across	the	code	base,	and	then	profile	and
analyze	your	application's	hot	(critical)	paths.	Are	Promises	really	a	bottleneck,	or	are	they
just	a	theoretical	slowdown?	Only	then,	armed	with	actual	valid	benchmarks	(see	Chapter	6)
is	it	responsible	and	prudent	to	factor	out	the	Promises	in	just	those	identified	critical	areas.

Promises	are	a	little	slower,	but	in	exchange	you're	getting	a	lot	of	trustability,	non-Zalgo
predictability,	and	composability	built	in.	Maybe	the	limitation	is	not	actually	their
performance,	but	your	lack	of	perception	of	their	benefits?

Review
Promises	are	awesome.	Use	them.	They	solve	the	inversion	of	control	issues	that	plague	us
with	callbacks-only	code.

They	don't	get	rid	of	callbacks,	they	just	redirect	the	orchestration	of	those	callbacks	to	a
trustable	intermediary	mechanism	that	sits	between	us	and	another	utility.

Promise	chains	also	begin	to	address	(though	certainly	not	perfectly)	a	better	way	of
expressing	async	flow	in	sequential	fashion,	which	helps	our	brains	plan	and	maintain	async
JS	code	better.	We'll	see	an	even	better	solution	to	that	problem	in	the	next	chapter!
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In	Chapter	2,	we	identified	two	key	drawbacks	to	expressing	async	flow	control	with
callbacks:

Callback-based	async	doesn't	fit	how	our	brain	plans	out	steps	of	a	task.
Callbacks	aren't	trustable	or	composable	because	of	inversion	of	control.

In	Chapter	3,	we	detailed	how	Promises	uninvert	the	inversion	of	control	of	callbacks,
restoring	trustability/composability.

Now	we	turn	our	attention	to	expressing	async	flow	control	in	a	sequential,	synchronous-
looking	fashion.	The	"magic"	that	makes	it	possible	is	ES6	generators.

Breaking	Run-to-Completion
In	Chapter	1,	we	explained	an	expectation	that	JS	developers	almost	universally	rely	on	in
their	code:	once	a	function	starts	executing,	it	runs	until	it	completes,	and	no	other	code	can
interrupt	and	run	in	between.

As	bizarre	as	it	may	seem,	ES6	introduces	a	new	type	of	function	that	does	not	behave	with
the	run-to-completion	behavior.	This	new	type	of	function	is	called	a	"generator."

To	understand	the	implications,	let's	consider	this	example:

var	x	=	1;

function	foo()	{

				x++;

				bar();																//	<--	what	about	this	line?

				console.log(	"x:",	x	);

}

function	bar()	{

				x++;

}

foo();																				//	x:	3

In	this	example,	we	know	for	sure	that		bar()		runs	in	between		x++		and		console.log(x)	.
But	what	if		bar()		wasn't	there?	Obviously	the	result	would	be		2		instead	of		3	.

Now	let's	twist	your	brain.	What	if		bar()		wasn't	present,	but	it	could	still	somehow	run
between	the		x++		and		console.log(x)		statements?	How	would	that	be	possible?

In	preemptive	multithreaded	languages,	it	would	essentially	be	possible	for		bar()		to
"interrupt"	and	run	at	exactly	the	right	moment	between	those	two	statements.	But	JS	is	not
preemptive,	nor	is	it	(currently)	multithreaded.	And	yet,	a	cooperative	form	of	this
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"interruption"	(concurrency)	is	possible,	if		foo()		itself	could	somehow	indicate	a	"pause"	at
that	part	in	the	code.

Note:	I	use	the	word	"cooperative"	not	only	because	of	the	connection	to	classical
concurrency	terminology	(see	Chapter	1),	but	because	as	you'll	see	in	the	next	snippet,	the
ES6	syntax	for	indicating	a	pause	point	in	code	is		yield		--	suggesting	a	politely	cooperative
yielding	of	control.

Here's	the	ES6	code	to	accomplish	such	cooperative	concurrency:

var	x	=	1;

function	*foo()	{

				x++;

				yield;	//	pause!

				console.log(	"x:",	x	);

}

function	bar()	{

				x++;

}

Note:	You	will	likely	see	most	other	JS	documentation/code	that	will	format	a	generator
declaration	as		function*	foo()	{	..	}		instead	of	as	I've	done	here	with		function	*foo()	{
..	}		--	the	only	difference	being	the	stylistic	positioning	of	the		*	.	The	two	forms	are
functionally/syntactically	identical,	as	is	a	third		function*foo()	{	..	}		(no	space)	form.
There	are	arguments	for	both	styles,	but	I	basically	prefer		function	*foo..		because	it	then
matches	when	I	reference	a	generator	in	writing	with		*foo()	.	If	I	said	only		foo()	,	you
wouldn't	know	as	clearly	if	I	was	talking	about	a	generator	or	a	regular	function.	It's	purely	a
stylistic	preference.

Now,	how	can	we	run	the	code	in	that	previous	snippet	such	that		bar()		executes	at	the
point	of	the		yield		inside	of		*foo()	?

//	construct	an	iterator	`it`	to	control	the	generator

var	it	=	foo();

//	start	`foo()`	here!

it.next();

x;																								//	2

bar();

x;																								//	3

it.next();																//	x:	3
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OK,	there's	quite	a	bit	of	new	and	potentially	confusing	stuff	in	those	two	code	snippets,	so
we've	got	plenty	to	wade	through.	But	before	we	explain	the	different	mechanics/syntax	with
ES6	generators,	let's	walk	through	the	behavior	flow:

1.	 The		it	=	foo()		operation	does	not	execute	the		*foo()		generator	yet,	but	it	merely
constructs	an	iterator	that	will	control	its	execution.	More	on	iterators	in	a	bit.

2.	 The	first		it.next()		starts	the		*foo()		generator,	and	runs	the		x++		on	the	first	line	of
	*foo()	.

3.	 	*foo()		pauses	at	the		yield		statement,	at	which	point	that	first		it.next()		call
finishes.	At	the	moment,		*foo()		is	still	running	and	active,	but	it's	in	a	paused	state.

4.	 We	inspect	the	value	of		x	,	and	it's	now		2	.
5.	 We	call		bar()	,	which	increments		x		again	with		x++	.
6.	 We	inspect	the	value	of		x		again,	and	it's	now		3	.
7.	 The	final		it.next()		call	resumes	the		*foo()		generator	from	where	it	was	paused,	and

runs	the		console.log(..)		statement,	which	uses	the	current	value	of		x		of		3	.

Clearly,		*foo()		started,	but	did	not	run-to-completion	--	it	paused	at	the		yield	.	We
resumed		*foo()		later,	and	let	it	finish,	but	that	wasn't	even	required.

So,	a	generator	is	a	special	kind	of	function	that	can	start	and	stop	one	or	more	times,	and
doesn't	necessarily	ever	have	to	finish.	While	it	won't	be	terribly	obvious	yet	why	that's	so
powerful,	as	we	go	throughout	the	rest	of	this	chapter,	that	will	be	one	of	the	fundamental
building	blocks	we	use	to	construct	generators-as-async-flow-control	as	a	pattern	for	our
code.

Input	and	Output

A	generator	function	is	a	special	function	with	the	new	processing	model	we	just	alluded	to.
But	it's	still	a	function,	which	means	it	still	has	some	basic	tenets	that	haven't	changed	--
namely,	that	it	still	accepts	arguments	(aka	"input"),	and	that	it	can	still	return	a	value	(aka
"output"):

function	*foo(x,y)	{

				return	x	*	y;

}

var	it	=	foo(	6,	7	);

var	res	=	it.next();

res.value;								//	42
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We	pass	in	the	arguments		6		and		7		to		*foo(..)		as	the	parameters		x		and		y	,
respectively.	And		*foo(..)		returns	the	value		42		back	to	the	calling	code.

We	now	see	a	difference	with	how	the	generator	is	invoked	compared	to	a	normal	function.
	foo(6,7)		obviously	looks	familiar.	But	subtly,	the		*foo(..)		generator	hasn't	actually	run
yet	as	it	would	have	with	a	function.

Instead,	we're	just	creating	an	iterator	object,	which	we	assign	to	the	variable		it	,	to	control
the		*foo(..)		generator.	Then	we	call		it.next()	,	which	instructs	the		*foo(..)		generator
to	advance	from	its	current	location,	stopping	either	at	the	next		yield		or	end	of	the
generator.

The	result	of	that		next(..)		call	is	an	object	with	a		value		property	on	it	holding	whatever
value	(if	anything)	was	returned	from		*foo(..)	.	In	other	words,		yield		caused	a	value	to
be	sent	out	from	the	generator	during	the	middle	of	its	execution,	kind	of	like	an	intermediate
	return	.

Again,	it	won't	be	obvious	yet	why	we	need	this	whole	indirect	iterator	object	to	control	the
generator.	We'll	get	there,	I	promise.

Iteration	Messaging

In	addition	to	generators	accepting	arguments	and	having	return	values,	there's	even	more
powerful	and	compelling	input/output	messaging	capability	built	into	them,	via		yield		and
	next(..)	.

Consider:

function	*foo(x)	{

				var	y	=	x	*	(yield);

				return	y;

}

var	it	=	foo(	6	);

//	start	`foo(..)`

it.next();

var	res	=	it.next(	7	);

res.value;								//	42

First,	we	pass	in		6		as	the	parameter		x	.	Then	we	call		it.next()	,	and	it	starts	up
	*foo(..)	.
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Inside		*foo(..)	,	the		var	y	=	x	..		statement	starts	to	be	processed,	but	then	it	runs
across	a		yield		expression.	At	that	point,	it	pauses		*foo(..)		(in	the	middle	of	the
assignment	statement!),	and	essentially	requests	the	calling	code	to	provide	a	result	value
for	the		yield		expression.	Next,	we	call		it.next(	7	)	,	which	is	passing	the		7		value	back
in	to	be	that	result	of	the	paused		yield		expression.

So,	at	this	point,	the	assignment	statement	is	essentially		var	y	=	6	*	7	.	Now,		return	y	
returns	that		42		value	back	as	the	result	of	the		it.next(	7	)		call.

Notice	something	very	important	but	also	easily	confusing,	even	to	seasoned	JS	developers:
depending	on	your	perspective,	there's	a	mismatch	between	the		yield		and	the		next(..)	
call.	In	general,	you're	going	to	have	one	more		next(..)		call	than	you	have		yield	
statements	--	the	preceding	snippet	has	one		yield		and	two		next(..)		calls.

Why	the	mismatch?

Because	the	first		next(..)		always	starts	a	generator,	and	runs	to	the	first		yield	.	But	it's
the	second		next(..)		call	that	fulfills	the	first	paused		yield		expression,	and	the	third
	next(..)		would	fulfill	the	second		yield	,	and	so	on.

Tale	of	Two	Questions

Actually,	which	code	you're	thinking	about	primarily	will	affect	whether	there's	a	perceived
mismatch	or	not.

Consider	only	the	generator	code:

var	y	=	x	*	(yield);

return	y;

This	first		yield		is	basically	asking	a	question:	"What	value	should	I	insert	here?"

Who's	going	to	answer	that	question?	Well,	the	first		next()		has	already	run	to	get	the
generator	up	to	this	point,	so	obviously	it	can't	answer	the	question.	So,	the	second
	next(..)		call	must	answer	the	question	posed	by	the	first		yield	.

See	the	mismatch	--	second-to-first?

But	let's	flip	our	perspective.	Let's	look	at	it	not	from	the	generator's	point	of	view,	but	from
the	iterator's	point	of	view.

To	properly	illustrate	this	perspective,	we	also	need	to	explain	that	messages	can	go	in	both
directions	--		yield	..		as	an	expression	can	send	out	messages	in	response	to		next(..)	
calls,	and		next(..)		can	send	values	to	a	paused		yield		expression.	Consider	this	slightly
adjusted	code:
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function	*foo(x)	{

				var	y	=	x	*	(yield	"Hello");				//	<--	yield	a	value!

				return	y;

}

var	it	=	foo(	6	);

var	res	=	it.next();				//	first	`next()`,	don't	pass	anything

res.value;																//	"Hello"

res	=	it.next(	7	);								//	pass	`7`	to	waiting	`yield`

res.value;																//	42

	yield	..		and		next(..)		pair	together	as	a	two-way	message	passing	system	during	the
execution	of	the	generator.

So,	looking	only	at	the	iterator	code:

var	res	=	it.next();				//	first	`next()`,	don't	pass	anything

res.value;																//	"Hello"

res	=	it.next(	7	);								//	pass	`7`	to	waiting	`yield`

res.value;																//	42

Note:	We	don't	pass	a	value	to	the	first		next()		call,	and	that's	on	purpose.	Only	a	paused
	yield		could	accept	such	a	value	passed	by	a		next(..)	,	and	at	the	beginning	of	the
generator	when	we	call	the	first		next()	,	there	is	no	paused		yield		to	accept	such	a	value.
The	specification	and	all	compliant	browsers	just	silently	discard	anything	passed	to	the	first
	next()	.	It's	still	a	bad	idea	to	pass	a	value,	as	you're	just	creating	silently	"failing"	code
that's	confusing.	So,	always	start	a	generator	with	an	argument-free		next()	.

The	first		next()		call	(with	nothing	passed	to	it)	is	basically	asking	a	question:	"What	next
value	does	the		*foo(..)		generator	have	to	give	me?"	And	who	answers	this	question?	The
first		yield	"hello"		expression.

See?	No	mismatch	there.

Depending	on	who	you	think	about	asking	the	question,	there	is	either	a	mismatch	between
the		yield		and		next(..)		calls,	or	not.

But	wait!	There's	still	an	extra		next()		compared	to	the	number	of		yield		statements.	So,
that	final		it.next(7)		call	is	again	asking	the	question	about	what	next	value	the	generator
will	produce.	But	there's	no	more		yield		statements	left	to	answer,	is	there?	So	who
answers?

The		return		statement	answers	the	question!
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And	if	there	is	no		return		in	your	generator	--		return		is	certainly	not	any	more	required	in
generators	than	in	regular	functions	--	there's	always	an	assumed/implicit		return;		(aka
	return	undefined;	),	which	serves	the	purpose	of	default	answering	the	question	posed	by
the	final		it.next(7)		call.

These	questions	and	answers	--	the	two-way	message	passing	with		yield		and		next(..)		-
-	are	quite	powerful,	but	it's	not	obvious	at	all	how	these	mechanisms	are	connected	to
async	flow	control.	We're	getting	there!

Multiple	Iterators

It	may	appear	from	the	syntactic	usage	that	when	you	use	an	iterator	to	control	a	generator,
you're	controlling	the	declared	generator	function	itself.	But	there's	a	subtlety	that's	easy	to
miss:	each	time	you	construct	an	iterator,	you	are	implicitly	constructing	an	instance	of	the
generator	which	that	iterator	will	control.

You	can	have	multiple	instances	of	the	same	generator	running	at	the	same	time,	and	they
can	even	interact:

function	*foo()	{

				var	x	=	yield	2;

				z++;

				var	y	=	yield	(x	*	z);

				console.log(	x,	y,	z	);

}

var	z	=	1;

var	it1	=	foo();

var	it2	=	foo();

var	val1	=	it1.next().value;												//	2	<--	yield	2

var	val2	=	it2.next().value;												//	2	<--	yield	2

val1	=	it1.next(	val2	*	10	).value;								//	40		<--	x:20,		z:2

val2	=	it2.next(	val1	*	5	).value;								//	600	<--	x:200,	z:3

it1.next(	val2	/	2	);																				//	y:300

																																								//	20	300	3

it2.next(	val1	/	4	);																				//	y:10

																																								//	200	10	3

Warning:	The	most	common	usage	of	multiple	instances	of	the	same	generator	running
concurrently	is	not	such	interactions,	but	when	the	generator	is	producing	its	own	values
without	input,	perhaps	from	some	independently	connected	resource.	We'll	talk	more	about
value	production	in	the	next	section.
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Let's	briefly	walk	through	the	processing:

1.	 Both	instances	of		*foo()		are	started	at	the	same	time,	and	both		next()		calls	reveal	a
	value		of		2		from	the		yield	2		statements,	respectively.

2.	 	val2	*	10		is		2	*	10	,	which	is	sent	into	the	first	generator	instance		it1	,	so	that		x	
gets	value		20	.		z		is	incremented	from		1		to		2	,	and	then		20	*	2		is		yield	ed	out,
setting		val1		to		40	.

3.	 	val1	*	5		is		40	*	5	,	which	is	sent	into	the	second	generator	instance		it2	,	so	that
	x		gets	value		200	.		z		is	incremented	again,	from		2		to		3	,	and	then		200	*	3		is
	yield	ed	out,	setting		val2		to		600	.

4.	 	val2	/	2		is		600	/	2	,	which	is	sent	into	the	first	generator	instance		it1	,	so	that		y	
gets	value		300	,	then	printing	out		20	300	3		for	its		x	y	z		values,	respectively.

5.	 	val1	/	4		is		40	/	4	,	which	is	sent	into	the	second	generator	instance		it2	,	so	that
	y		gets	value		10	,	then	printing	out		200	10	3		for	its		x	y	z		values,	respectively.

That's	a	"fun"	example	to	run	through	in	your	mind.	Did	you	keep	it	straight?

Interleaving

Recall	this	scenario	from	the	"Run-to-completion"	section	of	Chapter	1:

var	a	=	1;

var	b	=	2;

function	foo()	{

				a++;

				b	=	b	*	a;

				a	=	b	+	3;

}

function	bar()	{

				b--;

				a	=	8	+	b;

				b	=	a	*	2;

}

With	normal	JS	functions,	of	course	either		foo()		can	run	completely	first,	or		bar()		can
run	completely	first,	but		foo()		cannot	interleave	its	individual	statements	with		bar()	.	So,
there	are	only	two	possible	outcomes	to	the	preceding	program.

However,	with	generators,	clearly	interleaving	(even	in	the	middle	of	statements!)	is	possible:
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var	a	=	1;

var	b	=	2;

function	*foo()	{

				a++;

				yield;

				b	=	b	*	a;

				a	=	(yield	b)	+	3;

}

function	*bar()	{

				b--;

				yield;

				a	=	(yield	8)	+	b;

				b	=	a	*	(yield	2);

}

Depending	on	what	respective	order	the	iterators	controlling		*foo()		and		*bar()		are
called,	the	preceding	program	could	produce	several	different	results.	In	other	words,	we
can	actually	illustrate	(in	a	sort	of	fake-ish	way)	the	theoretical	"threaded	race	conditions"
circumstances	discussed	in	Chapter	1,	by	interleaving	the	two	generator	interations	over	the
same	shared	variables.

First,	let's	make	a	helper	called		step(..)		that	controls	an	iterator:

function	step(gen)	{

				var	it	=	gen();

				var	last;

				return	function()	{

								//	whatever	is	`yield`ed	out,	just

								//	send	it	right	back	in	the	next	time!

								last	=	it.next(	last	).value;

				};

}

	step(..)		initializes	a	generator	to	create	its		it		iterator,	then	returns	a	function	which,
when	called,	advances	the	iterator	by	one	step.	Additionally,	the	previously		yield	ed	out
value	is	sent	right	back	in	at	the	next	step.	So,		yield	8		will	just	become		8		and		yield	b	
will	just	be		b		(whatever	it	was	at	the	time	of		yield	).

Now,	just	for	fun,	let's	experiment	to	see	the	effects	of	interleaving	these	different	chunks	of
	*foo()		and		*bar()	.	We'll	start	with	the	boring	base	case,	making	sure		*foo()		totally
finishes	before		*bar()		(just	like	we	did	in	Chapter	1):
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//	make	sure	to	reset	`a`	and	`b`

a	=	1;

b	=	2;

var	s1	=	step(	foo	);

var	s2	=	step(	bar	);

//	run	`*foo()`	completely	first

s1();

s1();

s1();

//	now	run	`*bar()`

s2();

s2();

s2();

s2();

console.log(	a,	b	);				//	11	22

The	end	result	is		11		and		22	,	just	as	it	was	in	the	Chapter	1	version.	Now	let's	mix	up	the
interleaving	ordering	and	see	how	it	changes	the	final	values	of		a		and		b	:

//	make	sure	to	reset	`a`	and	`b`

a	=	1;

b	=	2;

var	s1	=	step(	foo	);

var	s2	=	step(	bar	);

s2();								//	b--;

s2();								//	yield	8

s1();								//	a++;

s2();								//	a	=	8	+	b;

												//	yield	2

s1();								//	b	=	b	*	a;

												//	yield	b

s1();								//	a	=	b	+	3;

s2();								//	b	=	a	*	2;

Before	I	tell	you	the	results,	can	you	figure	out	what		a		and		b		are	after	the	preceding
program?	No	cheating!

console.log(	a,	b	);				//	12	18
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Note:	As	an	exercise	for	the	reader,	try	to	see	how	many	other	combinations	of	results	you
can	get	back	rearranging	the	order	of	the		s1()		and		s2()		calls.	Don't	forget	you'll	always
need	three		s1()		calls	and	four		s2()		calls.	Recall	the	discussion	earlier	about	matching
	next()		with		yield		for	the	reasons	why.

You	almost	certainly	won't	want	to	intentionally	create	this	level	of	interleaving	confusion,	as
it	creates	incredibly	difficult	to	understand	code.	But	the	exercise	is	interesting	and
instructive	to	understand	more	about	how	multiple	generators	can	run	concurrently	in	the
same	shared	scope,	because	there	will	be	places	where	this	capability	is	quite	useful.

We'll	discuss	generator	concurrency	in	more	detail	at	the	end	of	this	chapter.

Generator'ing	Values
In	the	previous	section,	we	mentioned	an	interesting	use	for	generators,	as	a	way	to	produce
values.	This	is	not	the	main	focus	in	this	chapter,	but	we'd	be	remiss	if	we	didn't	cover	the
basics,	especially	because	this	use	case	is	essentially	the	origin	of	the	name:	generators.

We're	going	to	take	a	slight	diversion	into	the	topic	of	iterators	for	a	bit,	but	we'll	circle	back
to	how	they	relate	to	generators	and	using	a	generator	to	generate	values.

Producers	and	Iterators

Imagine	you're	producing	a	series	of	values	where	each	value	has	a	definable	relationship	to
the	previous	value.	To	do	this,	you're	going	to	need	a	stateful	producer	that	remembers	the
last	value	it	gave	out.

You	can	implement	something	like	that	straightforwardly	using	a	function	closure	(see	the
Scope	&	Closures	title	of	this	series):
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var	gimmeSomething	=	(function(){

				var	nextVal;

				return	function(){

								if	(nextVal	===	undefined)	{

												nextVal	=	1;

								}

								else	{

												nextVal	=	(3	*	nextVal)	+	6;

								}

								return	nextVal;

				};

})();

gimmeSomething();								//	1

gimmeSomething();								//	9

gimmeSomething();								//	33

gimmeSomething();								//	105

Note:	The		nextVal		computation	logic	here	could	have	been	simplified,	but	conceptually,	we
don't	want	to	calculate	the	next	value	(aka		nextVal	)	until	the	next		gimmeSomething()		call
happens,	because	in	general	that	could	be	a	resource-leaky	design	for	producers	of	more
persistent	or	resource-limited	values	than	simple		number	s.

Generating	an	arbitrary	number	series	isn't	a	terribly	realistic	example.	But	what	if	you	were
generating	records	from	a	data	source?	You	could	imagine	much	the	same	code.

In	fact,	this	task	is	a	very	common	design	pattern,	usually	solved	by	iterators.	An	iterator	is	a
well-defined	interface	for	stepping	through	a	series	of	values	from	a	producer.	The	JS
interface	for	iterators,	as	it	is	in	most	languages,	is	to	call		next()		each	time	you	want	the
next	value	from	the	producer.

We	could	implement	the	standard	iterator	interface	for	our	number	series	producer:
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var	something	=	(function(){

				var	nextVal;

				return	{

								//	needed	for	`for..of`	loops

								[Symbol.iterator]:	function(){	return	this;	},

								//	standard	iterator	interface	method

								next:	function(){

												if	(nextVal	===	undefined)	{

																nextVal	=	1;

												}

												else	{

																nextVal	=	(3	*	nextVal)	+	6;

												}

												return	{	done:false,	value:nextVal	};

								}

				};

})();

something.next().value;								//	1

something.next().value;								//	9

something.next().value;								//	33

something.next().value;								//	105

Note:	We'll	explain	why	we	need	the		[Symbol.iterator]:	..		part	of	this	code	snippet	in	the
"Iterables"	section.	Syntactically	though,	two	ES6	features	are	at	play.	First,	the		[	..	]	
syntax	is	called	a	computed	property	name	(see	the	this	&	Object	Prototypes	title	of	this
series).	It's	a	way	in	an	object	literal	definition	to	specify	an	expression	and	use	the	result	of
that	expression	as	the	name	for	the	property.	Next,		Symbol.iterator		is	one	of	ES6's
predefined	special		Symbol		values	(see	the	ES6	&	Beyond	title	of	this	book	series).

The		next()		call	returns	an	object	with	two	properties:		done		is	a		boolean		value	signaling
the	iterator's	complete	status;		value		holds	the	iteration	value.

ES6	also	adds	the		for..of		loop,	which	means	that	a	standard	iterator	can	automatically	be
consumed	with	native	loop	syntax:

for	(var	v	of	something)	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969
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Note:	Because	our		something		iterator	always	returns		done:false	,	this		for..of		loop	would
run	forever,	which	is	why	we	put	the		break		conditional	in.	It's	totally	OK	for	iterators	to	be
never-ending,	but	there	are	also	cases	where	the	iterator	will	run	over	a	finite	set	of	values
and	eventually	return	a		done:true	.

The		for..of		loop	automatically	calls		next()		for	each	iteration	--	it	doesn't	pass	any	values
in	to	the		next()		--	and	it	will	automatically	terminate	on	receiving	a		done:true	.	It's	quite
handy	for	looping	over	a	set	of	data.

Of	course,	you	could	manually	loop	over	iterators,	calling		next()		and	checking	for	the
	done:true		condition	to	know	when	to	stop:

for	(

				var	ret;

				(ret	=	something.next())	&&	!ret.done;

)	{

				console.log(	ret.value	);

				//	don't	let	the	loop	run	forever!

				if	(ret.value	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969

Note:	This	manual		for		approach	is	certainly	uglier	than	the	ES6		for..of		loop	syntax,	but
its	advantage	is	that	it	affords	you	the	opportunity	to	pass	in	values	to	the		next(..)		calls	if
necessary.

In	addition	to	making	your	own	iterators,	many	built-in	data	structures	in	JS	(as	of	ES6),	like
	array	s,	also	have	default	iterators:

var	a	=	[1,3,5,7,9];

for	(var	v	of	a)	{

				console.log(	v	);

}

//	1	3	5	7	9

The		for..of		loop	asks		a		for	its	iterator,	and	automatically	uses	it	to	iterate	over		a	's
values.

Note:	It	may	seem	a	strange	omission	by	ES6,	but	regular		object	s	intentionally	do	not
come	with	a	default	iterator	the	way		array	s	do.	The	reasons	go	deeper	than	we	will	cover
here.	If	all	you	want	is	to	iterate	over	the	properties	of	an	object	(with	no	particular	guarantee
of	ordering),		Object.keys(..)		returns	an		array	,	which	can	then	be	used	like		for	(var	k	of
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Object.keys(obj))	{	..	.	Such	a		for..of		loop	over	an	object's	keys	would	be	similar	to	a
	for..in		loop,	except	that		Object.keys(..)		does	not	include	properties	from	the
	[[Prototype]]		chain	while		for..in		does	(see	the	this	&	Object	Prototypes	title	of	this
series).

Iterables

The		something		object	in	our	running	example	is	called	an	iterator,	as	it	has	the		next()	
method	on	its	interface.	But	a	closely	related	term	is	iterable,	which	is	an		object		that
contains	an	iterator	that	can	iterate	over	its	values.

As	of	ES6,	the	way	to	retrieve	an	iterator	from	an	iterable	is	that	the	iterable	must	have	a
function	on	it,	with	the	name	being	the	special	ES6	symbol	value		Symbol.iterator	.	When
this	function	is	called,	it	returns	an	iterator.	Though	not	required,	generally	each	call	should
return	a	fresh	new	iterator.

	a		in	the	previous	snippet	is	an	iterable.	The		for..of		loop	automatically	calls	its
	Symbol.iterator		function	to	construct	an	iterator.	But	we	could	of	course	call	the	function
manually,	and	use	the	iterator	it	returns:

var	a	=	[1,3,5,7,9];

var	it	=	a[Symbol.iterator]();

it.next().value;				//	1

it.next().value;				//	3

it.next().value;				//	5

..

In	the	previous	code	listing	that	defined		something	,	you	may	have	noticed	this	line:

[Symbol.iterator]:	function(){	return	this;	}

That	little	bit	of	confusing	code	is	making	the		something		value	--	the	interface	of	the
	something		iterator	--	also	an	iterable;	it's	now	both	an	iterable	and	an	iterator.	Then,	we
pass		something		to	the		for..of		loop:

for	(var	v	of	something)	{

				..

}
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The		for..of		loop	expects		something		to	be	an	iterable,	so	it	looks	for	and	calls	its
	Symbol.iterator		function.	We	defined	that	function	to	simply		return	this	,	so	it	just	gives
itself	back,	and	the		for..of		loop	is	none	the	wiser.

Generator	Iterator

Let's	turn	our	attention	back	to	generators,	in	the	context	of	iterators.	A	generator	can	be
treated	as	a	producer	of	values	that	we	extract	one	at	a	time	through	an	iterator	interface's
	next()		calls.

So,	a	generator	itself	is	not	technically	an	iterable,	though	it's	very	similar	--	when	you
execute	the	generator,	you	get	an	iterator	back:

function	*foo(){	..	}

var	it	=	foo();

We	can	implement	the		something		infinite	number	series	producer	from	earlier	with	a
generator,	like	this:

function	*something()	{

				var	nextVal;

				while	(true)	{

								if	(nextVal	===	undefined)	{

												nextVal	=	1;

								}

								else	{

												nextVal	=	(3	*	nextVal)	+	6;

								}

								yield	nextVal;

				}

}

Note:	A		while..true		loop	would	normally	be	a	very	bad	thing	to	include	in	a	real	JS
program,	at	least	if	it	doesn't	have	a		break		or		return		in	it,	as	it	would	likely	run	forever,
synchronously,	and	block/lock-up	the	browser	UI.	However,	in	a	generator,	such	a	loop	is
generally	totally	OK	if	it	has	a		yield		in	it,	as	the	generator	will	pause	at	each	iteration,
	yield	ing	back	to	the	main	program	and/or	to	the	event	loop	queue.	To	put	it	glibly,
"generators	put	the		while..true		back	in	JS	programming!"

That's	a	fair	bit	cleaner	and	simpler,	right?	Because	the	generator	pauses	at	each		yield	,
the	state	(scope)	of	the	function		*something()		is	kept	around,	meaning	there's	no	need	for
the	closure	boilerplate	to	preserve	variable	state	across	calls.
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Not	only	is	it	simpler	code	--	we	don't	have	to	make	our	own	iterator	interface	--	it	actually	is
more	reason-able	code,	because	it	more	clearly	expresses	the	intent.	For	example,	the
	while..true		loop	tells	us	the	generator	is	intended	to	run	forever	--	to	keep	generating
values	as	long	as	we	keep	asking	for	them.

And	now	we	can	use	our	shiny	new		*something()		generator	with	a		for..of		loop,	and	you'll
see	it	works	basically	identically:

for	(var	v	of	something())	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								break;

				}

}

//	1	9	33	105	321	969

But	don't	skip	over		for	(var	v	of	something())	..	!	We	didn't	just	reference		something		as	a
value	like	in	earlier	examples,	but	instead	called	the		*something()		generator	to	get	its
iterator	for	the		for..of		loop	to	use.

If	you're	paying	close	attention,	two	questions	may	arise	from	this	interaction	between	the
generator	and	the	loop:

Why	couldn't	we	say		for	(var	v	of	something)	..	?	Because		something		here	is	a
generator,	which	is	not	an	iterable.	We	have	to	call		something()		to	construct	a	producer
for	the		for..of		loop	to	iterate	over.
The		something()		call	produces	an	iterator,	but	the		for..of		loop	wants	an	iterable,
right?	Yep.	The	generator's	iterator	also	has	a		Symbol.iterator		function	on	it,	which
basically	does	a		return	this	,	just	like	the		something		iterable	we	defined	earlier.	In
other	words,	a	generator's	iterator	is	also	an	iterable!

Stopping	the	Generator

In	the	previous	example,	it	would	appear	the	iterator	instance	for	the		*something()	
generator	was	basically	left	in	a	suspended	state	forever	after	the		break		in	the	loop	was
called.

But	there's	a	hidden	behavior	that	takes	care	of	that	for	you.	"Abnormal	completion"	(i.e.,
"early	termination")	of	the		for..of		loop	--	generally	caused	by	a		break	,		return	,	or	an
uncaught	exception	--	sends	a	signal	to	the	generator's	iterator	for	it	to	terminate.
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Note:	Technically,	the		for..of		loop	also	sends	this	signal	to	the	iterator	at	the	normal
completion	of	the	loop.	For	a	generator,	that's	essentially	a	moot	operation,	as	the
generator's	iterator	had	to	complete	first	so	the		for..of		loop	completed.	However,	custom
iterators	might	desire	to	receive	this	additional	signal	from		for..of		loop	consumers.

While	a		for..of		loop	will	automatically	send	this	signal,	you	may	wish	to	send	the	signal
manually	to	an	iterator;	you	do	this	by	calling		return(..)	.

If	you	specify	a		try..finally		clause	inside	the	generator,	it	will	always	be	run	even	when
the	generator	is	externally	completed.	This	is	useful	if	you	need	to	clean	up	resources
(database	connections,	etc.):

function	*something()	{

				try	{

								var	nextVal;

								while	(true)	{

												if	(nextVal	===	undefined)	{

																nextVal	=	1;

												}

												else	{

																nextVal	=	(3	*	nextVal)	+	6;

												}

												yield	nextVal;

								}

				}

				//	cleanup	clause

				finally	{

								console.log(	"cleaning	up!"	);

				}

}

The	earlier	example	with		break		in	the		for..of		loop	will	trigger	the		finally		clause.	But
you	could	instead	manually	terminate	the	generator's	iterator	instance	from	the	outside	with
	return(..)	:
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var	it	=	something();

for	(var	v	of	it)	{

				console.log(	v	);

				//	don't	let	the	loop	run	forever!

				if	(v	>	500)	{

								console.log(

												//	complete	the	generator's	iterator

												it.return(	"Hello	World"	).value

								);

								//	no	`break`	needed	here

				}

}

//	1	9	33	105	321	969

//	cleaning	up!

//	Hello	World

When	we	call		it.return(..)	,	it	immediately	terminates	the	generator,	which	of	course	runs
the		finally		clause.	Also,	it	sets	the	returned		value		to	whatever	you	passed	in	to
	return(..)	,	which	is	how		"Hello	World"		comes	right	back	out.	We	also	don't	need	to
include	a		break		now	because	the	generator's	iterator	is	set	to		done:true	,	so	the		for..of	
loop	will	terminate	on	its	next	iteration.

Generators	owe	their	namesake	mostly	to	this	consuming	produced	values	use.	But	again,
that's	just	one	of	the	uses	for	generators,	and	frankly	not	even	the	main	one	we're
concerned	with	in	the	context	of	this	book.

But	now	that	we	more	fully	understand	some	of	the	mechanics	of	how	they	work,	we	can
next	turn	our	attention	to	how	generators	apply	to	async	concurrency.

Iterating	Generators	Asynchronously
What	do	generators	have	to	do	with	async	coding	patterns,	fixing	problems	with	callbacks,
and	the	like?	Let's	get	to	answering	that	important	question.

We	should	revisit	one	of	our	scenarios	from	Chapter	3.	Let's	recall	the	callback	approach:
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function	foo(x,y,cb)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								cb

				);

}

foo(	11,	31,	function(err,text)	{

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	text	);

				}

}	);

If	we	wanted	to	express	this	same	task	flow	control	with	a	generator,	we	could	do:

function	foo(x,y)	{

				ajax(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y,

								function(err,data){

												if	(err)	{

																//	throw	an	error	into	`*main()`

																it.throw(	err	);

												}

												else	{

																//	resume	`*main()`	with	received	`data`

																it.next(	data	);

												}

								}

				);

}

function	*main()	{

				try	{

								var	text	=	yield	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

var	it	=	main();

//	start	it	all	up!

it.next();
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At	first	glance,	this	snippet	is	longer,	and	perhaps	a	little	more	complex	looking,	than	the
callback	snippet	before	it.	But	don't	let	that	impression	get	you	off	track.	The	generator
snippet	is	actually	much	better!	But	there's	a	lot	going	on	for	us	to	explain.

First,	let's	look	at	this	part	of	the	code,	which	is	the	most	important:

var	text	=	yield	foo(	11,	31	);

console.log(	text	);

Think	about	how	that	code	works	for	a	moment.	We're	calling	a	normal	function		foo(..)	
and	we're	apparently	able	to	get	back	the		text		from	the	Ajax	call,	even	though	it's
asynchronous.

How	is	that	possible?	If	you	recall	the	beginning	of	Chapter	1,	we	had	almost	identical	code:

var	data	=	ajax(	"..url	1.."	);

console.log(	data	);

And	that	code	didn't	work!	Can	you	spot	the	difference?	It's	the		yield		used	in	a	generator.

That's	the	magic!	That's	what	allows	us	to	have	what	appears	to	be	blocking,	synchronous
code,	but	it	doesn't	actually	block	the	whole	program;	it	only	pauses/blocks	the	code	in	the
generator	itself.

In		yield	foo(11,31)	,	first	the		foo(11,31)		call	is	made,	which	returns	nothing	(aka
	undefined	),	so	we're	making	a	call	to	request	data,	but	we're	actually	then	doing		yield
undefined	.	That's	OK,	because	the	code	is	not	currently	relying	on	a		yield	ed	value	to	do
anything	interesting.	We'll	revisit	this	point	later	in	the	chapter.

We're	not	using		yield		in	a	message	passing	sense	here,	only	in	a	flow	control	sense	to
pause/block.	Actually,	it	will	have	message	passing,	but	only	in	one	direction,	after	the
generator	is	resumed.

So,	the	generator	pauses	at	the		yield	,	essentially	asking	the	question,	"what	value	should
I	return	to	assign	to	the	variable		text	?"	Who's	going	to	answer	that	question?

Look	at		foo(..)	.	If	the	Ajax	request	is	successful,	we	call:

it.next(	data	);

That's	resuming	the	generator	with	the	response	data,	which	means	that	our	paused		yield	
expression	receives	that	value	directly,	and	then	as	it	restarts	the	generator	code,	that	value
gets	assigned	to	the	local	variable		text	.
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Pretty	cool,	huh?

Take	a	step	back	and	consider	the	implications.	We	have	totally	synchronous-looking	code
inside	the	generator	(other	than	the		yield		keyword	itself),	but	hidden	behind	the	scenes,
inside	of		foo(..)	,	the	operations	can	complete	asynchronously.

That's	huge!	That's	a	nearly	perfect	solution	to	our	previously	stated	problem	with	callbacks
not	being	able	to	express	asynchrony	in	a	sequential,	synchronous	fashion	that	our	brains
can	relate	to.

In	essence,	we	are	abstracting	the	asynchrony	away	as	an	implementation	detail,	so	that	we
can	reason	synchronously/sequentially	about	our	flow	control:	"Make	an	Ajax	request,	and
when	it	finishes	print	out	the	response."	And	of	course,	we	just	expressed	two	steps	in	the
flow	control,	but	this	same	capability	extends	without	bounds,	to	let	us	express	however
many	steps	we	need	to.

Tip:	This	is	such	an	important	realization,	just	go	back	and	read	the	last	three	paragraphs
again	to	let	it	sink	in!

Synchronous	Error	Handling

But	the	preceding	generator	code	has	even	more	goodness	to	yield	to	us.	Let's	turn	our
attention	to	the		try..catch		inside	the	generator:

try	{

				var	text	=	yield	foo(	11,	31	);

				console.log(	text	);

}

catch	(err)	{

				console.error(	err	);

}

How	does	this	work?	The		foo(..)		call	is	asynchronously	completing,	and	doesn't
	try..catch		fail	to	catch	asynchronous	errors,	as	we	looked	at	in	Chapter	3?

We	already	saw	how	the		yield		lets	the	assignment	statement	pause	to	wait	for		foo(..)		to
finish,	so	that	the	completed	response	can	be	assigned	to		text	.	The	awesome	part	is	that
this		yield		pausing	also	allows	the	generator	to		catch		an	error.	We	throw	that	error	into
the	generator	with	this	part	of	the	earlier	code	listing:

if	(err)	{

				//	throw	an	error	into	`*main()`

				it.throw(	err	);

}
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The		yield	-pause	nature	of	generators	means	that	not	only	do	we	get	synchronous-looking
	return		values	from	async	function	calls,	but	we	can	also	synchronously		catch		errors	from
those	async	function	calls!

So	we've	seen	we	can	throw	errors	into	a	generator,	but	what	about	throwing	errors	out	of	a
generator?	Exactly	as	you'd	expect:

function	*main()	{

				var	x	=	yield	"Hello	World";

				yield	x.toLowerCase();				//	cause	an	exception!

}

var	it	=	main();

it.next().value;												//	Hello	World

try	{

				it.next(	42	);

}

catch	(err)	{

				console.error(	err	);				//	TypeError

}

Of	course,	we	could	have	manually	thrown	an	error	with		throw	..		instead	of	causing	an
exception.

We	can	even		catch		the	same	error	that	we		throw(..)		into	the	generator,	essentially	giving
the	generator	a	chance	to	handle	it	but	if	it	doesn't,	the	iterator	code	must	handle	it:

function	*main()	{

				var	x	=	yield	"Hello	World";

				//	never	gets	here

				console.log(	x	);

}

var	it	=	main();

it.next();

try	{

				//	will	`*main()`	handle	this	error?	we'll	see!

				it.throw(	"Oops"	);

}

catch	(err)	{

				//	nope,	didn't	handle	it!

				console.error(	err	);												//	Oops

}
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Synchronous-looking	error	handling	(via		try..catch	)	with	async	code	is	a	huge	win	for
readability	and	reason-ability.

Generators	+	Promises
In	our	previous	discussion,	we	showed	how	generators	can	be	iterated	asynchronously,
which	is	a	huge	step	forward	in	sequential	reason-ability	over	the	spaghetti	mess	of
callbacks.	But	we	lost	something	very	important:	the	trustability	and	composability	of
Promises	(see	Chapter	3)!

Don't	worry	--	we	can	get	that	back.	The	best	of	all	worlds	in	ES6	is	to	combine	generators
(synchronous-looking	async	code)	with	Promises	(trustable	and	composable).

But	how?

Recall	from	Chapter	3	the	Promise-based	approach	to	our	running	Ajax	example:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

foo(	11,	31	)

.then(

				function(text){

								console.log(	text	);

				},

				function(err){

								console.error(	err	);

				}

);

In	our	earlier	generator	code	for	the	running	Ajax	example,		foo(..)		returned	nothing
(	undefined	),	and	our	iterator	control	code	didn't	care	about	that		yield	ed	value.

But	here	the	Promise-aware		foo(..)		returns	a	promise	after	making	the	Ajax	call.	That
suggests	that	we	could	construct	a	promise	with		foo(..)		and	then		yield		it	from	the
generator,	and	then	the	iterator	control	code	would	receive	that	promise.

But	what	should	the	iterator	do	with	the	promise?

It	should	listen	for	the	promise	to	resolve	(fulfillment	or	rejection),	and	then	either	resume	the
generator	with	the	fulfillment	message	or	throw	an	error	into	the	generator	with	the	rejection
reason.

Generators

588



Let	me	repeat	that,	because	it's	so	important.	The	natural	way	to	get	the	most	out	of
Promises	and	generators	is	to		yield		a	Promise,	and	wire	that	Promise	to	control	the
generator's	iterator.

Let's	give	it	a	try!	First,	we'll	put	the	Promise-aware		foo(..)		together	with	the	generator
	*main()	:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

function	*main()	{

				try	{

								var	text	=	yield	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

The	most	powerful	revelation	in	this	refactor	is	that	the	code	inside		*main()		did	not	have
to	change	at	all!	Inside	the	generator,	whatever	values	are		yield	ed	out	is	just	an	opaque
implementation	detail,	so	we're	not	even	aware	it's	happening,	nor	do	we	need	to	worry
about	it.

But	how	are	we	going	to	run		*main()		now?	We	still	have	some	of	the	implementation
plumbing	work	to	do,	to	receive	and	wire	up	the		yield	ed	promise	so	that	it	resumes	the
generator	upon	resolution.	We'll	start	by	trying	that	manually:

var	it	=	main();

var	p	=	it.next().value;

//	wait	for	the	`p`	promise	to	resolve

p.then(

				function(text){

								it.next(	text	);

				},

				function(err){

								it.throw(	err	);

				}

);

Actually,	that	wasn't	so	painful	at	all,	was	it?
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This	snippet	should	look	very	similar	to	what	we	did	earlier	with	the	manually	wired
generator	controlled	by	the	error-first	callback.	Instead	of	an		if	(err)	{	it.throw..	,	the
promise	already	splits	fulfillment	(success)	and	rejection	(failure)	for	us,	but	otherwise	the
iterator	control	is	identical.

Now,	we've	glossed	over	some	important	details.

Most	importantly,	we	took	advantage	of	the	fact	that	we	knew	that		*main()		only	had	one
Promise-aware	step	in	it.	What	if	we	wanted	to	be	able	to	Promise-drive	a	generator	no
matter	how	many	steps	it	has?	We	certainly	don't	want	to	manually	write	out	the	Promise
chain	differently	for	each	generator!	What	would	be	much	nicer	is	if	there	was	a	way	to
repeat	(aka	"loop"	over)	the	iteration	control,	and	each	time	a	Promise	comes	out,	wait	on	its
resolution	before	continuing.

Also,	what	if	the	generator	throws	out	an	error	(intentionally	or	accidentally)	during	the
	it.next(..)		call?	Should	we	quit,	or	should	we		catch		it	and	send	it	right	back	in?
Similarly,	what	if	we		it.throw(..)		a	Promise	rejection	into	the	generator,	but	it's	not
handled,	and	comes	right	back	out?

Promise-Aware	Generator	Runner

The	more	you	start	to	explore	this	path,	the	more	you	realize,	"wow,	it'd	be	great	if	there	was
just	some	utility	to	do	it	for	me."	And	you're	absolutely	correct.	This	is	such	an	important
pattern,	and	you	don't	want	to	get	it	wrong	(or	exhaust	yourself	repeating	it	over	and	over),
so	your	best	bet	is	to	use	a	utility	that	is	specifically	designed	to	run	Promise-	yield	ing
generators	in	the	manner	we've	illustrated.

Several	Promise	abstraction	libraries	provide	just	such	a	utility,	including	my	asynquence
library	and	its		runner(..)	,	which	will	be	discussed	in	Appendix	A	of	this	book.

But	for	the	sake	of	learning	and	illustration,	let's	just	define	our	own	standalone	utility	that
we'll	call		run(..)	:
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//	thanks	to	Benjamin	Gruenbaum	(@benjamingr	on	GitHub)	for

//	big	improvements	here!

function	run(gen)	{

				var	args	=	[].slice.call(	arguments,	1),	it;

				//	initialize	the	generator	in	the	current	context

				it	=	gen.apply(	this,	args	);

				//	return	a	promise	for	the	generator	completing

				return	Promise.resolve()

								.then(	function	handleNext(value){

												//	run	to	the	next	yielded	value

												var	next	=	it.next(	value	);

												return	(function	handleResult(next){

																//	generator	has	completed	running?

																if	(next.done)	{

																				return	next.value;

																}

																//	otherwise	keep	going

																else	{

																				return	Promise.resolve(	next.value	)

																								.then(

																												//	resume	the	async	loop	on

																												//	success,	sending	the	resolved

																												//	value	back	into	the	generator

																												handleNext,

																												//	if	`value`	is	a	rejected

																												//	promise,	propagate	error	back

																												//	into	the	generator	for	its	own

																												//	error	handling

																												function	handleErr(err)	{

																																return	Promise.resolve(

																																				it.throw(	err	)

																																)

																																.then(	handleResult	);

																												}

																								);

																}

												})(next);

								}	);

}

As	you	can	see,	it's	a	quite	a	bit	more	complex	than	you'd	probably	want	to	author	yourself,
and	you	especially	wouldn't	want	to	repeat	this	code	for	each	generator	you	use.	So,	a
utility/library	helper	is	definitely	the	way	to	go.	Nevertheless,	I	encourage	you	to	spend	a	few
minutes	studying	that	code	listing	to	get	a	better	sense	of	how	to	manage	the
generator+Promise	negotiation.
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How	would	you	use		run(..)		with		*main()		in	our	running	Ajax	example?

function	*main()	{

				//	..

}

run(	main	);

That's	it!	The	way	we	wired		run(..)	,	it	will	automatically	advance	the	generator	you	pass	to
it,	asynchronously	until	completion.

Note:	The		run(..)		we	defined	returns	a	promise	which	is	wired	to	resolve	once	the
generator	is	complete,	or	receive	an	uncaught	exception	if	the	generator	doesn't	handle	it.
We	don't	show	that	capability	here,	but	we'll	come	back	to	it	later	in	the	chapter.

ES7:		async		and		await	?

The	preceding	pattern	--	generators	yielding	Promises	that	then	control	the	generator's
iterator	to	advance	it	to	completion	--	is	such	a	powerful	and	useful	approach,	it	would	be
nicer	if	we	could	do	it	without	the	clutter	of	the	library	utility	helper	(aka		run(..)	).

There's	probably	good	news	on	that	front.	At	the	time	of	this	writing,	there's	early	but	strong
support	for	a	proposal	for	more	syntactic	addition	in	this	realm	for	the	post-ES6,	ES7-ish
timeframe.	Obviously,	it's	too	early	to	guarantee	the	details,	but	there's	a	pretty	decent
chance	it	will	shake	out	similar	to	the	following:

function	foo(x,y)	{

				return	request(

								"http://some.url.1/?x="	+	x	+	"&y="	+	y

				);

}

async	function	main()	{

				try	{

								var	text	=	await	foo(	11,	31	);

								console.log(	text	);

				}

				catch	(err)	{

								console.error(	err	);

				}

}

main();
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As	you	can	see,	there's	no		run(..)		call	(meaning	no	need	for	a	library	utility!)	to	invoke	and
drive		main()		--	it's	just	called	as	a	normal	function.	Also,		main()		isn't	declared	as	a
generator	function	anymore;	it's	a	new	kind	of	function:		async	function	.	And	finally,	instead
of		yield	ing	a	Promise,	we		await		for	it	to	resolve.

The		async	function		automatically	knows	what	to	do	if	you		await		a	Promise	--	it	will	pause
the	function	(just	like	with	generators)	until	the	Promise	resolves.	We	didn't	illustrate	it	in	this
snippet,	but	calling	an	async	function	like		main()		automatically	returns	a	promise	that's
resolved	whenever	the	function	finishes	completely.

Tip:	The		async		/		await		syntax	should	look	very	familiar	to	readers	with	experience	in	C#,
because	it's	basically	identical.

The	proposal	essentially	codifies	support	for	the	pattern	we've	already	derived,	into	a
syntactic	mechanism:	combining	Promises	with	sync-looking	flow	control	code.	That's	the
best	of	both	worlds	combined,	to	effectively	address	practically	all	of	the	major	concerns	we
outlined	with	callbacks.

The	mere	fact	that	such	a	ES7-ish	proposal	already	exists	and	has	early	support	and
enthusiasm	is	a	major	vote	of	confidence	in	the	future	importance	of	this	async	pattern.

Promise	Concurrency	in	Generators

So	far,	all	we've	demonstrated	is	a	single-step	async	flow	with	Promises+generators.	But
real-world	code	will	often	have	many	async	steps.

If	you're	not	careful,	the	sync-looking	style	of	generators	may	lull	you	into	complacency	with
how	you	structure	your	async	concurrency,	leading	to	suboptimal	performance	patterns.	So
we	want	to	spend	a	little	time	exploring	the	options.

Imagine	a	scenario	where	you	need	to	fetch	data	from	two	different	sources,	then	combine
those	responses	to	make	a	third	request,	and	finally	print	out	the	last	response.	We	explored
a	similar	scenario	with	Promises	in	Chapter	3,	but	let's	reconsider	it	in	the	context	of
generators.

Your	first	instinct	might	be	something	like:
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function	*foo()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

This	code	will	work,	but	in	the	specifics	of	our	scenario,	it's	not	optimal.	Can	you	spot	why?

Because	the		r1		and		r2		requests	can	--	and	for	performance	reasons,	should	--	run
concurrently,	but	in	this	code	they	will	run	sequentially;	the		"http://some.url.2"		URL	isn't
Ajax	fetched	until	after	the		"http://some.url.1"		request	is	finished.	These	two	requests	are
independent,	so	the	better	performance	approach	would	likely	be	to	have	them	run	at	the
same	time.

But	how	exactly	would	you	do	that	with	a	generator	and		yield	?	We	know	that		yield		is
only	a	single	pause	point	in	the	code,	so	you	can't	really	do	two	pauses	at	the	same	time.

The	most	natural	and	effective	answer	is	to	base	the	async	flow	on	Promises,	specifically	on
their	capability	to	manage	state	in	a	time-independent	fashion	(see	"Future	Value"	in
Chapter	3).

The	simplest	approach:
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function	*foo()	{

				//	make	both	requests	"in	parallel"

				var	p1	=	request(	"http://some.url.1"	);

				var	p2	=	request(	"http://some.url.2"	);

				//	wait	until	both	promises	resolve

				var	r1	=	yield	p1;

				var	r2	=	yield	p2;

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Why	is	this	different	from	the	previous	snippet?	Look	at	where	the		yield		is	and	is	not.		p1	
and		p2		are	promises	for	Ajax	requests	made	concurrently	(aka	"in	parallel").	It	doesn't
matter	which	one	finishes	first,	because	promises	will	hold	onto	their	resolved	state	for	as
long	as	necessary.

Then	we	use	two	subsequent		yield		statements	to	wait	for	and	retrieve	the	resolutions	from
the	promises	(into		r1		and		r2	,	respectively).	If		p1		resolves	first,	the		yield	p1		resumes
first	then	waits	on	the		yield	p2		to	resume.	If		p2		resolves	first,	it	will	just	patiently	hold	onto
that	resolution	value	until	asked,	but	the		yield	p1		will	hold	on	first,	until		p1		resolves.

Either	way,	both		p1		and		p2		will	run	concurrently,	and	both	have	to	finish,	in	either	order,
before	the		r3	=	yield	request..		Ajax	request	will	be	made.

If	that	flow	control	processing	model	sounds	familiar,	it's	basically	the	same	as	what	we
identified	in	Chapter	3	as	the	"gate"	pattern,	enabled	by	the		Promise.all([	..	])		utility.	So,
we	could	also	express	the	flow	control	like	this:
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function	*foo()	{

				//	make	both	requests	"in	parallel,"	and

				//	wait	until	both	promises	resolve

				var	results	=	yield	Promise.all(	[

								request(	"http://some.url.1"	),

								request(	"http://some.url.2"	)

				]	);

				var	r1	=	results[0];

				var	r2	=	results[1];

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Note:	As	we	discussed	in	Chapter	3,	we	can	even	use	ES6	destructuring	assignment	to
simplify	the		var	r1	=	..	var	r2	=	..		assignments,	with		var	[r1,r2]	=	results	.

In	other	words,	all	of	the	concurrency	capabilities	of	Promises	are	available	to	us	in	the
generator+Promise	approach.	So	in	any	place	where	you	need	more	than	sequential	this-
then-that	async	flow	control	steps,	Promises	are	likely	your	best	bet.

Promises,	Hidden

As	a	word	of	stylistic	caution,	be	careful	about	how	much	Promise	logic	you	include	inside
your	generators.	The	whole	point	of	using	generators	for	asynchrony	in	the	way	we've
described	is	to	create	simple,	sequential,	sync-looking	code,	and	to	hide	as	much	of	the
details	of	asynchrony	away	from	that	code	as	possible.

For	example,	this	might	be	a	cleaner	approach:
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//	note:	normal	function,	not	generator

function	bar(url1,url2)	{

				return	Promise.all(	[

								request(	url1	),

								request(	url2	)

				]	);

}

function	*foo()	{

				//	hide	the	Promise-based	concurrency	details

				//	inside	`bar(..)`

				var	results	=	yield	bar(

								"http://some.url.1",

								"http://some.url.2"

				);

				var	r1	=	results[0];

				var	r2	=	results[1];

				var	r3	=	yield	request(

								"http://some.url.3/?v="	+	r1	+	","	+	r2

				);

				console.log(	r3	);

}

//	use	previously	defined	`run(..)`	utility

run(	foo	);

Inside		*foo()	,	it's	cleaner	and	clearer	that	all	we're	doing	is	just	asking		bar(..)		to	get	us
some		results	,	and	we'll		yield	-wait	on	that	to	happen.	We	don't	have	to	care	that	under
the	covers	a		Promise.all([	..	])		Promise	composition	will	be	used	to	make	that	happen.

We	treat	asynchrony,	and	indeed	Promises,	as	an	implementation	detail.

Hiding	your	Promise	logic	inside	a	function	that	you	merely	call	from	your	generator	is
especially	useful	if	you're	going	to	do	a	sophisticated	series	flow-control.	For	example:

function	bar()	{

				Promise.all(	[

								baz(	..	)

								.then(	..	),

								Promise.race(	[	..	]	)

				]	)

				.then(	..	)

}
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That	kind	of	logic	is	sometimes	required,	and	if	you	dump	it	directly	inside	your	generator(s),
you've	defeated	most	of	the	reason	why	you	would	want	to	use	generators	in	the	first	place.
We	should	intentionally	abstract	such	details	away	from	our	generator	code	so	that	they
don't	clutter	up	the	higher	level	task	expression.

Beyond	creating	code	that	is	both	functional	and	performant,	you	should	also	strive	to	make
code	that	is	as	reason-able	and	maintainable	as	possible.

Note:	Abstraction	is	not	always	a	healthy	thing	for	programming	--	many	times	it	can
increase	complexity	in	exchange	for	terseness.	But	in	this	case,	I	believe	it's	much	healthier
for	your	generator+Promise	async	code	than	the	alternatives.	As	with	all	such	advice,
though,	pay	attention	to	your	specific	situations	and	make	proper	decisions	for	you	and	your
team.

Generator	Delegation
In	the	previous	section,	we	showed	calling	regular	functions	from	inside	a	generator,	and
how	that	remains	a	useful	technique	for	abstracting	away	implementation	details	(like	async
Promise	flow).	But	the	main	drawback	of	using	a	normal	function	for	this	task	is	that	it	has	to
behave	by	the	normal	function	rules,	which	means	it	cannot	pause	itself	with		yield		like	a
generator	can.

It	may	then	occur	to	you	that	you	might	try	to	call	one	generator	from	another	generator,
using	our		run(..)		helper,	such	as:

function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				//	"delegating"	to	`*foo()`	via	`run(..)`

				var	r3	=	yield	run(	foo	);

				console.log(	r3	);

}

run(	bar	);
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We	run		*foo()		inside	of		*bar()		by	using	our		run(..)		utility	again.	We	take	advantage
here	of	the	fact	that	the		run(..)		we	defined	earlier	returns	a	promise	which	is	resolved
when	its	generator	is	run	to	completion	(or	errors	out),	so	if	we		yield		out	to	a		run(..)	
instance	the	promise	from	another		run(..)		call,	it	automatically	pauses		*bar()		until
	*foo()		finishes.

But	there's	an	even	better	way	to	integrate	calling		*foo()		into		*bar()	,	and	it's	called
	yield	-delegation.	The	special	syntax	for		yield	-delegation	is:		yield	*	__		(notice	the
extra		*	).	Before	we	see	it	work	in	our	previous	example,	let's	look	at	a	simpler	scenario:

function	*foo()	{

				console.log(	"`*foo()`	starting"	);

				yield	3;

				yield	4;

				console.log(	"`*foo()`	finished"	);

}

function	*bar()	{

				yield	1;

				yield	2;

				yield	*foo();				//	`yield`-delegation!

				yield	5;

}

var	it	=	bar();

it.next().value;				//	1

it.next().value;				//	2

it.next().value;				//	`*foo()`	starting

																				//	3

it.next().value;				//	4

it.next().value;				//	`*foo()`	finished

																				//	5

Note:	Similar	to	a	note	earlier	in	the	chapter	where	I	explained	why	I	prefer		function	*foo()
..		instead	of		function*	foo()	..	,	I	also	prefer	--	differing	from	most	other	documentation
on	the	topic	--	to	say		yield	*foo()		instead	of		yield*	foo()	.	The	placement	of	the		*		is
purely	stylistic	and	up	to	your	best	judgment.	But	I	find	the	consistency	of	styling	attractive.

How	does	the		yield	*foo()		delegation	work?

First,	calling		foo()		creates	an	iterator	exactly	as	we've	already	seen.	Then,		yield	*	
delegates/transfers	the	iterator	instance	control	(of	the	present		*bar()		generator)	over	to
this	other		*foo()		iterator.

Generators

599



So,	the	first	two		it.next()		calls	are	controlling		*bar()	,	but	when	we	make	the	third
	it.next()		call,	now		*foo()		starts	up,	and	now	we're	controlling		*foo()		instead	of
	*bar()	.	That's	why	it's	called	delegation	--		*bar()		delegated	its	iteration	control	to
	*foo()	.

As	soon	as	the		it		iterator	control	exhausts	the	entire		*foo()		iterator,	it	automatically
returns	to	controlling		*bar()	.

So	now	back	to	the	previous	example	with	the	three	sequential	Ajax	requests:

function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				//	"delegating"	to	`*foo()`	via	`yield*`

				var	r3	=	yield	*foo();

				console.log(	r3	);

}

run(	bar	);

The	only	difference	between	this	snippet	and	the	version	used	earlier	is	the	use	of		yield
*foo()		instead	of	the	previous		yield	run(foo)	.

Note:		yield	*		yields	iteration	control,	not	generator	control;	when	you	invoke	the		*foo()	
generator,	you're	now		yield	-delegating	to	its	iterator.	But	you	can	actually		yield	-delegate
to	any	iterable;		yield	*[1,2,3]		would	consume	the	default	iterator	for	the		[1,2,3]		array
value.

Why	Delegation?

The	purpose	of		yield	-delegation	is	mostly	code	organization,	and	in	that	way	is
symmetrical	with	normal	function	calling.

Imagine	two	modules	that	respectively	provide	methods		foo()		and		bar()	,	where		bar()	
calls		foo()	.	The	reason	the	two	are	separate	is	generally	because	the	proper	organization
of	code	for	the	program	calls	for	them	to	be	in	separate	functions.	For	example,	there	may
be	cases	where		foo()		is	called	standalone,	and	other	places	where		bar()		calls		foo()	.

Generators

600



For	all	these	exact	same	reasons,	keeping	generators	separate	aids	in	program	readability,
maintenance,	and	debuggability.	In	that	respect,		yield	*		is	a	syntactic	shortcut	for
manually	iterating	over	the	steps	of		*foo()		while	inside	of		*bar()	.

Such	manual	approach	would	be	especially	complex	if	the	steps	in		*foo()		were
asynchronous,	which	is	why	you'd	probably	need	to	use	that		run(..)		utility	to	do	it.	And	as
we've	shown,		yield	*foo()		eliminates	the	need	for	a	sub-instance	of	the		run(..)		utility
(like		run(foo)	).

Delegating	Messages

You	may	wonder	how	this		yield	-delegation	works	not	just	with	iterator	control	but	with	the
two-way	message	passing.	Carefully	follow	the	flow	of	messages	in	and	out,	through	the
	yield	-delegation:
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function	*foo()	{

				console.log(	"inside	`*foo()`:",	yield	"B"	);

				console.log(	"inside	`*foo()`:",	yield	"C"	);

				return	"D";

}

function	*bar()	{

				console.log(	"inside	`*bar()`:",	yield	"A"	);

				//	`yield`-delegation!

				console.log(	"inside	`*bar()`:",	yield	*foo()	);

				console.log(	"inside	`*bar()`:",	yield	"E"	);

				return	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A

console.log(	"outside:",	it.next(	1	).value	);

//	inside	`*bar()`:	1

//	outside:	B

console.log(	"outside:",	it.next(	2	).value	);

//	inside	`*foo()`:	2

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	inside	`*foo()`:	3

//	inside	`*bar()`:	D

//	outside:	E

console.log(	"outside:",	it.next(	4	).value	);

//	inside	`*bar()`:	4

//	outside:	F

Pay	particular	attention	to	the	processing	steps	after	the		it.next(3)		call:

1.	 The		3		value	is	passed	(through	the		yield	-delegation	in		*bar()	)	into	the	waiting
	yield	"C"		expression	inside	of		*foo()	.

2.	 	*foo()		then	calls		return	"D"	,	but	this	value	doesn't	get	returned	all	the	way	back	to
the	outside		it.next(3)		call.

3.	 Instead,	the		"D"		value	is	sent	as	the	result	of	the	waiting		yield	*foo()		expression
inside	of		*bar()		--	this		yield	-delegation	expression	has	essentially	been	paused
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while	all	of		*foo()		was	exhausted.	So		"D"		ends	up	inside	of		*bar()		for	it	to	print
out.

4.	 	yield	"E"		is	called	inside	of		*bar()	,	and	the		"E"		value	is	yielded	to	the	outside	as
the	result	of	the		it.next(3)		call.

From	the	perspective	of	the	external	iterator	(	it	),	it	doesn't	appear	any	differently	between
controlling	the	initial	generator	or	a	delegated	one.

In	fact,		yield	-delegation	doesn't	even	have	to	be	directed	to	another	generator;	it	can	just
be	directed	to	a	non-generator,	general	iterable.	For	example:

function	*bar()	{

				console.log(	"inside	`*bar()`:",	yield	"A"	);

				//	`yield`-delegation	to	a	non-generator!

				console.log(	"inside	`*bar()`:",	yield	*[	"B",	"C",	"D"	]	);

				console.log(	"inside	`*bar()`:",	yield	"E"	);

				return	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A

console.log(	"outside:",	it.next(	1	).value	);

//	inside	`*bar()`:	1

//	outside:	B

console.log(	"outside:",	it.next(	2	).value	);

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	outside:	D

console.log(	"outside:",	it.next(	4	).value	);

//	inside	`*bar()`:	undefined

//	outside:	E

console.log(	"outside:",	it.next(	5	).value	);

//	inside	`*bar()`:	5

//	outside:	F

Notice	the	differences	in	where	the	messages	were	received/reported	between	this	example
and	the	one	previous.
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Most	strikingly,	the	default		array		iterator	doesn't	care	about	any	messages	sent	in	via
	next(..)		calls,	so	the	values		2	,		3	,	and		4		are	essentially	ignored.	Also,	because	that
iterator	has	no	explicit		return		value	(unlike	the	previously	used		*foo()	),	the		yield	*	
expression	gets	an		undefined		when	it	finishes.

Exceptions	Delegated,	Too!

In	the	same	way	that		yield	-delegation	transparently	passes	messages	through	in	both
directions,	errors/exceptions	also	pass	in	both	directions:

function	*foo()	{

				try	{

								yield	"B";

				}

				catch	(err)	{

								console.log(	"error	caught	inside	`*foo()`:",	err	);

				}

				yield	"C";

				throw	"D";

}

function	*bar()	{

				yield	"A";

				try	{

								yield	*foo();

				}

				catch	(err)	{

								console.log(	"error	caught	inside	`*bar()`:",	err	);

				}

				yield	"E";

				yield	*baz();

				//	note:	can't	get	here!

				yield	"G";

}

function	*baz()	{

				throw	"F";

}

var	it	=	bar();

console.log(	"outside:",	it.next().value	);

//	outside:	A
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console.log(	"outside:",	it.next(	1	).value	);

//	outside:	B

console.log(	"outside:",	it.throw(	2	).value	);

//	error	caught	inside	`*foo()`:	2

//	outside:	C

console.log(	"outside:",	it.next(	3	).value	);

//	error	caught	inside	`*bar()`:	D

//	outside:	E

try	{

				console.log(	"outside:",	it.next(	4	).value	);

}

catch	(err)	{

				console.log(	"error	caught	outside:",	err	);

}

//	error	caught	outside:	F

Some	things	to	note	from	this	snippet:

1.	 When	we	call		it.throw(2)	,	it	sends	the	error	message		2		into		*bar()	,	which
delegates	that	to		*foo()	,	which	then		catch	es	it	and	handles	it	gracefully.	Then,	the
	yield	"C"		sends		"C"		back	out	as	the	return		value		from	the		it.throw(2)		call.

2.	 The		"D"		value	that's	next		throw	n	from	inside		*foo()		propagates	out	to		*bar()	,
which		catch	es	it	and	handles	it	gracefully.	Then	the		yield	"E"		sends		"E"		back	out
as	the	return		value		from	the		it.next(3)		call.

3.	 Next,	the	exception		throw	n	from		*baz()		isn't	caught	in		*bar()		--	though	we	did
	catch		it	outside	--	so	both		*baz()		and		*bar()		are	set	to	a	completed	state.	After	this
snippet,	you	would	not	be	able	to	get	the		"G"		value	out	with	any	subsequent
	next(..)		call(s)	--	they	will	just	return		undefined		for		value	.

Delegating	Asynchrony

Let's	finally	get	back	to	our	earlier		yield	-delegation	example	with	the	multiple	sequential
Ajax	requests:
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function	*foo()	{

				var	r2	=	yield	request(	"http://some.url.2"	);

				var	r3	=	yield	request(	"http://some.url.3/?v="	+	r2	);

				return	r3;

}

function	*bar()	{

				var	r1	=	yield	request(	"http://some.url.1"	);

				var	r3	=	yield	*foo();

				console.log(	r3	);

}

run(	bar	);

Instead	of	calling		yield	run(foo)		inside	of		*bar()	,	we	just	call		yield	*foo()	.

In	the	previous	version	of	this	example,	the	Promise	mechanism	(controlled	by		run(..)	)
was	used	to	transport	the	value	from		return	r3		in		*foo()		to	the	local	variable		r3		inside
	*bar()	.	Now,	that	value	is	just	returned	back	directly	via	the		yield	*		mechanics.

Otherwise,	the	behavior	is	pretty	much	identical.

Delegating	"Recursion"

Of	course,		yield	-delegation	can	keep	following	as	many	delegation	steps	as	you	wire	up.
You	could	even	use		yield	-delegation	for	async-capable	generator	"recursion"	--	a
generator		yield	-delegating	to	itself:

function	*foo(val)	{

				if	(val	>	1)	{

								//	generator	recursion

								val	=	yield	*foo(	val	-	1	);

				}

				return	yield	request(	"http://some.url/?v="	+	val	);

}

function	*bar()	{

				var	r1	=	yield	*foo(	3	);

				console.log(	r1	);

}

run(	bar	);
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Note:	Our		run(..)		utility	could	have	been	called	with		run(	foo,	3	)	,	because	it	supports
additional	parameters	being	passed	along	to	the	initialization	of	the	generator.	However,	we
used	a	parameter-free		*bar()		here	to	highlight	the	flexibility	of		yield	*	.

What	processing	steps	follow	from	that	code?	Hang	on,	this	is	going	to	be	quite	intricate	to
describe	in	detail:

1.	 	run(bar)		starts	up	the		*bar()		generator.
2.	 	foo(3)		creates	an	iterator	for		*foo(..)		and	passes		3		as	its		val		parameter.
3.	 Because		3	>	1	,		foo(2)		creates	another	iterator	and	passes	in		2		as	its		val	

parameter.
4.	 Because		2	>	1	,		foo(1)		creates	yet	another	iterator	and	passes	in		1		as	its		val	

parameter.
5.	 	1	>	1		is		false	,	so	we	next	call		request(..)		with	the		1		value,	and	get	a	promise

back	for	that	first	Ajax	call.
6.	 That	promise	is		yield	ed	out,	which	comes	back	to	the		*foo(2)		generator	instance.
7.	 The		yield	*		passes	that	promise	back	out	to	the		*foo(3)		generator	instance.

Another		yield	*		passes	the	promise	out	to	the		*bar()		generator	instance.	And	yet
again	another		yield	*		passes	the	promise	out	to	the		run(..)		utility,	which	will	wait	on
that	promise	(for	the	first	Ajax	request)	to	proceed.

8.	 When	the	promise	resolves,	its	fulfillment	message	is	sent	to	resume		*bar()	,	which
passes	through	the		yield	*		into	the		*foo(3)		instance,	which	then	passes	through	the
	yield	*		to	the		*foo(2)		generator	instance,	which	then	passes	through	the		yield	*	
to	the	normal		yield		that's	waiting	in	the		*foo(3)		generator	instance.

9.	 That	first	call's	Ajax	response	is	now	immediately		return	ed	from	the		*foo(3)	
generator	instance,	which	sends	that	value	back	as	the	result	of	the		yield	*	
expression	in	the		*foo(2)		instance,	and	assigned	to	its	local		val		variable.

10.	 Inside		*foo(2)	,	a	second	Ajax	request	is	made	with		request(..)	,	whose	promise	is
	yield	ed	back	to	the		*foo(1)		instance,	and	then		yield	*		propagates	all	the	way	out
to		run(..)		(step	7	again).	When	the	promise	resolves,	the	second	Ajax	response
propagates	all	the	way	back	into	the		*foo(2)		generator	instance,	and	is	assigned	to	its
local		val		variable.

11.	 Finally,	the	third	Ajax	request	is	made	with		request(..)	,	its	promise	goes	out	to
	run(..)	,	and	then	its	resolution	value	comes	all	the	way	back,	which	is	then
	return	ed	so	that	it	comes	back	to	the	waiting		yield	*		expression	in		*bar()	.

Phew!	A	lot	of	crazy	mental	juggling,	huh?	You	might	want	to	read	through	that	a	few	more
times,	and	then	go	grab	a	snack	to	clear	your	head!

Generator	Concurrency
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As	we	discussed	in	both	Chapter	1	and	earlier	in	this	chapter,	two	simultaneously	running
"processes"	can	cooperatively	interleave	their	operations,	and	many	times	this	can	yield
(pun	intended)	very	powerful	asynchrony	expressions.

Frankly,	our	earlier	examples	of	concurrency	interleaving	of	multiple	generators	showed	how
to	make	it	really	confusing.	But	we	hinted	that	there's	places	where	this	capability	is	quite
useful.

Recall	a	scenario	we	looked	at	in	Chapter	1,	where	two	different	simultaneous	Ajax
response	handlers	needed	to	coordinate	with	each	other	to	make	sure	that	the	data
communication	was	not	a	race	condition.	We	slotted	the	responses	into	the		res		array	like
this:

function	response(data)	{

				if	(data.url	==	"http://some.url.1")	{

								res[0]	=	data;

				}

				else	if	(data.url	==	"http://some.url.2")	{

								res[1]	=	data;

				}

}

But	how	can	we	use	multiple	generators	concurrently	for	this	scenario?

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

function	*reqData(url)	{

				res.push(

								yield	request(	url	)

				);

}

Note:	We're	going	to	use	two	instances	of	the		*reqData(..)		generator	here,	but	there's	no
difference	to	running	a	single	instance	of	two	different	generators;	both	approaches	are
reasoned	about	identically.	We'll	see	two	different	generators	coordinating	in	just	a	bit.

Instead	of	having	to	manually	sort	out		res[0]		and		res[1]		assignments,	we'll	use
coordinated	ordering	so	that		res.push(..)		properly	slots	the	values	in	the	expected	and
predictable	order.	The	expressed	logic	thus	should	feel	a	bit	cleaner.

But	how	will	we	actually	orchestrate	this	interaction?	First,	let's	just	do	it	manually,	with
Promises:
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var	it1	=	reqData(	"http://some.url.1"	);

var	it2	=	reqData(	"http://some.url.2"	);

var	p1	=	it1.next().value;

var	p2	=	it2.next().value;

p1

.then(	function(data){

				it1.next(	data	);

				return	p2;

}	)

.then(	function(data){

				it2.next(	data	);

}	);

	*reqData(..)	's	two	instances	are	both	started	to	make	their	Ajax	requests,	then	paused
with		yield	.	Then	we	choose	to	resume	the	first	instance	when		p1		resolves,	and	then
	p2	's	resolution	will	restart	the	second	instance.	In	this	way,	we	use	Promise	orchestration
to	ensure	that		res[0]		will	have	the	first	response	and		res[1]		will	have	the	second
response.

But	frankly,	this	is	awfully	manual,	and	it	doesn't	really	let	the	generators	orchestrate
themselves,	which	is	where	the	true	power	can	lie.	Let's	try	it	a	different	way:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

function	*reqData(url)	{

				var	data	=	yield	request(	url	);

				//	transfer	control

				yield;

				res.push(	data	);

}

var	it1	=	reqData(	"http://some.url.1"	);

var	it2	=	reqData(	"http://some.url.2"	);

var	p1	=	it1.next().value;

var	p2	=	it2.next().value;

p1.then(	function(data){

				it1.next(	data	);

}	);

p2.then(	function(data){

				it2.next(	data	);

}	);

Promise.all(	[p1,p2]	)

.then(	function(){

				it1.next();

				it2.next();

}	);

OK,	this	is	a	bit	better	(though	still	manual!),	because	now	the	two	instances	of
	*reqData(..)		run	truly	concurrently,	and	(at	least	for	the	first	part)	independently.

In	the	previous	snippet,	the	second	instance	was	not	given	its	data	until	after	the	first
instance	was	totally	finished.	But	here,	both	instances	receive	their	data	as	soon	as	their
respective	responses	come	back,	and	then	each	instance	does	another		yield		for	control
transfer	purposes.	We	then	choose	what	order	to	resume	them	in	the		Promise.all([	..	])	
handler.

What	may	not	be	as	obvious	is	that	this	approach	hints	at	an	easier	form	for	a	reusable
utility,	because	of	the	symmetry.	We	can	do	even	better.	Let's	imagine	using	a	utility	called
	runAll(..)	:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	res	=	[];

runAll(

				function*(){

								var	p1	=	request(	"http://some.url.1"	);

								//	transfer	control

								yield;

								res.push(	yield	p1	);

				},

				function*(){

								var	p2	=	request(	"http://some.url.2"	);

								//	transfer	control

								yield;

								res.push(	yield	p2	);

				}

);

Note:	We're	not	including	a	code	listing	for		runAll(..)		as	it	is	not	only	long	enough	to	bog
down	the	text,	but	is	an	extension	of	the	logic	we've	already	implemented	in		run(..)	
earlier.	So,	as	a	good	supplementary	exercise	for	the	reader,	try	your	hand	at	evolving	the
code	from		run(..)		to	work	like	the	imagined		runAll(..)	.	Also,	my	asynquence	library
provides	a	previously	mentioned		runner(..)		utility	with	this	kind	of	capability	already	built
in,	and	will	be	discussed	in	Appendix	A	of	this	book.

Here's	how	the	processing	inside		runAll(..)		would	operate:

1.	 The	first	generator	gets	a	promise	for	the	first	Ajax	response	from		"http://some.url.1"	,
then		yield	s	control	back	to	the		runAll(..)		utility.

2.	 The	second	generator	runs	and	does	the	same	for		"http://some.url.2"	,		yield	ing
control	back	to	the		runAll(..)		utility.

3.	 The	first	generator	resumes,	and	then		yield	s	out	its	promise		p1	.	The		runAll(..)	
utility	does	the	same	in	this	case	as	our	previous		run(..)	,	in	that	it	waits	on	that
promise	to	resolve,	then	resumes	the	same	generator	(no	control	transfer!).	When		p1	
resolves,		runAll(..)		resumes	the	first	generator	again	with	that	resolution	value,	and
then		res[0]		is	given	its	value.	When	the	first	generator	then	finishes,	that's	an	implicit
transfer	of	control.

4.	 The	second	generator	resumes,		yield	s	out	its	promise		p2	,	and	waits	for	it	to	resolve.
Once	it	does,		runAll(..)		resumes	the	second	generator	with	that	value,	and		res[1]	
is	set.
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In	this	running	example,	we	use	an	outer	variable	called		res		to	store	the	results	of	the	two
different	Ajax	responses	--	that's	our	concurrency	coordination	making	that	possible.

But	it	might	be	quite	helpful	to	further	extend		runAll(..)		to	provide	an	inner	variable	space
for	the	multiple	generator	instances	to	share,	such	as	an	empty	object	we'll	call		data		below.
Also,	it	could	take	non-Promise	values	that	are		yield	ed	and	hand	them	off	to	the	next
generator.

Consider:

//	`request(..)`	is	a	Promise-aware	Ajax	utility

runAll(

				function*(data){

								data.res	=	[];

								//	transfer	control	(and	message	pass)

								var	url1	=	yield	"http://some.url.2";

								var	p1	=	request(	url1	);	//	"http://some.url.1"

								//	transfer	control

								yield;

								data.res.push(	yield	p1	);

				},

				function*(data){

								//	transfer	control	(and	message	pass)

								var	url2	=	yield	"http://some.url.1";

								var	p2	=	request(	url2	);	//	"http://some.url.2"

								//	transfer	control

								yield;

								data.res.push(	yield	p2	);

				}

);

In	this	formulation,	the	two	generators	are	not	just	coordinating	control	transfer,	but	actually
communicating	with	each	other,	both	through		data.res		and	the		yield	ed	messages	that
trade		url1		and		url2		values.	That's	incredibly	powerful!

Such	realization	also	serves	as	a	conceptual	base	for	a	more	sophisticated	asynchrony
technique	called	CSP	(Communicating	Sequential	Processes),	which	we	will	cover	in
Appendix	B	of	this	book.
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Thunks
So	far,	we've	made	the	assumption	that		yield	ing	a	Promise	from	a	generator	--	and	having
that	Promise	resume	the	generator	via	a	helper	utility	like		run(..)		--	was	the	best	possible
way	to	manage	asynchrony	with	generators.	To	be	clear,	it	is.

But	we	skipped	over	another	pattern	that	has	some	mildly	widespread	adoption,	so	in	the
interest	of	completeness	we'll	take	a	brief	look	at	it.

In	general	computer	science,	there's	an	old	pre-JS	concept	called	a	"thunk."	Without	getting
bogged	down	in	the	historical	nature,	a	narrow	expression	of	a	thunk	in	JS	is	a	function	that	-
-	without	any	parameters	--	is	wired	to	call	another	function.

In	other	words,	you	wrap	a	function	definition	around	function	call	--	with	any	parameters	it
needs	--	to	defer	the	execution	of	that	call,	and	that	wrapping	function	is	a	thunk.	When	you
later	execute	the	thunk,	you	end	up	calling	the	original	function.

For	example:

function	foo(x,y)	{

				return	x	+	y;

}

function	fooThunk()	{

				return	foo(	3,	4	);

}

//	later

console.log(	fooThunk()	);				//	7

So,	a	synchronous	thunk	is	pretty	straightforward.	But	what	about	an	async	thunk?	We	can
essentially	extend	the	narrow	thunk	definition	to	include	it	receiving	a	callback.

Consider:
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function	foo(x,y,cb)	{

				setTimeout(	function(){

								cb(	x	+	y	);

				},	1000	);

}

function	fooThunk(cb)	{

				foo(	3,	4,	cb	);

}

//	later

fooThunk(	function(sum){

				console.log(	sum	);								//	7

}	);

As	you	can	see,		fooThunk(..)		only	expects	a		cb(..)		parameter,	as	it	already	has	values
	3		and		4		(for		x		and		y	,	respectively)	pre-specified	and	ready	to	pass	to		foo(..)	.	A
thunk	is	just	waiting	around	patiently	for	the	last	piece	it	needs	to	do	its	job:	the	callback.

You	don't	want	to	make	thunks	manually,	though.	So,	let's	invent	a	utility	that	does	this
wrapping	for	us.

Consider:

function	thunkify(fn)	{

				var	args	=	[].slice.call(	arguments,	1	);

				return	function(cb)	{

								args.push(	cb	);

								return	fn.apply(	null,	args	);

				};

}

var	fooThunk	=	thunkify(	foo,	3,	4	);

//	later

fooThunk(	function(sum)	{

				console.log(	sum	);								//	7

}	);

Tip:	Here	we	assume	that	the	original	(	foo(..)	)	function	signature	expects	its	callback	in
the	last	position,	with	any	other	parameters	coming	before	it.	This	is	a	pretty	ubiquitous
"standard"	for	async	JS	function	standards.	You	might	call	it	"callback-last	style."	If	for	some
reason	you	had	a	need	to	handle	"callback-first	style"	signatures,	you	would	just	make	a
utility	that	used		args.unshift(..)		instead	of		args.push(..)	.
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The	preceding	formulation	of		thunkify(..)		takes	both	the		foo(..)		function	reference,	and
any	parameters	it	needs,	and	returns	back	the	thunk	itself	(	fooThunk(..)	).	However,	that's
not	the	typical	approach	you'll	find	to	thunks	in	JS.

Instead	of		thunkify(..)		making	the	thunk	itself,	typically	--	if	not	perplexingly	--	the
	thunkify(..)		utility	would	produce	a	function	that	produces	thunks.

Uhhhh...	yeah.

Consider:

function	thunkify(fn)	{

				return	function()	{

								var	args	=	[].slice.call(	arguments	);

								return	function(cb)	{

												args.push(	cb	);

												return	fn.apply(	null,	args	);

								};

				};

}

The	main	difference	here	is	the	extra		return	function()	{	..	}		layer.	Here's	how	its	usage
differs:

var	whatIsThis	=	thunkify(	foo	);

var	fooThunk	=	whatIsThis(	3,	4	);

//	later

fooThunk(	function(sum)	{

				console.log(	sum	);								//	7

}	);

Obviously,	the	big	question	this	snippet	implies	is	what	is		whatIsThis		properly	called?	It's
not	the	thunk,	it's	the	thing	that	will	produce	thunks	from		foo(..)		calls.	It's	kind	of	like	a
"factory"	for	"thunks."	There	doesn't	seem	to	be	any	kind	of	standard	agreement	for	naming
such	a	thing.

So,	my	proposal	is	"thunkory"	("thunk"	+	"factory").	So,		thunkify(..)		produces	a	thunkory,
and	a	thunkory	produces	thunks.	That	reasoning	is	symmetric	to	my	proposal	for	"promisory"
in	Chapter	3:
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var	fooThunkory	=	thunkify(	foo	);

var	fooThunk1	=	fooThunkory(	3,	4	);

var	fooThunk2	=	fooThunkory(	5,	6	);

//	later

fooThunk1(	function(sum)	{

				console.log(	sum	);								//	7

}	);

fooThunk2(	function(sum)	{

				console.log(	sum	);								//	11

}	);

Note:	The	running		foo(..)		example	expects	a	style	of	callback	that's	not	"error-first	style."
Of	course,	"error-first	style"	is	much	more	common.	If		foo(..)		had	some	sort	of	legitimate
error-producing	expectation,	we	could	change	it	to	expect	and	use	an	error-first	callback.
None	of	the	subsequent		thunkify(..)		machinery	cares	what	style	of	callback	is	assumed.
The	only	difference	in	usage	would	be		fooThunk1(function(err,sum){..	.

Exposing	the	thunkory	method	--	instead	of	how	the	earlier		thunkify(..)		hides	this
intermediary	step	--	may	seem	like	unnecessary	complication.	But	in	general,	it's	quite	useful
to	make	thunkories	at	the	beginning	of	your	program	to	wrap	existing	API	methods,	and	then
be	able	to	pass	around	and	call	those	thunkories	when	you	need	thunks.	The	two	distinct
steps	preserve	a	cleaner	separation	of	capability.

To	illustrate:

//	cleaner:

var	fooThunkory	=	thunkify(	foo	);

var	fooThunk1	=	fooThunkory(	3,	4	);

var	fooThunk2	=	fooThunkory(	5,	6	);

//	instead	of:

var	fooThunk1	=	thunkify(	foo,	3,	4	);

var	fooThunk2	=	thunkify(	foo,	5,	6	);

Regardless	of	whether	you	like	to	deal	with	the	thunkories	explicitly	or	not,	the	usage	of
thunks		fooThunk1(..)		and		fooThunk2(..)		remains	the	same.

s/promise/thunk/

So	what's	all	this	thunk	stuff	have	to	do	with	generators?
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Comparing	thunks	to	promises	generally:	they're	not	directly	interchangable	as	they're	not
equivalent	in	behavior.	Promises	are	vastly	more	capable	and	trustable	than	bare	thunks.

But	in	another	sense,	they	both	can	be	seen	as	a	request	for	a	value,	which	may	be	async	in
its	answering.

Recall	from	Chapter	3	we	defined	a	utility	for	promisifying	a	function,	which	we	called
	Promise.wrap(..)		--	we	could	have	called	it		promisify(..)	,	too!	This	Promise-wrapping
utility	doesn't	produce	Promises;	it	produces	promisories	that	in	turn	produce	Promises.	This
is	completely	symmetric	to	the	thunkories	and	thunks	presently	being	discussed.

To	illustrate	the	symmetry,	let's	first	alter	the	running		foo(..)		example	from	earlier	to
assume	an	"error-first	style"	callback:

function	foo(x,y,cb)	{

				setTimeout(	function(){

								//	assume	`cb(..)`	as	"error-first	style"

								cb(	null,	x	+	y	);

				},	1000	);

}

Now,	we'll	compare	using		thunkify(..)		and		promisify(..)		(aka		Promise.wrap(..)		from
Chapter	3):
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//	symmetrical:	constructing	the	question	asker

var	fooThunkory	=	thunkify(	foo	);

var	fooPromisory	=	promisify(	foo	);

//	symmetrical:	asking	the	question

var	fooThunk	=	fooThunkory(	3,	4	);

var	fooPromise	=	fooPromisory(	3,	4	);

//	get	the	thunk	answer

fooThunk(	function(err,sum){

				if	(err)	{

								console.error(	err	);

				}

				else	{

								console.log(	sum	);								//	7

				}

}	);

//	get	the	promise	answer

fooPromise

.then(

				function(sum){

								console.log(	sum	);								//	7

				},

				function(err){

								console.error(	err	);

				}

);

Both	the	thunkory	and	the	promisory	are	essentially	asking	a	question	(for	a	value),	and
respectively	the	thunk		fooThunk		and	promise		fooPromise		represent	the	future	answers	to
that	question.	Presented	in	that	light,	the	symmetry	is	clear.

With	that	perspective	in	mind,	we	can	see	that	generators	which		yield		Promises	for
asynchrony	could	instead		yield		thunks	for	asynchrony.	All	we'd	need	is	a	smarter
	run(..)		utility	(like	from	before)	that	can	not	only	look	for	and	wire	up	to	a		yield	ed
Promise	but	also	to	provide	a	callback	to	a		yield	ed	thunk.

Consider:

function	*foo()	{

				var	val	=	yield	request(	"http://some.url.1"	);

				console.log(	val	);

}

run(	foo	);
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In	this	example,		request(..)		could	either	be	a	promisory	that	returns	a	promise,	or	a
thunkory	that	returns	a	thunk.	From	the	perspective	of	what's	going	on	inside	the	generator
code	logic,	we	don't	care	about	that	implementation	detail,	which	is	quite	powerful!

So,		request(..)		could	be	either:

//	promisory	`request(..)`	(see	Chapter	3)

var	request	=	Promise.wrap(	ajax	);

//	vs.

//	thunkory	`request(..)`

var	request	=	thunkify(	ajax	);

Finally,	as	a	thunk-aware	patch	to	our	earlier		run(..)		utility,	we	would	need	logic	like	this:

//	..

//	did	we	receive	a	thunk	back?

else	if	(typeof	next.value	==	"function")	{

				return	new	Promise(	function(resolve,reject){

								//	call	the	thunk	with	an	error-first	callback

								next.value(	function(err,msg)	{

												if	(err)	{

																reject(	err	);

												}

												else	{

																resolve(	msg	);

												}

								}	);

				}	)

				.then(

								handleNext,

								function	handleErr(err)	{

												return	Promise.resolve(

																it.throw(	err	)

												)

												.then(	handleResult	);

								}

				);

}

Now,	our	generators	can	either	call	promisories	to		yield		Promises,	or	call	thunkories	to
	yield		thunks,	and	in	either	case,		run(..)		would	handle	that	value	and	use	it	to	wait	for
the	completion	to	resume	the	generator.

Symmetry	wise,	these	two	approaches	look	identical.	However,	we	should	point	out	that's
true	only	from	the	perspective	of	Promises	or	thunks	representing	the	future	value
continuation	of	a	generator.
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From	the	larger	perspective,	thunks	do	not	in	and	of	themselves	have	hardly	any	of	the
trustability	or	composability	guarantees	that	Promises	are	designed	with.	Using	a	thunk	as	a
stand-in	for	a	Promise	in	this	particular	generator	asynchrony	pattern	is	workable	but	should
be	seen	as	less	than	ideal	when	compared	to	all	the	benefits	that	Promises	offer	(see
Chapter	3).

If	you	have	the	option,	prefer		yield	pr		rather	than		yield	th	.	But	there's	nothing	wrong
with	having	a		run(..)		utility	which	can	handle	both	value	types.

Note:	The		runner(..)		utility	in	my	asynquence	library,	which	will	be	discussed	in	Appendix
A,	handles		yield	s	of	Promises,	thunks	and	asynquence	sequences.

Pre-ES6	Generators
You're	hopefully	convinced	now	that	generators	are	a	very	important	addition	to	the	async
programming	toolbox.	But	it's	a	new	syntax	in	ES6,	which	means	you	can't	just	polyfill
generators	like	you	can	Promises	(which	are	just	a	new	API).	So	what	can	we	do	to	bring
generators	to	our	browser	JS	if	we	don't	have	the	luxury	of	ignoring	pre-ES6	browsers?

For	all	new	syntax	extensions	in	ES6,	there	are	tools	--	the	most	common	term	for	them	is
transpilers,	for	trans-compilers	--	which	can	take	your	ES6	syntax	and	transform	it	into
equivalent	(but	obviously	uglier!)	pre-ES6	code.	So,	generators	can	be	transpiled	into	code
that	will	have	the	same	behavior	but	work	in	ES5	and	below.

But	how?	The	"magic"	of		yield		doesn't	obviously	sound	like	code	that's	easy	to	transpile.
We	actually	hinted	at	a	solution	in	our	earlier	discussion	of	closure-based	iterators.

Manual	Transformation

Before	we	discuss	the	transpilers,	let's	derive	how	manual	transpilation	would	work	in	the
case	of	generators.	This	isn't	just	an	academic	exercise,	because	doing	so	will	actually	help
further	reinforce	how	they	work.

Consider:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	*foo(url)	{

				try	{

								console.log(	"requesting:",	url	);

								var	val	=	yield	request(	url	);

								console.log(	val	);

				}

				catch	(err)	{

								console.log(	"Oops:",	err	);

								return	false;

				}

}

var	it	=	foo(	"http://some.url.1"	);

The	first	thing	to	observe	is	that	we'll	still	need	a	normal		foo()		function	that	can	be	called,
and	it	will	still	need	to	return	an	iterator.	So,	let's	sketch	out	the	non-generator
transformation:

function	foo(url)	{

				//	..

				//	make	and	return	an	iterator

				return	{

								next:	function(v)	{

												//	..

								},

								throw:	function(e)	{

												//	..

								}

				};

}

var	it	=	foo(	"http://some.url.1"	);

The	next	thing	to	observe	is	that	a	generator	does	its	"magic"	by	suspending	its	scope/state,
but	we	can	emulate	that	with	function	closure	(see	the	Scope	&	Closures	title	of	this	series).
To	understand	how	to	write	such	code,	we'll	first	annotate	different	parts	of	our	generator
with	state	values:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	*foo(url)	{

				//	STATE	*1*

				try	{

								console.log(	"requesting:",	url	);

								var	TMP1	=	request(	url	);

								//	STATE	*2*

								var	val	=	yield	TMP1;

								console.log(	val	);

				}

				catch	(err)	{

								//	STATE	*3*

								console.log(	"Oops:",	err	);

								return	false;

				}

}

Note:	For	more	accurate	illustration,	we	split	up	the		val	=	yield	request..		statement	into
two	parts,	using	the	temporary		TMP1		variable.		request(..)		happens	in	state		*1*	,	and	the
assignment	of	its	completion	value	to		val		happens	in	state		*2*	.	We'll	get	rid	of	that
intermediate		TMP1		when	we	convert	the	code	to	its	non-generator	equivalent.

In	other	words,		*1*		is	the	beginning	state,		*2*		is	the	state	if	the		request(..)		succeeds,
and		*3*		is	the	state	if	the		request(..)		fails.	You	can	probably	imagine	how	any	extra
	yield		steps	would	just	be	encoded	as	extra	states.

Back	to	our	transpiled	generator,	let's	define	a	variable		state		in	the	closure	we	can	use	to
keep	track	of	the	state:

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	..

}

Now,	let's	define	an	inner	function	called		process(..)		inside	the	closure	which	handles
each	state,	using	a		switch		statement:
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//	`request(..)`	is	a	Promise-aware	Ajax	utility

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	generator-wide	variable	declarations

				var	val;

				function	process(v)	{

								switch	(state)	{

												case	1:

																console.log(	"requesting:",	url	);

																return	request(	url	);

												case	2:

																val	=	v;

																console.log(	val	);

																return;

												case	3:

																var	err	=	v;

																console.log(	"Oops:",	err	);

																return	false;

								}

				}

				//	..

}

Each	state	in	our	generator	is	represented	by	its	own		case		in	the		switch		statement.
	process(..)		will	be	called	each	time	we	need	to	process	a	new	state.	We'll	come	back	to
how	that	works	in	just	a	moment.

For	any	generator-wide	variable	declarations	(	val	),	we	move	those	to	a		var		declaration
outside	of		process(..)		so	they	can	survive	multiple	calls	to		process(..)	.	But	the	"block
scoped"		err		variable	is	only	needed	for	the		*3*		state,	so	we	leave	it	in	place.

In	state		*1*	,	instead	of		yield	request(..)	,	we	did		return	request(..)	.	In	terminal	state
	*2*	,	there	was	no	explicit		return	,	so	we	just	do	a		return;		which	is	the	same	as		return
undefined	.	In	terminal	state		*3*	,	there	was	a		return	false	,	so	we	preserve	that.

Now	we	need	to	define	the	code	in	the	iterator	functions	so	they	call		process(..)	
appropriately:

function	foo(url)	{

				//	manage	generator	state

				var	state;

				//	generator-wide	variable	declarations

				var	val;
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				function	process(v)	{

								switch	(state)	{

												case	1:

																console.log(	"requesting:",	url	);

																return	request(	url	);

												case	2:

																val	=	v;

																console.log(	val	);

																return;

												case	3:

																var	err	=	v;

																console.log(	"Oops:",	err	);

																return	false;

								}

				}

				//	make	and	return	an	iterator

				return	{

								next:	function(v)	{

												//	initial	state

												if	(!state)	{

																state	=	1;

																return	{

																				done:	false,

																				value:	process()

																};

												}

												//	yield	resumed	successfully

												else	if	(state	==	1)	{

																state	=	2;

																return	{

																				done:	true,

																				value:	process(	v	)

																};

												}

												//	generator	already	completed

												else	{

																return	{

																				done:	true,

																				value:	undefined

																};

												}

								},

								"throw":	function(e)	{

												//	the	only	explicit	error	handling	is	in

												//	state	*1*

												if	(state	==	1)	{

																state	=	3;

																return	{

																				done:	true,

																				value:	process(	e	)

																};
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												}

												//	otherwise,	an	error	won't	be	handled,

												//	so	just	throw	it	right	back	out

												else	{

																throw	e;

												}

								}

				};

}

How	does	this	code	work?

1.	 The	first	call	to	the	iterator's		next()		call	would	move	the	generator	from	the
uninitialized	state	to	state		1	,	and	then	call		process()		to	handle	that	state.	The	return
value	from		request(..)	,	which	is	the	promise	for	the	Ajax	response,	is	returned	back
as	the		value		property	from	the		next()		call.

2.	 If	the	Ajax	request	succeeds,	the	second	call	to		next(..)		should	send	in	the	Ajax
response	value,	which	moves	our	state	to		2	.		process(..)		is	again	called	(this	time
with	the	passed	in	Ajax	response	value),	and	the		value		property	returned	from
	next(..)		will	be		undefined	.

3.	 However,	if	the	Ajax	request	fails,		throw(..)		should	be	called	with	the	error,	which
would	move	the	state	from		1		to		3		(instead	of		2	).	Again		process(..)		is	called,	this
time	with	the	error	value.	That		case		returns		false	,	which	is	set	as	the		value	
property	returned	from	the		throw(..)		call.

From	the	outside	--	that	is,	interacting	only	with	the	iterator	--	this		foo(..)		normal	function
works	pretty	much	the	same	as	the		*foo(..)		generator	would	have	worked.	So	we've
effectively	"transpiled"	our	ES6	generator	to	pre-ES6	compatibility!

We	could	then	manually	instantiate	our	generator	and	control	its	iterator	--	calling		var	it	=
foo("..")		and		it.next(..)		and	such	--	or	better,	we	could	pass	it	to	our	previously	defined
	run(..)		utility	as		run(foo,"..")	.

Automatic	Transpilation

The	preceding	exercise	of	manually	deriving	a	transformation	of	our	ES6	generator	to	pre-
ES6	equivalent	teaches	us	how	generators	work	conceptually.	But	that	transformation	was
really	intricate	and	very	non-portable	to	other	generators	in	our	code.	It	would	be	quite
impractical	to	do	this	work	by	hand,	and	would	completely	obviate	all	the	benefit	of
generators.

But	luckily,	several	tools	already	exist	that	can	automatically	convert	ES6	generators	to
things	like	what	we	derived	in	the	previous	section.	Not	only	do	they	do	the	heavy	lifting	work
for	us,	but	they	also	handle	several	complications	that	we	glossed	over.
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One	such	tool	is	regenerator	(https://facebook.github.io/regenerator/),	from	the	smart	folks	at
Facebook.

If	we	use	regenerator	to	transpile	our	previous	generator,	here's	the	code	produced	(at	the
time	of	this	writing):

//	`request(..)`	is	a	Promise-aware	Ajax	utility

var	foo	=	regeneratorRuntime.mark(function	foo(url)	{

				var	val;

				return	regeneratorRuntime.wrap(function	foo$(context$1$0)	{

								while	(1)	switch	(context$1$0.prev	=	context$1$0.next)	{

								case	0:

												context$1$0.prev	=	0;

												console.log(	"requesting:",	url	);

												context$1$0.next	=	4;

												return	request(	url	);

								case	4:

												val	=	context$1$0.sent;

												console.log(	val	);

												context$1$0.next	=	12;

												break;

								case	8:

												context$1$0.prev	=	8;

												context$1$0.t0	=	context$1$0.catch(0);

												console.log("Oops:",	context$1$0.t0);

												return	context$1$0.abrupt("return",	false);

								case	12:

								case	"end":

												return	context$1$0.stop();

								}

				},	foo,	this,	[[0,	8]]);

});

There's	some	obvious	similarities	here	to	our	manual	derivation,	such	as	the		switch		/
	case		statements,	and	we	even	see		val		pulled	out	of	the	closure	just	as	we	did.

Of	course,	one	trade-off	is	that	regenerator's	transpilation	requires	a	helper	library
	regeneratorRuntime		that	holds	all	the	reusable	logic	for	managing	a	general	generator	/
iterator.	A	lot	of	that	boilerplate	looks	different	than	our	version,	but	even	then,	the	concepts
can	be	seen,	like	with		context$1$0.next	=	4		keeping	track	of	the	next	state	for	the
generator.

The	main	takeaway	is	that	generators	are	not	restricted	to	only	being	useful	in	ES6+
environments.	Once	you	understand	the	concepts,	you	can	employ	them	throughout	your
code,	and	use	tools	to	transform	the	code	to	be	compatible	with	older	environments.
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This	is	more	work	than	just	using	a		Promise		API	polyfill	for	pre-ES6	Promises,	but	the	effort
is	totally	worth	it,	because	generators	are	so	much	better	at	expressing	async	flow	control	in
a	reason-able,	sensible,	synchronous-looking,	sequential	fashion.

Once	you	get	hooked	on	generators,	you'll	never	want	to	go	back	to	the	hell	of	async
spaghetti	callbacks!

Review
Generators	are	a	new	ES6	function	type	that	does	not	run-to-completion	like	normal
functions.	Instead,	the	generator	can	be	paused	in	mid-completion	(entirely	preserving	its
state),	and	it	can	later	be	resumed	from	where	it	left	off.

This	pause/resume	interchange	is	cooperative	rather	than	preemptive,	which	means	that	the
generator	has	the	sole	capability	to	pause	itself,	using	the		yield		keyword,	and	yet	the
iterator	that	controls	the	generator	has	the	sole	capability	(via		next(..)	)	to	resume	the
generator.

The		yield		/		next(..)		duality	is	not	just	a	control	mechanism,	it's	actually	a	two-way
message	passing	mechanism.	A		yield	..		expression	essentially	pauses	waiting	for	a
value,	and	the	next		next(..)		call	passes	a	value	(or	implicit		undefined	)	back	to	that
paused		yield		expression.

The	key	benefit	of	generators	related	to	async	flow	control	is	that	the	code	inside	a
generator	expresses	a	sequence	of	steps	for	the	task	in	a	naturally	sync/sequential	fashion.
The	trick	is	that	we	essentially	hide	potential	asynchrony	behind	the		yield		keyword	--
moving	the	asynchrony	to	the	code	where	the	generator's	iterator	is	controlled.

In	other	words,	generators	preserve	a	sequential,	synchronous,	blocking	code	pattern	for
async	code,	which	lets	our	brains	reason	about	the	code	much	more	naturally,	addressing
one	of	the	two	key	drawbacks	of	callback-based	async.
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This	book	so	far	has	been	all	about	how	to	leverage	asynchrony	patterns	more	effectively.
But	we	haven't	directly	addressed	why	asynchrony	really	matters	to	JS.	The	most	obvious
explicit	reason	is	performance.

For	example,	if	you	have	two	Ajax	requests	to	make,	and	they're	independent,	but	you	need
to	wait	on	them	both	to	finish	before	doing	the	next	task,	you	have	two	options	for	modeling
that	interaction:	serial	and	concurrent.

You	could	make	the	first	request	and	wait	to	start	the	second	request	until	the	first	finishes.
Or,	as	we've	seen	both	with	promises	and	generators,	you	could	make	both	requests	"in
parallel,"	and	express	the	"gate"	to	wait	on	both	of	them	before	moving	on.

Clearly,	the	latter	is	usually	going	to	be	more	performant	than	the	former.	And	better
performance	generally	leads	to	better	user	experience.

It's	even	possible	that	asynchrony	(interleaved	concurrency)	can	improve	just	the	perception
of	performance,	even	if	the	overall	program	still	takes	the	same	amount	of	time	to	complete.
User	perception	of	performance	is	every	bit	--	if	not	more!	--	as	important	as	actual
measurable	performance.

We	want	to	now	move	beyond	localized	asynchrony	patterns	to	talk	about	some	bigger
picture	performance	details	at	the	program	level.

Note:	You	may	be	wondering	about	micro-performance	issues	like	if		a++		or		++a		is	faster.
We'll	look	at	those	sorts	of	performance	details	in	the	next	chapter	on	"Benchmarking	&
Tuning."

Web	Workers
If	you	have	processing-intensive	tasks	but	you	don't	want	them	to	run	on	the	main	thread
(which	may	slow	down	the	browser/UI),	you	might	have	wished	that	JavaScript	could
operate	in	a	multithreaded	manner.

In	Chapter	1,	we	talked	in	detail	about	how	JavaScript	is	single	threaded.	And	that's	still	true.
But	a	single	thread	isn't	the	only	way	to	organize	the	execution	of	your	program.

Imagine	splitting	your	program	into	two	pieces,	and	running	one	of	those	pieces	on	the	main
UI	thread,	and	running	the	other	piece	on	an	entirely	separate	thread.

What	kinds	of	concerns	would	such	an	architecture	bring	up?

For	one,	you'd	want	to	know	if	running	on	a	separate	thread	meant	that	it	ran	in	parallel	(on
systems	with	multiple	CPUs/cores)	such	that	a	long-running	process	on	that	second	thread
would	not	block	the	main	program	thread.	Otherwise,	"virtual	threading"	wouldn't	be	of	much
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benefit	over	what	we	already	have	in	JS	with	async	concurrency.

And	you'd	want	to	know	if	these	two	pieces	of	the	program	have	access	to	the	same	shared
scope/resources.	If	they	do,	then	you	have	all	the	questions	that	multithreaded	languages
(Java,	C++,	etc.)	deal	with,	such	as	needing	cooperative	or	preemptive	locking	(mutexes,
etc.).	That's	a	lot	of	extra	work,	and	shouldn't	be	undertaken	lightly.

Alternatively,	you'd	want	to	know	how	these	two	pieces	could	"communicate"	if	they	couldn't
share	scope/resources.

All	these	are	great	questions	to	consider	as	we	explore	a	feature	added	to	the	web	platform
circa	HTML5	called	"Web	Workers."	This	is	a	feature	of	the	browser	(aka	host	environment)
and	actually	has	almost	nothing	to	do	with	the	JS	language	itself.	That	is,	JavaScript	does
not	currently	have	any	features	that	support	threaded	execution.

But	an	environment	like	your	browser	can	easily	provide	multiple	instances	of	the	JavaScript
engine,	each	on	its	own	thread,	and	let	you	run	a	different	program	in	each	thread.	Each	of
those	separate	threaded	pieces	of	your	program	is	called	a	"(Web)	Worker."	This	type	of
parallelism	is	called	"task	parallelism,"	as	the	emphasis	is	on	splitting	up	chunks	of	your
program	to	run	in	parallel.

From	your	main	JS	program	(or	another	Worker),	you	instantiate	a	Worker	like	so:

var	w1	=	new	Worker(	"http://some.url.1/mycoolworker.js"	);

The	URL	should	point	to	the	location	of	a	JS	file	(not	an	HTML	page!)	which	is	intended	to
be	loaded	into	a	Worker.	The	browser	will	then	spin	up	a	separate	thread	and	let	that	file	run
as	an	independent	program	in	that	thread.

Note:	The	kind	of	Worker	created	with	such	a	URL	is	called	a	"Dedicated	Worker."	But
instead	of	providing	a	URL	to	an	external	file,	you	can	also	create	an	"Inline	Worker"	by
providing	a	Blob	URL	(another	HTML5	feature);	essentially	it's	an	inline	file	stored	in	a	single
(binary)	value.	However,	Blobs	are	beyond	the	scope	of	what	we'll	discuss	here.

Workers	do	not	share	any	scope	or	resources	with	each	other	or	the	main	program	--	that
would	bring	all	the	nightmares	of	threaded	programming	to	the	forefront	--	but	instead	have	a
basic	event	messaging	mechanism	connecting	them.

The		w1		Worker	object	is	an	event	listener	and	trigger,	which	lets	you	subscribe	to	events
sent	by	the	Worker	as	well	as	send	events	to	the	Worker.

Here's	how	to	listen	for	events	(actually,	the	fixed		"message"		event):
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w1.addEventListener(	"message",	function(evt){

				//	evt.data

}	);

And	you	can	send	the		"message"		event	to	the	Worker:

w1.postMessage(	"something	cool	to	say"	);

Inside	the	Worker,	the	messaging	is	totally	symmetrical:

//	"mycoolworker.js"

addEventListener(	"message",	function(evt){

				//	evt.data

}	);

postMessage(	"a	really	cool	reply"	);

Notice	that	a	dedicated	Worker	is	in	a	one-to-one	relationship	with	the	program	that	created
it.	That	is,	the		"message"		event	doesn't	need	any	disambiguation	here,	because	we're	sure
that	it	could	only	have	come	from	this	one-to-one	relationship	--	either	it	came	from	the
Worker	or	the	main	page.

Usually	the	main	page	application	creates	the	Workers,	but	a	Worker	can	instantiate	its	own
child	Worker(s)	--	known	as	subworkers	--	as	necessary.	Sometimes	this	is	useful	to
delegate	such	details	to	a	sort	of	"master"	Worker	that	spawns	other	Workers	to	process
parts	of	a	task.	Unfortunately,	at	the	time	of	this	writing,	Chrome	still	does	not	support
subworkers,	while	Firefox	does.

To	kill	a	Worker	immediately	from	the	program	that	created	it,	call		terminate()		on	the
Worker	object	(like		w1		in	the	previous	snippets).	Abruptly	terminating	a	Worker	thread	does
not	give	it	any	chance	to	finish	up	its	work	or	clean	up	any	resources.	It's	akin	to	you	closing
a	browser	tab	to	kill	a	page.

If	you	have	two	or	more	pages	(or	multiple	tabs	with	the	same	page!)	in	the	browser	that	try
to	create	a	Worker	from	the	same	file	URL,	those	will	actually	end	up	as	completely	separate
Workers.	Shortly,	we'll	discuss	a	way	to	"share"	a	Worker.

Note:	It	may	seem	like	a	malicious	or	ignorant	JS	program	could	easily	perform	a	denial-of-
service	attack	on	a	system	by	spawning	hundreds	of	Workers,	seemingly	each	with	their
own	thread.	While	it's	true	that	it's	somewhat	of	a	guarantee	that	a	Worker	will	end	up	on	a
separate	thread,	this	guarantee	is	not	unlimited.	The	system	is	free	to	decide	how	many
actual	threads/CPUs/cores	it	really	wants	to	create.	There's	no	way	to	predict	or	guarantee
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how	many	you'll	have	access	to,	though	many	people	assume	it's	at	least	as	many	as	the
number	of	CPUs/cores	available.	I	think	the	safest	assumption	is	that	there's	at	least	one
other	thread	besides	the	main	UI	thread,	but	that's	about	it.

Worker	Environment

Inside	the	Worker,	you	do	not	have	access	to	any	of	the	main	program's	resources.	That
means	you	cannot	access	any	of	its	global	variables,	nor	can	you	access	the	page's	DOM	or
other	resources.	Remember:	it's	a	totally	separate	thread.

You	can,	however,	perform	network	operations	(Ajax,	WebSockets)	and	set	timers.	Also,	the
Worker	has	access	to	its	own	copy	of	several	important	global	variables/features,	including
	navigator	,		location	,		JSON	,	and		applicationCache	.

You	can	also	load	extra	JS	scripts	into	your	Worker,	using		importScripts(..)	:

//	inside	the	Worker

importScripts(	"foo.js",	"bar.js"	);

These	scripts	are	loaded	synchronously,	which	means	the		importScripts(..)		call	will	block
the	rest	of	the	Worker's	execution	until	the	file(s)	are	finished	loading	and	executing.

Note:	There	have	also	been	some	discussions	about	exposing	the		<canvas>		API	to
Workers,	which	combined	with	having	canvases	be	Transferables	(see	the	"Data	Transfer"
section),	would	allow	Workers	to	perform	more	sophisticated	off-thread	graphics	processing,
which	can	be	useful	for	high-performance	gaming	(WebGL)	and	other	similar	applications.
Although	this	doesn't	exist	yet	in	any	browsers,	it's	likely	to	happen	in	the	near	future.

What	are	some	common	uses	for	Web	Workers?

Processing	intensive	math	calculations
Sorting	large	data	sets
Data	operations	(compression,	audio	analysis,	image	pixel	manipulations,	etc.)
High-traffic	network	communications

Data	Transfer

You	may	notice	a	common	characteristic	of	most	of	those	uses,	which	is	that	they	require	a
large	amount	of	information	to	be	transferred	across	the	barrier	between	threads	using	the
event	mechanism,	perhaps	in	both	directions.

Program	Performance

631



In	the	early	days	of	Workers,	serializing	all	data	to	a	string	value	was	the	only	option.	In
addition	to	the	speed	penalty	of	the	two-way	serializations,	the	other	major	negative	was	that
the	data	was	being	copied,	which	meant	a	doubling	of	memory	usage	(and	the	subsequent
churn	of	garbage	collection).

Thankfully,	we	now	have	a	few	better	options.

If	you	pass	an	object,	a	so-called	"Structured	Cloning	Algorithm"
(https://developer.mozilla.org/en-
US/docs/Web/Guide/API/DOM/The_structured_clone_algorithm)	is	used	to	copy/duplicate
the	object	on	the	other	side.	This	algorithm	is	fairly	sophisticated	and	can	even	handle
duplicating	objects	with	circular	references.	The	to-string/from-string	performance	penalty	is
not	paid,	but	we	still	have	duplication	of	memory	using	this	approach.	There	is	support	for
this	in	IE10	and	above,	as	well	as	all	the	other	major	browsers.

An	even	better	option,	especially	for	larger	data	sets,	is	"Transferable	Objects"
(http://updates.html5rocks.com/2011/12/Transferable-Objects-Lightning-Fast).	What
happens	is	that	the	object's	"ownership"	is	transferred,	but	the	data	itself	is	not	moved.	Once
you	transfer	away	an	object	to	a	Worker,	it's	empty	or	inaccessible	in	the	originating	location
--	that	eliminates	the	hazards	of	threaded	programming	over	a	shared	scope.	Of	course,
transfer	of	ownership	can	go	in	both	directions.

There	really	isn't	much	you	need	to	do	to	opt	into	a	Transferable	Object;	any	data	structure
that	implements	the	Transferable	interface	(https://developer.mozilla.org/en-
US/docs/Web/API/Transferable)	will	automatically	be	transferred	this	way	(support	Firefox	&
Chrome).

For	example,	typed	arrays	like		Uint8Array		(see	the	ES6	&	Beyond	title	of	this	series)	are
"Transferables."	This	is	how	you'd	send	a	Transferable	Object	using		postMessage(..)	:

//	`foo`	is	a	`Uint8Array`	for	instance

postMessage(	foo.buffer,	[	foo.buffer	]	);

The	first	parameter	is	the	raw	buffer	and	the	second	parameter	is	a	list	of	what	to	transfer.

Browsers	that	don't	support	Transferable	Objects	simply	degrade	to	structured	cloning,
which	means	performance	reduction	rather	than	outright	feature	breakage.

Shared	Workers
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If	your	site	or	app	allows	for	loading	multiple	tabs	of	the	same	page	(a	common	feature),	you
may	very	well	want	to	reduce	the	resource	usage	of	their	system	by	preventing	duplicate
dedicated	Workers;	the	most	common	limited	resource	in	this	respect	is	a	socket	network
connection,	as	browsers	limit	the	number	of	simultaneous	connections	to	a	single	host.	Of
course,	limiting	multiple	connections	from	a	client	also	eases	your	server	resource
requirements.

In	this	case,	creating	a	single	centralized	Worker	that	all	the	page	instances	of	your	site	or
app	can	share	is	quite	useful.

That's	called	a		SharedWorker	,	which	you	create	like	so	(support	for	this	is	limited	to	Firefox
and	Chrome):

var	w1	=	new	SharedWorker(	"http://some.url.1/mycoolworker.js"	);

Because	a	shared	Worker	can	be	connected	to	or	from	more	than	one	program	instance	or
page	on	your	site,	the	Worker	needs	a	way	to	know	which	program	a	message	comes	from.
This	unique	identification	is	called	a	"port"	--	think	network	socket	ports.	So	the	calling
program	must	use	the		port		object	of	the	Worker	for	communication:

w1.port.addEventListener(	"message",	handleMessages	);

//	..

w1.port.postMessage(	"something	cool"	);

Also,	the	port	connection	must	be	initialized,	as:

w1.port.start();

Inside	the	shared	Worker,	an	extra	event	must	be	handled:		"connect"	.	This	event	provides
the	port		object		for	that	particular	connection.	The	most	convenient	way	to	keep	multiple
connections	separate	is	to	use	closure	(see	Scope	&	Closures	title	of	this	series)	over	the
	port	,	as	shown	next,	with	the	event	listening	and	transmitting	for	that	connection	defined
inside	the	handler	for	the		"connect"		event:
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//	inside	the	shared	Worker

addEventListener(	"connect",	function(evt){

				//	the	assigned	port	for	this	connection

				var	port	=	evt.ports[0];

				port.addEventListener(	"message",	function(evt){

								//	..

								port.postMessage(	..	);

								//	..

				}	);

				//	initialize	the	port	connection

				port.start();

}	);

Other	than	that	difference,	shared	and	dedicated	Workers	have	the	same	capabilities	and
semantics.

Note:	Shared	Workers	survive	the	termination	of	a	port	connection	if	other	port	connections
are	still	alive,	whereas	dedicated	Workers	are	terminated	whenever	the	connection	to	their
initiating	program	is	terminated.

Polyfilling	Web	Workers

Web	Workers	are	very	attractive	performance-wise	for	running	JS	programs	in	parallel.
However,	you	may	be	in	a	position	where	your	code	needs	to	run	in	older	browsers	that	lack
support.	Because	Workers	are	an	API	and	not	a	syntax,	they	can	be	polyfilled,	to	an	extent.

If	a	browser	doesn't	support	Workers,	there's	simply	no	way	to	fake	multithreading	from	the
performance	perspective.	Iframes	are	commonly	thought	of	to	provide	a	parallel
environment,	but	in	all	modern	browsers	they	actually	run	on	the	same	thread	as	the	main
page,	so	they're	not	sufficient	for	faking	parallelism.

As	we	detailed	in	Chapter	1,	JS's	asynchronicity	(not	parallelism)	comes	from	the	event	loop
queue,	so	you	can	force	faked	Workers	to	be	asynchronous	using	timers	(	setTimeout(..)	,
etc.).	Then	you	just	need	to	provide	a	polyfill	for	the	Worker	API.	There	are	some	listed	here
(https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#web-workers),
but	frankly	none	of	them	look	great.

I've	written	a	sketch	of	a	polyfill	for		Worker		here
(https://gist.github.com/getify/1b26accb1a09aa53ad25).	It's	basic,	but	it	should	get	the	job
done	for	simple		Worker		support,	given	that	the	two-way	messaging	works	correctly	as	well
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as		"onerror"		handling.	You	could	probably	also	extend	it	with	more	features,	such	as
	terminate()		or	faked	Shared	Workers,	as	you	see	fit.

Note:	You	can't	fake	synchronous	blocking,	so	this	polyfill	just	disallows	use	of
	importScripts(..)	.	Another	option	might	have	been	to	parse	and	transform	the	Worker's
code	(once	Ajax	loaded)	to	handle	rewriting	to	some	asynchronous	form	of	an
	importScripts(..)		polyfill,	perhaps	with	a	promise-aware	interface.

SIMD
Single	instruction,	multiple	data	(SIMD)	is	a	form	of	"data	parallelism,"	as	contrasted	to	"task
parallelism"	with	Web	Workers,	because	the	emphasis	is	not	really	on	program	logic	chunks
being	parallelized,	but	rather	multiple	bits	of	data	being	processed	in	parallel.

With	SIMD,	threads	don't	provide	the	parallelism.	Instead,	modern	CPUs	provide	SIMD
capability	with	"vectors"	of	numbers	--	think:	type	specialized	arrays	--	as	well	as	instructions
that	can	operate	in	parallel	across	all	the	numbers;	these	are	low-level	operations	leveraging
instruction-level	parallelism.

The	effort	to	expose	SIMD	capability	to	JavaScript	is	primarily	spearheaded	by	Intel
(https://01.org/node/1495),	namely	by	Mohammad	Haghighat	(at	the	time	of	this	writing),	in
cooperation	with	Firefox	and	Chrome	teams.	SIMD	is	on	an	early	standards	track	with	a
good	chance	of	making	it	into	a	future	revision	of	JavaScript,	likely	in	the	ES7	timeframe.

SIMD	JavaScript	proposes	to	expose	short	vector	types	and	APIs	to	JS	code,	which	on
those	SIMD-enabled	systems	would	map	the	operations	directly	through	to	the	CPU
equivalents,	with	fallback	to	non-parallelized	operation	"shims"	on	non-SIMD	systems.

The	performance	benefits	for	data-intensive	applications	(signal	analysis,	matrix	operations
on	graphics,	etc.)	with	such	parallel	math	processing	are	quite	obvious!

Early	proposal	forms	of	the	SIMD	API	at	the	time	of	this	writing	look	like	this:

var	v1	=	SIMD.float32x4(	3.14159,	21.0,	32.3,	55.55	);

var	v2	=	SIMD.float32x4(	2.1,	3.2,	4.3,	5.4	);

var	v3	=	SIMD.int32x4(	10,	101,	1001,	10001	);

var	v4	=	SIMD.int32x4(	10,	20,	30,	40	);

SIMD.float32x4.mul(	v1,	v2	);				//	[	6.597339,	67.2,	138.89,	299.97	]

SIMD.int32x4.add(	v3,	v4	);								//	[	20,	121,	1031,	10041	]
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Shown	here	are	two	different	vector	data	types,	32-bit	floating-point	numbers	and	32-bit
integer	numbers.	You	can	see	that	these	vectors	are	sized	exactly	to	four	32-bit	elements,
as	this	matches	the	SIMD	vector	sizes	(128-bit)	available	in	most	modern	CPUs.	It's	also
possible	we	may	see	an		x8		(or	larger!)	version	of	these	APIs	in	the	future.

Besides		mul()		and		add()	,	many	other	operations	are	likely	to	be	included,	such	as
	sub()	,		div()	,		abs()	,		neg()	,		sqrt()	,		reciprocal()	,		reciprocalSqrt()		(arithmetic),
	shuffle()		(rearrange	vector	elements),		and()	,		or()	,		xor()	,		not()		(logical),		equal()	,
	greaterThan()	,		lessThan()		(comparison),		shiftLeft()	,		shiftRightLogical()	,
	shiftRightArithmetic()		(shifts),		fromFloat32x4()	,	and		fromInt32x4()		(conversions).

Note:	There's	an	official	"prollyfill"	(hopeful,	expectant,	future-leaning	polyfill)	for	the	SIMD
functionality	available	(https://github.com/johnmccutchan/ecmascript_simd),	which	illustrates
a	lot	more	of	the	planned	SIMD	capability	than	we've	illustrated	in	this	section.

asm.js
"asm.js"	(http://asmjs.org/)	is	a	label	for	a	highly	optimizable	subset	of	the	JavaScript
language.	By	carefully	avoiding	certain	mechanisms	and	patterns	that	are	hard	to	optimize
(garbage	collection,	coercion,	etc.),	asm.js-styled	code	can	be	recognized	by	the	JS	engine
and	given	special	attention	with	aggressive	low-level	optimizations.

Distinct	from	other	program	performance	mechanisms	discussed	in	this	chapter,	asm.js	isn't
necessarily	something	that	needs	to	be	adopted	into	the	JS	language	specification.	There	is
an	asm.js	specification	(http://asmjs.org/spec/latest/),	but	it's	mostly	for	tracking	an	agreed
upon	set	of	candidate	inferences	for	optimization	rather	than	a	set	of	requirements	of	JS
engines.

There's	not	currently	any	new	syntax	being	proposed.	Instead,	asm.js	suggests	ways	to
recognize	existing	standard	JS	syntax	that	conforms	to	the	rules	of	asm.js	and	let	engines
implement	their	own	optimizations	accordingly.

There's	been	some	disagreement	between	browser	vendors	over	exactly	how	asm.js	should
be	activated	in	a	program.	Early	versions	of	the	asm.js	experiment	required	a		"use	asm";	
pragma	(similar	to	strict	mode's		"use	strict";	)	to	help	clue	the	JS	engine	to	be	looking	for
asm.js	optimization	opportunities	and	hints.	Others	have	asserted	that	asm.js	should	just	be
a	set	of	heuristics	that	engines	automatically	recognize	without	the	author	having	to	do
anything	extra,	meaning	that	existing	programs	could	theoretically	benefit	from	asm.js-style
optimizations	without	doing	anything	special.

How	to	Optimize	with	asm.js
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The	first	thing	to	understand	about	asm.js	optimizations	is	around	types	and	coercion	(see
the	Types	&	Grammar	title	of	this	series).	If	the	JS	engine	has	to	track	multiple	different
types	of	values	in	a	variable	through	various	operations,	so	that	it	can	handle	coercions
between	types	as	necessary,	that's	a	lot	of	extra	work	that	keeps	the	program	optimization
suboptimal.

Note:	We're	going	to	use	asm.js-style	code	here	for	illustration	purposes,	but	be	aware	that
it's	not	commonly	expected	that	you'll	author	such	code	by	hand.	asm.js	is	more	intended	to
a	compilation	target	from	other	tools,	such	as	Emscripten
(https://github.com/kripken/emscripten/wiki).	It's	of	course	possible	to	write	your	own	asm.js
code,	but	that's	usually	a	bad	idea	because	the	code	is	very	low	level	and	managing	it	can
be	very	time	consuming	and	error	prone.	Nevertheless,	there	may	be	cases	where	you'd
want	to	hand	tweak	your	code	for	asm.js	optimization	purposes.

There	are	some	"tricks"	you	can	use	to	hint	to	an	asm.js-aware	JS	engine	what	the	intended
type	is	for	variables/operations,	so	that	it	can	skip	these	coercion	tracking	steps.

For	example:

var	a	=	42;

//	..

var	b	=	a;

In	that	program,	the		b	=	a		assignment	leaves	the	door	open	for	type	divergence	in
variables.	However,	it	could	instead	be	written	as:

var	a	=	42;

//	..

var	b	=	a	|	0;

Here,	we've	used	the		|		("binary	OR")	with	value		0	,	which	has	no	effect	on	the	value	other
than	to	make	sure	it's	a	32-bit	integer.	That	code	run	in	a	normal	JS	engine	works	just	fine,
but	when	run	in	an	asm.js-aware	JS	engine	it	can	signal	that		b		should	always	be	treated
as	a	32-bit	integer,	so	the	coercion	tracking	can	be	skipped.

Similarly,	the	addition	operation	between	two	variables	can	be	restricted	to	a	more
performant	integer	addition	(instead	of	floating	point):

(a	+	b)	|	0
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Again,	the	asm.js-aware	JS	engine	can	see	that	hint	and	infer	that	the		+		operation	should
be	32-bit	integer	addition	because	the	end	result	of	the	whole	expression	would
automatically	be	32-bit	integer	conformed	anyway.

asm.js	Modules

One	of	the	biggest	detractors	to	performance	in	JS	is	around	memory	allocation,	garbage
collection,	and	scope	access.	asm.js	suggests	one	of	the	ways	around	these	issues	is	to
declare	a	more	formalized	asm.js	"module"	--	do	not	confuse	these	with	ES6	modules;	see
the	ES6	&	Beyond	title	of	this	series.

For	an	asm.js	module,	you	need	to	explicitly	pass	in	a	tightly	conformed	namespace	--	this	is
referred	to	in	the	spec	as		stdlib	,	as	it	should	represent	standard	libraries	needed	--	to
import	necessary	symbols,	rather	than	just	using	globals	via	lexical	scope.	In	the	base	case,
the		window		object	is	an	acceptable		stdlib		object	for	asm.js	module	purposes,	but	you
could	and	perhaps	should	construct	an	even	more	restricted	one.

You	also	must	declare	a	"heap"	--	which	is	just	a	fancy	term	for	a	reserved	spot	in	memory
where	variables	can	already	be	used	without	asking	for	more	memory	or	releasing
previously	used	memory	--	and	pass	that	in,	so	that	the	asm.js	module	won't	need	to	do
anything	that	would	cause	memory	churn;	it	can	just	use	the	pre-reserved	space.

A	"heap"	is	likely	a	typed		ArrayBuffer	,	such	as:

var	heap	=	new	ArrayBuffer(	0x10000	);				//	64k	heap

Using	that	pre-reserved	64k	of	binary	space,	an	asm.js	module	can	store	and	retrieve	values
in	that	buffer	without	any	memory	allocation	or	garbage	collection	penalties.	For	example,
the		heap		buffer	could	be	used	inside	the	module	to	back	an	array	of	64-bit	float	values	like
this:

var	arr	=	new	Float64Array(	heap	);

OK,	so	let's	make	a	quick,	silly	example	of	an	asm.js-styled	module	to	illustrate	how	these
pieces	fit	together.	We'll	define	a		foo(..)		that	takes	a	start	(	x	)	and	end	(	y	)	integer	for	a
range,	and	calculates	all	the	inner	adjacent	multiplications	of	the	values	in	the	range,	and
then	finally	averages	those	values	together:
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function	fooASM(stdlib,foreign,heap)	{

				"use	asm";

				var	arr	=	new	stdlib.Int32Array(	heap	);

				function	foo(x,y)	{

								x	=	x	|	0;

								y	=	y	|	0;

								var	i	=	0;

								var	p	=	0;

								var	sum	=	0;

								var	count	=	((y|0)	-	(x|0))	|	0;

								//	calculate	all	the	inner	adjacent	multiplications

								for	(i	=	x	|	0;

												(i	|	0)	<	(y	|	0);

												p	=	(p	+	8)	|	0,	i	=	(i	+	1)	|	0

								)	{

												//	store	result

												arr[	p	>>	3	]	=	(i	*	(i	+	1))	|	0;

								}

								//	calculate	average	of	all	intermediate	values

								for	(i	=	0,	p	=	0;

												(i	|	0)	<	(count	|	0);

												p	=	(p	+	8)	|	0,	i	=	(i	+	1)	|	0

								)	{

												sum	=	(sum	+	arr[	p	>>	3	])	|	0;

								}

								return	+(sum	/	count);

				}

				return	{

								foo:	foo

				};

}

var	heap	=	new	ArrayBuffer(	0x1000	);

var	foo	=	fooASM(	window,	null,	heap	).foo;

foo(	10,	20	);								//	233

Note:	This	asm.js	example	is	hand	authored	for	illustration	purposes,	so	it	doesn't	represent
the	same	code	that	would	be	produced	from	a	compilation	tool	targeting	asm.js.	But	it	does
show	the	typical	nature	of	asm.js	code,	especially	the	type	hinting	and	use	of	the		heap	
buffer	for	temporary	variable	storage.
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The	first	call	to		fooASM(..)		is	what	sets	up	our	asm.js	module	with	its		heap		allocation.	The
result	is	a		foo(..)		function	we	can	call	as	many	times	as	necessary.	Those		foo(..)		calls
should	be	specially	optimized	by	an	asm.js-aware	JS	engine.	Importantly,	the	preceding
code	is	completely	standard	JS	and	would	run	just	fine	(without	special	optimization)	in	a
non-asm.js	engine.

Obviously,	the	nature	of	restrictions	that	make	asm.js	code	so	optimizable	reduces	the
possible	uses	for	such	code	significantly.	asm.js	won't	necessarily	be	a	general	optimization
set	for	any	given	JS	program.	Instead,	it's	intended	to	provide	an	optimized	way	of	handling
specialized	tasks	such	as	intensive	math	operations	(e.g.,	those	used	in	graphics	processing
for	games).

Review
The	first	four	chapters	of	this	book	are	based	on	the	premise	that	async	coding	patterns	give
you	the	ability	to	write	more	performant	code,	which	is	generally	a	very	important
improvement.	But	async	behavior	only	gets	you	so	far,	because	it's	still	fundamentally	bound
to	a	single	event	loop	thread.

So	in	this	chapter	we've	covered	several	program-level	mechanisms	for	improving
performance	even	further.

Web	Workers	let	you	run	a	JS	file	(aka	program)	in	a	separate	thread	using	async	events	to
message	between	the	threads.	They're	wonderful	for	offloading	long-running	or	resource-
intensive	tasks	to	a	different	thread,	leaving	the	main	UI	thread	more	responsive.

SIMD	proposes	to	map	CPU-level	parallel	math	operations	to	JavaScript	APIs	for	high-
performance	data-parallel	operations,	like	number	processing	on	large	data	sets.

Finally,	asm.js	describes	a	small	subset	of	JavaScript	that	avoids	the	hard-to-optimize	parts
of	JS	(like	garbage	collection	and	coercion)	and	lets	the	JS	engine	recognize	and	run	such
code	through	aggressive	optimizations.	asm.js	could	be	hand	authored,	but	that's	extremely
tedious	and	error	prone,	akin	to	hand	authoring	assembly	language	(hence	the	name).
Instead,	the	main	intent	is	that	asm.js	would	be	a	good	target	for	cross-compilation	from
other	highly	optimized	program	languages	--	for	example,	Emscripten
(https://github.com/kripken/emscripten/wiki)	transpiling	C/C++	to	JavaScript.

While	not	covered	explicitly	in	this	chapter,	there	are	even	more	radical	ideas	under	very
early	discussion	for	JavaScript,	including	approximations	of	direct	threaded	functionality	(not
just	hidden	behind	data	structure	APIs).	Whether	that	happens	explicitly,	or	we	just	see	more
parallelism	creep	into	JS	behind	the	scenes,	the	future	of	more	optimized	program-level
performance	in	JS	looks	really	promising.
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As	the	first	four	chapters	of	this	book	were	all	about	performance	as	a	coding	pattern
(asynchrony	and	concurrency),	and	Chapter	5	was	about	performance	at	the	macro	program
architecture	level,	this	chapter	goes	after	the	topic	of	performance	at	the	micro	level,
focusing	on	single	expressions/statements.

One	of	the	most	common	areas	of	curiosity	--	indeed,	some	developers	can	get	quite
obsessed	about	it	--	is	in	analyzing	and	testing	various	options	for	how	to	write	a	line	or
chunk	of	code,	and	which	one	is	faster.

We're	going	to	look	at	some	of	these	issues,	but	it's	important	to	understand	from	the	outset
that	this	chapter	is	not	about	feeding	the	obsession	of	micro-performance	tuning,	like
whether	some	given	JS	engine	can	run		++a		faster	than		a++	.	The	more	important	goal	of
this	chapter	is	to	figure	out	what	kinds	of	JS	performance	matter	and	which	ones	don't,	and
how	to	tell	the	difference.

But	even	before	we	get	there,	we	need	to	explore	how	to	most	accurately	and	reliably	test
JS	performance,	because	there's	tons	of	misconceptions	and	myths	that	have	flooded	our
collective	cult	knowledge	base.	We've	got	to	sift	through	all	that	junk	to	find	some	clarity.

Benchmarking
OK,	time	to	start	dispelling	some	misconceptions.	I'd	wager	the	vast	majority	of	JS
developers,	if	asked	to	benchmark	the	speed	(execution	time)	of	a	certain	operation,	would
initially	go	about	it	something	like	this:

var	start	=	(new	Date()).getTime();				//	or	`Date.now()`

//	do	some	operation

var	end	=	(new	Date()).getTime();

console.log(	"Duration:",	(end	-	start)	);

Raise	your	hand	if	that's	roughly	what	came	to	your	mind.	Yep,	I	thought	so.	There's	a	lot
wrong	with	this	approach,	but	don't	feel	bad;	we've	all	been	there.

What	did	that	measurement	tell	you,	exactly?	Understanding	what	it	does	and	doesn't	say
about	the	execution	time	of	the	operation	in	question	is	key	to	learning	how	to	appropriately
benchmark	performance	in	JavaScript.

If	the	duration	reported	is		0	,	you	may	be	tempted	to	believe	that	it	took	less	than	a
millisecond.	But	that's	not	very	accurate.	Some	platforms	don't	have	single	millisecond
precision,	but	instead	only	update	the	timer	in	larger	increments.	For	example,	older
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versions	of	windows	(and	thus	IE)	had	only	15ms	precision,	which	means	the	operation	has
to	take	at	least	that	long	for	anything	other	than		0		to	be	reported!

Moreover,	whatever	duration	is	reported,	the	only	thing	you	really	know	is	that	the	operation
took	approximately	that	long	on	that	exact	single	run.	You	have	near-zero	confidence	that	it
will	always	run	at	that	speed.	You	have	no	idea	if	the	engine	or	system	had	some	sort	of
interference	at	that	exact	moment,	and	that	at	other	times	the	operation	could	run	faster.

What	if	the	duration	reported	is		4	?	Are	you	more	sure	it	took	about	four	milliseconds?
Nope.	It	might	have	taken	less	time,	and	there	may	have	been	some	other	delay	in	getting
either		start		or		end		timestamps.

More	troublingly,	you	also	don't	know	that	the	circumstances	of	this	operation	test	aren't
overly	optimistic.	It's	possible	that	the	JS	engine	figured	out	a	way	to	optimize	your	isolated
test	case,	but	in	a	more	real	program	such	optimization	would	be	diluted	or	impossible,	such
that	the	operation	would	run	slower	than	your	test.

So...	what	do	we	know?	Unfortunately,	with	those	realizations	stated,	we	know	very	little.
Something	of	such	low	confidence	isn't	even	remotely	good	enough	to	build	your
determinations	on.	Your	"benchmark"	is	basically	useless.	And	worse,	it's	dangerous	in	that
it	implies	false	confidence,	not	just	to	you	but	also	to	others	who	don't	think	critically	about
the	conditions	that	led	to	those	results.

Repetition

"OK,"	you	now	say,	"Just	put	a	loop	around	it	so	the	whole	test	takes	longer."	If	you	repeat
an	operation	100	times,	and	that	whole	loop	reportedly	takes	a	total	of	137ms,	then	you	can
just	divide	by	100	and	get	an	average	duration	of	1.37ms	for	each	operation,	right?

Well,	not	exactly.

A	straight	mathematical	average	by	itself	is	definitely	not	sufficient	for	making	judgments
about	performance	which	you	plan	to	extrapolate	to	the	breadth	of	your	entire	application.
With	a	hundred	iterations,	even	a	couple	of	outliers	(high	or	low)	can	skew	the	average,	and
then	when	you	apply	that	conclusion	repeatedly,	you	even	further	inflate	the	skew	beyond
credulity.

Instead	of	just	running	for	a	fixed	number	of	iterations,	you	can	instead	choose	to	run	the
loop	of	tests	until	a	certain	amount	of	time	has	passed.	That	might	be	more	reliable,	but	how
do	you	decide	how	long	to	run?	You	might	guess	that	it	should	be	some	multiple	of	how	long
your	operation	should	take	to	run	once.	Wrong.
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Actually,	the	length	of	time	to	repeat	across	should	be	based	on	the	accuracy	of	the	timer
you're	using,	specifically	to	minimize	the	chances	of	inaccuracy.	The	less	precise	your	timer,
the	longer	you	need	to	run	to	make	sure	you've	minimized	the	error	percentage.	A	15ms
timer	is	pretty	bad	for	accurate	benchmarking;	to	minimize	its	uncertainty	(aka	"error	rate")	to
less	than	1%,	you	need	to	run	your	each	cycle	of	test	iterations	for	750ms.	A	1ms	timer	only
needs	a	cycle	to	run	for	50ms	to	get	the	same	confidence.

But	then,	that's	just	a	single	sample.	To	be	sure	you're	factoring	out	the	skew,	you'll	want	lots
of	samples	to	average	across.	You'll	also	want	to	understand	something	about	just	how	slow
the	worst	sample	is,	how	fast	the	best	sample	is,	how	far	apart	those	best	and	worse	cases
were,	and	so	on.	You'll	want	to	know	not	just	a	number	that	tells	you	how	fast	something	ran,
but	also	to	have	some	quantifiable	measure	of	how	trustable	that	number	is.

Also,	you	probably	want	to	combine	these	different	techniques	(as	well	as	others),	so	that
you	get	the	best	balance	of	all	the	possible	approaches.

That's	all	bare	minimum	just	to	get	started.	If	you've	been	approaching	performance
benchmarking	with	anything	less	serious	than	what	I	just	glossed	over,	well...	"you	don't
know:	proper	benchmarking."

Benchmark.js

Any	relevant	and	reliable	benchmark	should	be	based	on	statistically	sound	practices.	I	am
not	going	to	write	a	chapter	on	statistics	here,	so	I'll	hand	wave	around	some	terms:
standard	deviation,	variance,	margin	of	error.	If	you	don't	know	what	those	terms	really	mean
--	I	took	a	stats	class	back	in	college	and	I'm	still	a	little	fuzzy	on	them	--	you	are	not	actually
qualified	to	write	your	own	benchmarking	logic.

Luckily,	smart	folks	like	John-David	Dalton	and	Mathias	Bynens	do	understand	these
concepts,	and	wrote	a	statistically	sound	benchmarking	tool	called	Benchmark.js
(http://benchmarkjs.com/).	So	I	can	end	the	suspense	by	simply	saying:	"just	use	that	tool."

I	won't	repeat	their	whole	documentation	for	how	Benchmark.js	works;	they	have	fantastic
API	Docs	(http://benchmarkjs.com/docs)	you	should	read.	Also	there	are	some	great
(http://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/)	writeups
(http://monsur.hossa.in/2012/12/11/benchmarkjs.html)	on	more	of	the	details	and
methodology.

But	just	for	quick	illustration	purposes,	here's	how	you	could	use	Benchmark.js	to	run	a
quick	performance	test:
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function	foo()	{

				//	operation(s)	to	test

}

var	bench	=	new	Benchmark(

				"foo	test",																//	test	name

				foo,																				//	function	to	test	(just	contents)

				{

								//	..																//	optional	extra	options	(see	docs)

				}

);

bench.hz;																				//	number	of	operations	per	second

bench.stats.moe;												//	margin	of	error

bench.stats.variance;								//	variance	across	samples

//	..

There's	lots	more	to	learn	about	using	Benchmark.js	besides	this	glance	I'm	including	here.
But	the	point	is	that	it's	handling	all	of	the	complexities	of	setting	up	a	fair,	reliable,	and	valid
performance	benchmark	for	a	given	piece	of	JavaScript	code.	If	you're	going	to	try	to	test
and	benchmark	your	code,	this	library	is	the	first	place	you	should	turn.

We're	showing	here	the	usage	to	test	a	single	operation	like	X,	but	it's	fairly	common	that
you	want	to	compare	X	to	Y.	This	is	easy	to	do	by	simply	setting	up	two	different	tests	in	a
"Suite"	(a	Benchmark.js	organizational	feature).	Then,	you	run	them	head-to-head,	and
compare	the	statistics	to	conclude	whether	X	or	Y	was	faster.

Benchmark.js	can	of	course	be	used	to	test	JavaScript	in	a	browser	(see	the	"jsPerf.com"
section	later	in	this	chapter),	but	it	can	also	run	in	non-browser	environments	(Node.js,	etc.).

One	largely	untapped	potential	use-case	for	Benchmark.js	is	to	use	it	in	your	Dev	or	QA
environments	to	run	automated	performance	regression	tests	against	critical	path	parts	of
your	application's	JavaScript.	Similar	to	how	you	might	run	unit	test	suites	before
deployment,	you	can	also	compare	the	performance	against	previous	benchmarks	to
monitor	if	you	are	improving	or	degrading	application	performance.

Setup/Teardown

In	the	previous	code	snippet,	we	glossed	over	the	"extra	options"		{	..	}		object.	But	there
are	two	options	we	should	discuss:		setup		and		teardown	.

These	two	options	let	you	define	functions	to	be	called	before	and	after	your	test	case	runs.

It's	incredibly	important	to	understand	that	your		setup		and		teardown		code	does	not	run
for	each	test	iteration.	The	best	way	to	think	about	it	is	that	there's	an	outer	loop	(repeating
cycles),	and	an	inner	loop	(repeating	test	iterations).		setup		and		teardown		are	run	at	the
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beginning	and	end	of	each	outer	loop	(aka	cycle)	iteration,	but	not	inside	the	inner	loop.

Why	does	this	matter?	Let's	imagine	you	have	a	test	case	that	looks	like	this:

a	=	a	+	"w";

b	=	a.charAt(	1	);

Then,	you	set	up	your	test		setup		as	follows:

var	a	=	"x";

Your	temptation	is	probably	to	believe	that		a		is	starting	out	as		"x"		for	each	test	iteration.

But	it's	not!	It's	starting		a		at		"x"		for	each	test	cycle,	and	then	your	repeated		+	"w"	
concatenations	will	be	making	a	larger	and	larger		a		value,	even	though	you're	only	ever
accessing	the	character		"w"		at	the		1		position.

Where	this	most	commonly	bites	you	is	when	you	make	side	effect	changes	to	something
like	the	DOM,	like	appending	a	child	element.	You	may	think	your	parent	element	is	set	as
empty	each	time,	but	it's	actually	getting	lots	of	elements	added,	and	that	can	significantly
sway	the	results	of	your	tests.

Context	Is	King
Don't	forget	to	check	the	context	of	a	particular	performance	benchmark,	especially	a
comparison	between	X	and	Y	tasks.	Just	because	your	test	reveals	that	X	is	faster	than	Y
doesn't	mean	that	the	conclusion	"X	is	faster	than	Y"	is	actually	relevant.

For	example,	let's	say	a	performance	test	reveals	that	X	runs	10,000,000	operations	per
second,	and	Y	runs	at	8,000,000	operations	per	second.	You	could	claim	that	Y	is	20%
slower	than	X,	and	you'd	be	mathematically	correct,	but	your	assertion	doesn't	hold	as	much
water	as	you'd	think.

Let's	think	about	the	results	more	critically:	10,000,000	operations	per	second	is	10,000
operations	per	millisecond,	and	10	operations	per	microsecond.	In	other	words,	a	single
operation	takes	0.1	microseconds,	or	100	nanoseconds.	It's	hard	to	fathom	just	how	small
100ns	is,	but	for	comparison,	it's	often	cited	that	the	human	eye	isn't	generally	capable	of
distinguishing	anything	less	than	100ms,	which	is	one	million	times	slower	than	the	100ns
speed	of	the	X	operation.
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Even	recent	scientific	studies	showing	that	maybe	the	brain	can	process	as	quick	as	13ms
(about	8x	faster	than	previously	asserted)	would	mean	that	X	is	still	running	125,000	times
faster	than	the	human	brain	can	perceive	a	distinct	thing	happening.	X	is	going	really,
really	fast.

But	more	importantly,	let's	talk	about	the	difference	between	X	and	Y,	the	2,000,000
operations	per	second	difference.	If	X	takes	100ns,	and	Y	takes	80ns,	the	difference	is	20ns,
which	in	the	best	case	is	still	one	650-thousandth	of	the	interval	the	human	brain	can
perceive.

What's	my	point?	None	of	this	performance	difference	matters,	at	all!

But	wait,	what	if	this	operation	is	going	to	happen	a	whole	bunch	of	times	in	a	row?	Then	the
difference	could	add	up,	right?

OK,	so	what	we're	asking	then	is,	how	likely	is	it	that	operation	X	is	going	to	be	run	over	and
over	again,	one	right	after	the	other,	and	that	this	has	to	happen	650,000	times	just	to	get	a
sliver	of	a	hope	the	human	brain	could	perceive	it.	More	likely,	it'd	have	to	happen	5,000,000
to	10,000,000	times	together	in	a	tight	loop	to	even	approach	relevance.

While	the	computer	scientist	in	you	might	protest	that	this	is	possible,	the	louder	voice	of
realism	in	you	should	sanity	check	just	how	likely	or	unlikely	that	really	is.	Even	if	it	is
relevant	in	rare	occasions,	it's	irrelevant	in	most	situations.

The	vast	majority	of	your	benchmark	results	on	tiny	operations	--	like	the		++x		vs		x++		myth
--	are	just	totally	bogus	for	supporting	the	conclusion	that	X	should	be	favored	over	Y	on	a
performance	basis.

Engine	Optimizations

You	simply	cannot	reliably	extrapolate	that	if	X	was	10	microseconds	faster	than	Y	in	your
isolated	test,	that	means	X	is	always	faster	than	Y	and	should	always	be	used.	That's	not
how	performance	works.	It's	vastly	more	complicated.

For	example,	let's	imagine	(purely	hypothetical)	that	you	test	some	microperformance
behavior	such	as	comparing:
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var	twelve	=	"12";

var	foo	=	"foo";

//	test	1

var	X1	=	parseInt(	twelve	);

var	X2	=	parseInt(	foo	);

//	test	2

var	Y1	=	Number(	twelve	);

var	Y2	=	Number(	foo	);

If	you	understand	what		parseInt(..)		does	compared	to		Number(..)	,	you	might	intuit	that
	parseInt(..)		potentially	has	"more	work"	to	do,	especially	in	the		foo		case.	Or	you	might
intuit	that	they	should	have	the	same	amount	of	work	to	do	in	the		foo		case,	as	both	should
be	able	to	stop	at	the	first	character		"f"	.

Which	intuition	is	correct?	I	honestly	don't	know.	But	I'll	make	the	case	it	doesn't	matter	what
your	intuition	is.	What	might	the	results	be	when	you	test	it?	Again,	I'm	making	up	a	pure
hypothetical	here,	I	haven't	actually	tried,	nor	do	I	care.

Let's	pretend	the	test	comes	back	that		X		and		Y		are	statistically	identical.	Have	you	then
confirmed	your	intuition	about	the		"f"		character	thing?	Nope.

It's	possible	in	our	hypothetical	that	the	engine	might	recognize	that	the	variables		twelve	
and		foo		are	only	being	used	in	one	place	in	each	test,	and	so	it	might	decide	to	inline
those	values.	Then	it	may	realize	that		Number(	"12"	)		can	just	be	replaced	by		12	.	And
maybe	it	comes	to	the	same	conclusion	with		parseInt(..)	,	or	maybe	not.

Or	an	engine's	dead-code	removal	heuristic	could	kick	in,	and	it	could	realize	that	variables
	X		and		Y		aren't	being	used,	so	declaring	them	is	irrelevant,	so	it	doesn't	end	up	doing
anything	at	all	in	either	test.

And	all	that's	just	made	with	the	mindset	of	assumptions	about	a	single	test	run.	Modern
engines	are	fantastically	more	complicated	than	what	we're	intuiting	here.	They	do	all	sorts
of	tricks,	like	tracing	and	tracking	how	a	piece	of	code	behaves	over	a	short	period	of	time,
or	with	a	particularly	constrained	set	of	inputs.

What	if	the	engine	optimizes	a	certain	way	because	of	the	fixed	input,	but	in	your	real
program	you	give	more	varied	input	and	the	optimization	decisions	shake	out	differently	(or
not	at	all!)?	Or	what	if	the	engine	kicks	in	optimizations	because	it	sees	the	code	being	run
tens	of	thousands	of	times	by	the	benchmarking	utility,	but	in	your	real	program	it	will	only
run	a	hundred	times	in	near	proximity,	and	under	those	conditions	the	engine	determines	the
optimizations	are	not	worth	it?
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And	all	those	optimizations	we	just	hypothesized	about	might	happen	in	our	constrained	test
but	maybe	the	engine	wouldn't	do	them	in	a	more	complex	program	(for	various	reasons).
Or	it	could	be	reversed	--	the	engine	might	not	optimize	such	trivial	code	but	may	be	more
inclined	to	optimize	it	more	aggressively	when	the	system	is	already	more	taxed	by	a	more
sophisticated	program.

The	point	I'm	trying	to	make	is	that	you	really	don't	know	for	sure	exactly	what's	going	on
under	the	covers.	All	the	guesses	and	hypothesis	you	can	muster	don't	amount	to	hardly
anything	concrete	for	really	making	such	decisions.

Does	that	mean	you	can't	really	do	any	useful	testing?	Definitely	not!

What	this	boils	down	to	is	that	testing	not	real	code	gives	you	not	real	results.	In	so	much	as
is	possible	and	practical,	you	should	test	actual	real,	non-trivial	snippets	of	your	code,	and
under	as	best	of	real	conditions	as	you	can	actually	hope	to.	Only	then	will	the	results	you
get	have	a	chance	to	approximate	reality.

Microbenchmarks	like		++x		vs		x++		are	so	incredibly	likely	to	be	bogus,	we	might	as	well
just	flatly	assume	them	as	such.

jsPerf.com
While	Benchmark.js	is	useful	for	testing	the	performance	of	your	code	in	whatever	JS
environment	you're	running,	it	cannot	be	stressed	enough	that	you	need	to	compile	test
results	from	lots	of	different	environments	(desktop	browsers,	mobile	devices,	etc.)	if	you
want	to	have	any	hope	of	reliable	test	conclusions.

For	example,	Chrome	on	a	high-end	desktop	machine	is	not	likely	to	perform	anywhere	near
the	same	as	Chrome	mobile	on	a	smartphone.	And	a	smartphone	with	a	full	battery	charge
is	not	likely	to	perform	anywhere	near	the	same	as	a	smartphone	with	2%	battery	life	left,
when	the	device	is	starting	to	power	down	the	radio	and	processor.

If	you	want	to	make	assertions	like	"X	is	faster	than	Y"	in	any	reasonable	sense	across	more
than	just	a	single	environment,	you're	going	to	need	to	actually	test	as	many	of	those	real
world	environments	as	possible.	Just	because	Chrome	executes	some	X	operation	faster
than	Y	doesn't	mean	that	all	browsers	do.	And	of	course	you	also	probably	will	want	to
cross-reference	the	results	of	multiple	browser	test	runs	with	the	demographics	of	your
users.

There's	an	awesome	website	for	this	purpose	called	jsPerf	(http://jsperf.com).	It	uses	the
Benchmark.js	library	we	talked	about	earlier	to	run	statistically	accurate	and	reliable	tests,
and	makes	the	test	on	an	openly	available	URL	that	you	can	pass	around	to	others.
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Each	time	a	test	is	run,	the	results	are	collected	and	persisted	with	the	test,	and	the
cumulative	test	results	are	graphed	on	the	page	for	anyone	to	see.

When	creating	a	test	on	the	site,	you	start	out	with	two	test	cases	to	fill	in,	but	you	can	add
as	many	as	you	need.	You	also	have	the	ability	to	set	up		setup		code	that	is	run	at	the
beginning	of	each	test	cycle	and		teardown		code	run	at	the	end	of	each	cycle.

Note:	A	trick	for	doing	just	one	test	case	(if	you're	benchmarking	a	single	approach	instead
of	a	head-to-head)	is	to	fill	in	the	second	test	input	boxes	with	placeholder	text	on	first
creation,	then	edit	the	test	and	leave	the	second	test	blank,	which	will	delete	it.	You	can
always	add	more	test	cases	later.

You	can	define	the	initial	page	setup	(importing	libraries,	defining	utility	helper	functions,
declaring	variables,	etc.).	There	are	also	options	for	defining	setup	and	teardown	behavior	if
needed	--	consult	the	"Setup/Teardown"	section	in	the	Benchmark.js	discussion	earlier.

Sanity	Check

jsPerf	is	a	fantastic	resource,	but	there's	an	awful	lot	of	tests	published	that	when	you
analyze	them	are	quite	flawed	or	bogus,	for	any	of	a	variety	of	reasons	as	outlined	so	far	in
this	chapter.

Consider:

//	Case	1

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x[i]	=	"x";

}

//	Case	2

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x[x.length]	=	"x";

}

//	Case	3

var	x	=	[];

for	(var	i=0;	i<10;	i++)	{

				x.push(	"x"	);

}

Some	observations	to	ponder	about	this	test	scenario:

It's	extremely	common	for	devs	to	put	their	own	loops	into	test	cases,	and	they	forget
that	Benchmark.js	already	does	all	the	repetition	you	need.	There's	a	really	strong
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chance	that	the		for		loops	in	these	cases	are	totally	unnecessary	noise.
The	declaring	and	initializing	of		x		is	included	in	each	test	case,	possibly	unnecessarily.
Recall	from	earlier	that	if		x	=	[]		were	in	the		setup		code,	it	wouldn't	actually	be	run
before	each	test	iteration,	but	instead	once	at	the	beginning	of	each	cycle.	That	means
	x		would	continue	growing	quite	large,	not	just	the	size		10		implied	by	the		for		loops.

So	is	the	intent	to	make	sure	the	tests	are	constrained	only	to	how	the	JS	engine
behaves	with	very	small	arrays	(size		10	)?	That	could	be	the	intent,	but	if	it	is,	you	have
to	consider	if	that's	not	focusing	far	too	much	on	nuanced	internal	implementation
details.

On	the	other	hand,	does	the	intent	of	the	test	embrace	the	context	that	the	arrays	will
actually	be	growing	quite	large?	Is	the	JS	engines'	behavior	with	larger	arrays	relevant
and	accurate	when	compared	with	the	intended	real	world	usage?

Is	the	intent	to	find	out	how	much		x.length		or		x.push(..)		add	to	the	performance	of
the	operation	to	append	to	the		x		array?	OK,	that	might	be	a	valid	thing	to	test.	But
then	again,		push(..)		is	a	function	call,	so	of	course	it's	going	to	be	slower	than		[..]	
access.	Arguably,	cases	1	and	2	are	fairer	than	case	3.

Here's	another	example	that	illustrates	a	common	apples-to-oranges	flaw:

//	Case	1

var	x	=	["John","Albert","Sue","Frank","Bob"];

x.sort();

//	Case	2

var	x	=	["John","Albert","Sue","Frank","Bob"];

x.sort(	function	mySort(a,b){

				if	(a	<	b)	return	-1;

				if	(a	>	b)	return	1;

				return	0;

}	);

Here,	the	obvious	intent	is	to	find	out	how	much	slower	the	custom		mySort(..)		comparator
is	than	the	built-in	default	comparator.	But	by	specifying	the	function		mySort(..)		as	inline
function	expression,	you've	created	an	unfair/bogus	test.	Here,	the	second	case	is	not	only
testing	a	custom	user	JS	function,	but	it's	also	testing	creating	a	new	function
expression	for	each	iteration.

Would	it	surprise	you	to	find	out	that	if	you	run	a	similar	test	but	update	it	to	isolate	only	for
creating	an	inline	function	expression	versus	using	a	pre-declared	function,	the	inline
function	expression	creation	can	be	from	2%	to	20%	slower!?
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Unless	your	intent	with	this	test	is	to	consider	the	inline	function	expression	creation	"cost,"	a
better/fairer	test	would	put		mySort(..)	's	declaration	in	the	page	setup	--	don't	put	it	in	the
test		setup		as	that's	unnecessary	redeclaration	for	each	cycle	--	and	simply	reference	it	by
name	in	the	test	case:		x.sort(mySort)	.

Building	on	the	previous	example,	another	pitfall	is	in	opaquely	avoiding	or	adding	"extra
work"	to	one	test	case	that	creates	an	apples-to-oranges	scenario:

//	Case	1

var	x	=	[12,-14,0,3,18,0,2.9];

x.sort();

//	Case	2

var	x	=	[12,-14,0,3,18,0,2.9];

x.sort(	function	mySort(a,b){

				return	a	-	b;

}	);

Setting	aside	the	previously	mentioned	inline	function	expression	pitfall,	the	second	case's
	mySort(..)		works	in	this	case	because	you	have	provided	it	numbers,	but	would	have	of
course	failed	with	strings.	The	first	case	doesn't	throw	an	error,	but	it	actually	behaves
differently	and	has	a	different	outcome!	It	should	be	obvious,	but:	a	different	outcome
between	two	test	cases	almost	certainly	invalidates	the	entire	test!

But	beyond	the	different	outcomes,	in	this	case,	the	built	in		sort(..)	's	comparator	is
actually	doing	"extra	work"	that		mySort()		does	not,	in	that	the	built-in	one	coerces	the
compared	values	to	strings	and	does	lexicographic	comparison.	The	first	snippet	results	in
	[-14,	0,	0,	12,	18,	2.9,	3]		while	the	second	snippet	results	(likely	more	accurately	based
on	intent)	in		[-14,	0,	0,	2.9,	3,	12,	18]	.

So	that	test	is	unfair	because	it's	not	actually	doing	the	same	task	between	the	cases.	Any
results	you	get	are	bogus.

These	same	pitfalls	can	even	be	much	more	subtle:

//	Case	1

var	x	=	false;

var	y	=	x	?	1	:	2;

//	Case	2

var	x;

var	y	=	x	?	1	:	2;
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Here,	the	intent	might	be	to	test	the	performance	impact	of	the	coercion	to	a	Boolean	that
the		?	:		operator	will	do	if	the		x		expression	is	not	already	a	Boolean	(see	the	Types	&
Grammar	title	of	this	book	series).	So,	you're	apparently	OK	with	the	fact	that	there	is	extra
work	to	do	the	coercion	in	the	second	case.

The	subtle	problem?	You're	setting		x	's	value	in	the	first	case	and	not	setting	it	in	the	other,
so	you're	actually	doing	work	in	the	first	case	that	you're	not	doing	in	the	second.	To
eliminate	any	potential	(albeit	minor)	skew,	try:

//	Case	1

var	x	=	false;

var	y	=	x	?	1	:	2;

//	Case	2

var	x	=	undefined;

var	y	=	x	?	1	:	2;

Now	there's	an	assignment	in	both	cases,	so	the	thing	you	want	to	test	--	the	coercion	of		x	
or	not	--	has	likely	been	more	accurately	isolated	and	tested.

Writing	Good	Tests
Let	me	see	if	I	can	articulate	the	bigger	point	I'm	trying	to	make	here.

Good	test	authoring	requires	careful	analytical	thinking	about	what	differences	exist	between
two	test	cases	and	whether	the	differences	between	them	are	intentional	or	unintentional.

Intentional	differences	are	of	course	normal	and	OK,	but	it's	too	easy	to	create	unintentional
differences	that	skew	your	results.	You	have	to	be	really,	really	careful	to	avoid	that	skew.
Moreover,	you	may	intend	a	difference	but	it	may	not	be	obvious	to	other	readers	of	your	test
what	your	intent	was,	so	they	may	doubt	(or	trust!)	your	test	incorrectly.	How	do	you	fix	that?

Write	better,	clearer	tests.	But	also,	take	the	time	to	document	(using	the	jsPerf.com
"Description"	field	and/or	code	comments)	exactly	what	the	intent	of	your	test	is,	even	to	the
nuanced	detail.	Call	out	the	intentional	differences,	which	will	help	others	and	your	future	self
to	better	identify	unintentional	differences	that	could	be	skewing	the	test	results.

Isolate	things	which	aren't	relevant	to	your	test	by	pre-declaring	them	in	the	page	or	test
setup	settings	so	they're	outside	the	timed	parts	of	the	test.

Instead	of	trying	to	narrow	in	on	a	tiny	snippet	of	your	real	code	and	benchmarking	just	that
piece	out	of	context,	tests	and	benchmarks	are	better	when	they	include	a	larger	(while	still
relevant)	context.	Those	tests	also	tend	to	run	slower,	which	means	any	differences	you	spot
are	more	relevant	in	context.
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Microperformance
OK,	until	now	we've	been	dancing	around	various	microperformance	issues	and	generally
looking	disfavorably	upon	obsessing	about	them.	I	want	to	take	just	a	moment	to	address
them	directly.

The	first	thing	you	need	to	get	more	comfortable	with	when	thinking	about	performance
benchmarking	your	code	is	that	the	code	you	write	is	not	always	the	code	the	engine
actually	runs.	We	briefly	looked	at	that	topic	back	in	Chapter	1	when	we	discussed
statement	reordering	by	the	compiler,	but	here	we're	going	to	suggest	the	compiler	can
sometimes	decide	to	run	different	code	than	you	wrote,	not	just	in	different	orders	but
different	in	substance.

Let's	consider	this	piece	of	code:

var	foo	=	41;

(function(){

				(function(){

								(function(baz){

												var	bar	=	foo	+	baz;

												//	..

								})(1);

				})();

})();

You	may	think	about	the		foo		reference	in	the	innermost	function	as	needing	to	do	a	three-
level	scope	lookup.	We	covered	in	the	Scope	&	Closures	title	of	this	book	series	how	lexical
scope	works,	and	the	fact	that	the	compiler	generally	caches	such	lookups	so	that
referencing		foo		from	different	scopes	doesn't	really	practically	"cost"	anything	extra.

But	there's	something	deeper	to	consider.	What	if	the	compiler	realizes	that		foo		isn't
referenced	anywhere	else	but	that	one	location,	and	it	further	notices	that	the	value	never	is
anything	except	the		41		as	shown?

Isn't	it	quite	possible	and	acceptable	that	the	JS	compiler	could	decide	to	just	remove	the
	foo		variable	entirely,	and	inline	the	value,	such	as	this:
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(function(){

				(function(){

								(function(baz){

												var	bar	=	41	+	baz;

												//	..

								})(1);

				})();

})();

Note:	Of	course,	the	compiler	could	probably	also	do	a	similar	analysis	and	rewrite	with	the
	baz		variable	here,	too.

When	you	begin	to	think	about	your	JS	code	as	being	a	hint	or	suggestion	to	the	engine	of
what	to	do,	rather	than	a	literal	requirement,	you	realize	that	a	lot	of	the	obsession	over
discrete	syntactic	minutia	is	most	likely	unfounded.

Another	example:

function	factorial(n)	{

				if	(n	<	2)	return	1;

				return	n	*	factorial(	n	-	1	);

}

factorial(	5	);								//	120

Ah,	the	good	ol'	fashioned	"factorial"	algorithm!	You	might	assume	that	the	JS	engine	will	run
that	code	mostly	as	is.	And	to	be	honest,	it	might	--	I'm	not	really	sure.

But	as	an	anecdote,	the	same	code	expressed	in	C	and	compiled	with	advanced
optimizations	would	result	in	the	compiler	realizing	that	the	call		factorial(5)		can	just	be
replaced	with	the	constant	value		120	,	eliminating	the	function	and	call	entirely!

Moreover,	some	engines	have	a	practice	called	"unrolling	recursion,"	where	it	can	realize
that	the	recursion	you've	expressed	can	actually	be	done	"easier"	(i.e.,	more	optimally)	with
a	loop.	It's	possible	the	preceding	code	could	be	rewritten	by	a	JS	engine	to	run	as:
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function	factorial(n)	{

				if	(n	<	2)	return	1;

				var	res	=	1;

				for	(var	i=n;	i>1;	i--)	{

								res	*=	i;

				}

				return	res;

}

factorial(	5	);								//	120

Now,	let's	imagine	that	in	the	earlier	snippet	you	had	been	worried	about	whether		n	*
factorial(n-1)		or		n	*=	factorial(--n)		runs	faster.	Maybe	you	even	did	a	performance
benchmark	to	try	to	figure	out	which	was	better.	But	you	miss	the	fact	that	in	the	bigger
context,	the	engine	may	not	run	either	line	of	code	because	it	may	unroll	the	recursion!

Speaking	of		--	,		--n		versus		n--		is	often	cited	as	one	of	those	places	where	you	can
optimize	by	choosing	the		--n		version,	because	theoretically	it	requires	less	effort	down	at
the	assembly	level	of	processing.

That	sort	of	obsession	is	basically	nonsense	in	modern	JavaScript.	That's	the	kind	of	thing
you	should	be	letting	the	engine	take	care	of.	You	should	write	the	code	that	makes	the	most
sense.	Compare	these	three		for		loops:

//	Option	1

for	(var	i=0;	i<10;	i++)	{

				console.log(	i	);

}

//	Option	2

for	(var	i=0;	i<10;	++i)	{

				console.log(	i	);

}

//	Option	3

for	(var	i=-1;	++i<10;	)	{

				console.log(	i	);

}

Even	if	you	have	some	theory	where	the	second	or	third	option	is	more	performant	than	the
first	option	by	a	tiny	bit,	which	is	dubious	at	best,	the	third	loop	is	more	confusing	because
you	have	to	start	with		-1		for		i		to	account	for	the	fact	that		++i		pre-increment	is	used.
And	the	difference	between	the	first	and	second	options	is	really	quite	irrelevant.
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It's	entirely	possible	that	a	JS	engine	may	see	a	place	where		i++		is	used	and	realize	that	it
can	safely	replace	it	with	the		++i		equivalent,	which	means	your	time	spent	deciding	which
one	to	pick	was	completely	wasted	and	the	outcome	moot.

Here's	another	common	example	of	silly	microperformance	obsession:

var	x	=	[	..	];

//	Option	1

for	(var	i=0;	i	<	x.length;	i++)	{

				//	..

}

//	Option	2

for	(var	i=0,	len	=	x.length;	i	<	len;	i++)	{

				//	..

}

The	theory	here	goes	that	you	should	cache	the	length	of	the		x		array	in	the	variable		len	,
because	ostensibly	it	doesn't	change,	to	avoid	paying	the	price	of		x.length		being	consulted
for	each	iteration	of	the	loop.

If	you	run	performance	benchmarks	around		x.length		usage	compared	to	caching	it	in	a
	len		variable,	you'll	find	that	while	the	theory	sounds	nice,	in	practice	any	measured
differences	are	statistically	completely	irrelevant.

In	fact,	in	some	engines	like	v8,	it	can	be	shown	(http://mrale.ph/blog/2014/12/24/array-
length-caching.html)	that	you	could	make	things	slightly	worse	by	pre-caching	the	length
instead	of	letting	the	engine	figure	it	out	for	you.	Don't	try	to	outsmart	your	JavaScript
engine,	you'll	probably	lose	when	it	comes	to	performance	optimizations.

Not	All	Engines	Are	Alike

The	different	JS	engines	in	various	browsers	can	all	be	"spec	compliant"	while	having
radically	different	ways	of	handling	code.	The	JS	specification	doesn't	require	anything
performance	related	--	well,	except	ES6's	"Tail	Call	Optimization"	covered	later	in	this
chapter.

The	engines	are	free	to	decide	that	one	operation	will	receive	its	attention	to	optimize,
perhaps	trading	off	for	lesser	performance	on	another	operation.	It	can	be	very	tenuous	to
find	an	approach	for	an	operation	that	always	runs	faster	in	all	browsers.

There's	a	movement	among	some	in	the	JS	dev	community,	especially	those	who	work	with
Node.js,	to	analyze	the	specific	internal	implementation	details	of	the	v8	JavaScript	engine
and	make	decisions	about	writing	JS	code	that	is	tailored	to	take	best	advantage	of	how	v8
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works.	You	can	actually	achieve	a	surprisingly	high	degree	of	performance	optimization	with
such	endeavors,	so	the	payoff	for	the	effort	can	be	quite	high.

Some	commonly	cited	examples
(https://github.com/petkaantonov/bluebird/wiki/Optimization-killers)	for	v8:

Don't	pass	the		arguments		variable	from	one	function	to	any	other	function,	as	such
"leakage"	slows	down	the	function	implementation.
Isolate	a		try..catch		in	its	own	function.	Browsers	struggle	with	optimizing	any	function
with	a		try..catch		in	it,	so	moving	that	construct	to	its	own	function	means	you	contain
the	de-optimization	harm	while	letting	the	surrounding	code	be	optimizable.

But	rather	than	focus	on	those	tips	specifically,	let's	sanity	check	the	v8-only	optimization
approach	in	a	general	sense.

Are	you	genuinely	writing	code	that	only	needs	to	run	in	one	JS	engine?	Even	if	your	code	is
entirely	intended	for	Node.js	right	now,	is	the	assumption	that	v8	will	always	be	the	used	JS
engine	reliable?	Is	it	possible	that	someday	a	few	years	from	now,	there's	another	server-
side	JS	platform	besides	Node.js	that	you	choose	to	run	your	code	on?	What	if	what	you
optimized	for	before	is	now	a	much	slower	way	of	doing	that	operation	on	the	new	engine?

Or	what	if	your	code	always	stays	running	on	v8	from	here	on	out,	but	v8	decides	at	some
point	to	change	the	way	some	set	of	operations	works	such	that	what	used	to	be	fast	is	now
slow,	and	vice	versa?

These	scenarios	aren't	just	theoretical,	either.	It	used	to	be	that	it	was	faster	to	put	multiple
string	values	into	an	array	and	then	call		join("")		on	the	array	to	concatenate	the	values
than	to	just	use		+		concatenation	directly	with	the	values.	The	historical	reason	for	this	is
nuanced,	but	it	has	to	do	with	internal	implementation	details	about	how	string	values	were
stored	and	managed	in	memory.

As	a	result,	"best	practice"	advice	at	the	time	disseminated	across	the	industry	suggesting
developers	always	use	the	array		join(..)		approach.	And	many	followed.

Except,	somewhere	along	the	way,	the	JS	engines	changed	approaches	for	internally
managing	strings,	and	specifically	put	in	optimizations	for		+		concatenation.	They	didn't
slow	down		join(..)		per	se,	but	they	put	more	effort	into	helping		+		usage,	as	it	was	still
quite	a	bit	more	widespread.

Note:	The	practice	of	standardizing	or	optimizing	some	particular	approach	based	mostly	on
its	existing	widespread	usage	is	often	called	(metaphorically)	"paving	the	cowpath."

Once	that	new	approach	to	handling	strings	and	concatenation	took	hold,	unfortunately	all
the	code	out	in	the	wild	that	was	using	array		join(..)		to	concatenate	strings	was	then	sub-
optimal.
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Another	example:	at	one	time,	the	Opera	browser	differed	from	other	browsers	in	how	it
handled	the	boxing/unboxing	of	primitive	wrapper	objects	(see	the	Types	&	Grammar	title	of
this	book	series).	As	such,	their	advice	to	developers	was	to	use	a		String		object	instead	of
the	primitive		string		value	if	properties	like		length		or	methods	like		charAt(..)		needed	to
be	accessed.	This	advice	may	have	been	correct	for	Opera	at	the	time,	but	it	was	literally
completely	opposite	for	other	major	contemporary	browsers,	as	they	had	optimizations
specifically	for	the		string		primitives	and	not	their	object	wrapper	counterparts.

I	think	these	various	gotchas	are	at	least	possible,	if	not	likely,	for	code	even	today.	So	I'm
very	cautious	about	making	wide	ranging	performance	optimizations	in	my	JS	code	based
purely	on	engine	implementation	details,	especially	if	those	details	are	only	true	of	a
single	engine.

The	reverse	is	also	something	to	be	wary	of:	you	shouldn't	necessarily	change	a	piece	of
code	to	work	around	one	engine's	difficulty	with	running	a	piece	of	code	in	an	acceptably
performant	way.

Historically,	IE	has	been	the	brunt	of	many	such	frustrations,	given	that	there	have	been
plenty	of	scenarios	in	older	IE	versions	where	it	struggled	with	some	performance	aspect
that	other	major	browsers	of	the	time	seemed	not	to	have	much	trouble	with.	The	string
concatenation	discussion	we	just	had	was	actually	a	real	concern	back	in	the	IE6	and	IE7
days,	where	it	was	possible	to	get	better	performance	out	of		join(..)		than		+	.

But	it's	troublesome	to	suggest	that	just	one	browser's	trouble	with	performance	is
justification	for	using	a	code	approach	that	quite	possibly	could	be	sub-optimal	in	all	other
browsers.	Even	if	the	browser	in	question	has	a	large	market	share	for	your	site's	audience,
it	may	be	more	practical	to	write	the	proper	code	and	rely	on	the	browser	to	update	itself	with
better	optimizations	eventually.

"There	is	nothing	more	permanent	than	a	temporary	hack."	Chances	are,	the	code	you	write
now	to	work	around	some	performance	bug	will	probably	outlive	the	performance	bug	in	the
browser	itself.

In	the	days	when	a	browser	only	updated	once	every	five	years,	that	was	a	tougher	call	to
make.	But	as	it	stands	now,	browsers	across	the	board	are	updating	at	a	much	more	rapid
interval	(though	obviously	the	mobile	world	still	lags),	and	they're	all	competing	to	optimize
web	features	better	and	better.

If	you	run	across	a	case	where	a	browser	does	have	a	performance	wart	that	others	don't
suffer	from,	make	sure	to	report	it	to	them	through	whatever	means	you	have	available.	Most
browsers	have	open	public	bug	trackers	suitable	for	this	purpose.
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Tip:	I'd	only	suggest	working	around	a	performance	issue	in	a	browser	if	it	was	a	really
drastic	show-stopper,	not	just	an	annoyance	or	frustration.	And	I'd	be	very	careful	to	check
that	the	performance	hack	didn't	have	noticeable	negative	side	effects	in	another	browser.

Big	Picture

Instead	of	worrying	about	all	these	microperformance	nuances,	we	should	instead	be
looking	at	big-picture	types	of	optimizations.

How	do	you	know	what's	big	picture	or	not?	You	have	to	first	understand	if	your	code	is
running	on	a	critical	path	or	not.	If	it's	not	on	the	critical	path,	chances	are	your	optimizations
are	not	worth	much.

Ever	heard	the	admonition,	"that's	premature	optimization!"?	It	comes	from	a	famous	quote
from	Donald	Knuth:	"premature	optimization	is	the	root	of	all	evil.".	Many	developers	cite	this
quote	to	suggest	that	most	optimizations	are	"premature"	and	are	thus	a	waste	of	effort.	The
truth	is,	as	usual,	more	nuanced.

Here	is	Knuth's	quote,	in	context:

Programmers	waste	enormous	amounts	of	time	thinking	about,	or	worrying	about,	the
speed	of	noncritical	parts	of	their	programs,	and	these	attempts	at	efficiency	actually
have	a	strong	negative	impact	when	debugging	and	maintenance	are	considered.	We
should	forget	about	small	efficiencies,	say	about	97%	of	the	time:	premature
optimization	is	the	root	of	all	evil.	Yet	we	should	not	pass	up	our	opportunities	in	that
critical	3%.	[emphasis	added]

(http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/paper
s/p261-knuth.pdf,	Computing	Surveys,	Vol	6,	No	4,	December	1974)

I	believe	it's	a	fair	paraphrasing	to	say	that	Knuth	meant:	"non-critical	path	optimization	is	the
root	of	all	evil."	So	the	key	is	to	figure	out	if	your	code	is	on	the	critical	path	--	you	should
optimize	it!	--	or	not.

I'd	even	go	so	far	as	to	say	this:	no	amount	of	time	spent	optimizing	critical	paths	is	wasted,
no	matter	how	little	is	saved;	but	no	amount	of	optimization	on	noncritical	paths	is	justified,
no	matter	how	much	is	saved.

If	your	code	is	on	the	critical	path,	such	as	a	"hot"	piece	of	code	that's	going	to	be	run	over
and	over	again,	or	in	UX	critical	places	where	users	will	notice,	like	an	animation	loop	or
CSS	style	updates,	then	you	should	spare	no	effort	in	trying	to	employ	relevant,	measurably
significant	optimizations.
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For	example,	consider	a	critical	path	animation	loop	that	needs	to	coerce	a	string	value	to	a
number.	There	are	of	course	multiple	ways	to	do	that	(see	the	Types	&	Grammar	title	of	this
book	series),	but	which	one	if	any	is	the	fastest?

var	x	=	"42";				//	need	number	`42`

//	Option	1:	let	implicit	coercion	automatically	happen

var	y	=	x	/	2;

//	Option	2:	use	`parseInt(..)`

var	y	=	parseInt(	x,	0	)	/	2;

//	Option	3:	use	`Number(..)`

var	y	=	Number(	x	)	/	2;

//	Option	4:	use	`+`	unary	operator

var	y	=	+x	/	2;

//	Option	5:	use	`|`	unary	operator

var	y	=	(x	|	0)	/	2;

Note:	I	will	leave	it	as	an	exercise	to	the	reader	to	set	up	a	test	if	you're	interested	in
examining	the	minute	differences	in	performance	among	these	options.

When	considering	these	different	options,	as	they	say,	"One	of	these	things	is	not	like	the
others."		parseInt(..)		does	the	job,	but	it	also	does	a	lot	more	--	it	parses	the	string	rather
than	just	coercing.	You	can	probably	guess,	correctly,	that		parseInt(..)		is	a	slower	option,
and	you	should	probably	avoid	it.

Of	course,	if		x		can	ever	be	a	value	that	needs	parsing,	such	as		"42px"		(like	from	a	CSS
style	lookup),	then		parseInt(..)		really	is	the	only	suitable	option!

	Number(..)		is	also	a	function	call.	From	a	behavioral	perspective,	it's	identical	to	the		+	
unary	operator	option,	but	it	may	in	fact	be	a	little	slower,	requiring	more	machinery	to
execute	the	function.	Of	course,	it's	also	possible	that	the	JS	engine	recognizes	this
behavioral	symmetry	and	just	handles	the	inlining	of		Number(..)	's	behavior	(aka		+x	)	for
you!

But	remember,	obsessing	about		+x		versus		x	|	0		is	in	most	cases	likely	a	waste	of	effort.
This	is	a	microperformance	issue,	and	one	that	you	shouldn't	let	dictate/degrade	the
readability	of	your	program.

While	performance	is	very	important	in	critical	paths	of	your	program,	it's	not	the	only	factor.
Among	several	options	that	are	roughly	similar	in	performance,	readability	should	be	another
important	concern.
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Tail	Call	Optimization	(TCO)
As	we	briefly	mentioned	earlier,	ES6	includes	a	specific	requirement	that	ventures	into	the
world	of	performance.	It's	related	to	a	specific	form	of	optimization	that	can	occur	with
function	calls:	tail	call	optimization.

Briefly,	a	"tail	call"	is	a	function	call	that	appears	at	the	"tail"	of	another	function,	such	that
after	the	call	finishes,	there's	nothing	left	to	do	(except	perhaps	return	its	result	value).

For	example,	here's	a	non-recursive	setup	with	tail	calls:

function	foo(x)	{

				return	x;

}

function	bar(y)	{

				return	foo(	y	+	1	);				//	tail	call

}

function	baz()	{

				return	1	+	bar(	40	);				//	not	tail	call

}

baz();																								//	42

	foo(y+1)		is	a	tail	call	in		bar(..)		because	after		foo(..)		finishes,		bar(..)		is	also	finished
except	in	this	case	returning	the	result	of	the		foo(..)		call.	However,		bar(40)		is	not	a	tail
call	because	after	it	completes,	its	result	value	must	be	added	to		1		before		baz()		can
return	it.

Without	getting	into	too	much	nitty-gritty	detail,	calling	a	new	function	requires	an	extra
amount	of	reserved	memory	to	manage	the	call	stack,	called	a	"stack	frame."	So	the
preceding	snippet	would	generally	require	a	stack	frame	for	each	of		baz()	,		bar(..)	,	and
	foo(..)		all	at	the	same	time.

However,	if	a	TCO-capable	engine	can	realize	that	the		foo(y+1)		call	is	in	tail	position
meaning		bar(..)		is	basically	complete,	then	when	calling		foo(..)	,	it	doesn't	need	to
create	a	new	stack	frame,	but	can	instead	reuse	the	existing	stack	frame	from		bar(..)	.
That's	not	only	faster,	but	it	also	uses	less	memory.

That	sort	of	optimization	isn't	a	big	deal	in	a	simple	snippet,	but	it	becomes	a	much	bigger
deal	when	dealing	with	recursion,	especially	if	the	recursion	could	have	resulted	in	hundreds
or	thousands	of	stack	frames.	With	TCO	the	engine	can	perform	all	those	calls	with	a	single
stack	frame!
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Recursion	is	a	hairy	topic	in	JS	because	without	TCO,	engines	have	had	to	implement
arbitrary	(and	different!)	limits	to	how	deep	they	will	let	the	recursion	stack	get	before	they
stop	it,	to	prevent	running	out	of	memory.	With	TCO,	recursive	functions	with	tail	position
calls	can	essentially	run	unbounded,	because	there's	never	any	extra	usage	of	memory!

Consider	that	recursive		factorial(..)		from	before,	but	rewritten	to	make	it	TCO	friendly:

function	factorial(n)	{

				function	fact(n,res)	{

								if	(n	<	2)	return	res;

								return	fact(	n	-	1,	n	*	res	);

				}

				return	fact(	n,	1	);

}

factorial(	5	);								//	120

This	version	of		factorial(..)		is	still	recursive,	but	it's	also	optimizable	with	TCO,	because
both	inner		fact(..)		calls	are	in	tail	position.

Note:	It's	important	to	note	that	TCO	only	applies	if	there's	actually	a	tail	call.	If	you	write
recursive	functions	without	tail	calls,	the	performance	will	still	fall	back	to	normal	stack	frame
allocation,	and	the	engines'	limits	on	such	recursive	call	stacks	will	still	apply.	Many	recursive
functions	can	be	rewritten	as	we	just	showed	with		factorial(..)	,	but	it	takes	careful
attention	to	detail.

One	reason	that	ES6	requires	engines	to	implement	TCO	rather	than	leaving	it	up	to	their
discretion	is	because	the	lack	of	TCO	actually	tends	to	reduce	the	chances	that	certain
algorithms	will	be	implemented	in	JS	using	recursion,	for	fear	of	the	call	stack	limits.

If	the	lack	of	TCO	in	the	engine	would	just	gracefully	degrade	to	slower	performance	in	all
cases,	it	wouldn't	probably	have	been	something	that	ES6	needed	to	require.	But	because
the	lack	of	TCO	can	actually	make	certain	programs	impractical,	it's	more	an	important
feature	of	the	language	than	just	a	hidden	implementation	detail.

ES6	guarantees	that	from	now	on,	JS	developers	will	be	able	to	rely	on	this	optimization
across	all	ES6+	compliant	browsers.	That's	a	win	for	JS	performance!

Review
Effectively	benchmarking	performance	of	a	piece	of	code,	especially	to	compare	it	to	another
option	for	that	same	code	to	see	which	approach	is	faster,	requires	careful	attention	to	detail.
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Rather	than	rolling	your	own	statistically	valid	benchmarking	logic,	just	use	the	Benchmark.js
library,	which	does	that	for	you.	But	be	careful	about	how	you	author	tests,	because	it's	far
too	easy	to	construct	a	test	that	seems	valid	but	that's	actually	flawed	--	even	tiny	differences
can	skew	the	results	to	be	completely	unreliable.

It's	important	to	get	as	many	test	results	from	as	many	different	environments	as	possible	to
eliminate	hardware/device	bias.	jsPerf.com	is	a	fantastic	website	for	crowdsourcing
performance	benchmark	test	runs.

Many	common	performance	tests	unfortunately	obsess	about	irrelevant	microperformance
details	like		x++		versus		++x	.	Writing	good	tests	means	understanding	how	to	focus	on	big
picture	concerns,	like	optimizing	on	the	critical	path,	and	avoiding	falling	into	traps	like
different	JS	engines'	implementation	details.

Tail	call	optimization	(TCO)	is	a	required	optimization	as	of	ES6	that	will	make	some
recursive	patterns	practical	in	JS	where	they	would	have	been	impossible	otherwise.	TCO
allows	a	function	call	in	the	tail	position	of	another	function	to	execute	without	needing	any
extra	resources,	which	means	the	engine	no	longer	needs	to	place	arbitrary	restrictions	on
call	stack	depth	for	recursive	algorithms.
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Chapters	1	and	2	went	into	quite	a	bit	of	detail	about	typical	asynchronous	programming
patterns	and	how	they're	commonly	solved	with	callbacks.	But	we	also	saw	why	callbacks
are	fatally	limited	in	capability,	which	led	us	to	Chapters	3	and	4,	with	Promises	and
generators	offering	a	much	more	solid,	trustable,	and	reason-able	base	to	build	your
asynchrony	on.

I	referenced	my	own	asynchronous	library	asynquence	(http://github.com/getify/asynquence)
--	"async"	+	"sequence"	=	"asynquence"	--	several	times	in	this	book,	and	I	want	to	now
briefly	explain	how	it	works	and	why	its	unique	design	is	important	and	helpful.

In	the	next	appendix,	we'll	explore	some	advanced	async	patterns,	but	you'll	probably	want	a
library	to	make	those	palatable	enough	to	be	useful.	We'll	use	asynquence	to	express	those
patterns,	so	you'll	want	to	spend	a	little	time	here	getting	to	know	the	library	first.

asynquence	is	obviously	not	the	only	option	for	good	async	coding;	certainly	there	are	many
great	libraries	in	this	space.	But	asynquence	provides	a	unique	perspective	by	combining
the	best	of	all	these	patterns	into	a	single	library,	and	moreover	is	built	on	a	single	basic
abstraction:	the	(async)	sequence.

My	premise	is	that	sophisticated	JS	programs	often	need	bits	and	pieces	of	various	different
asynchronous	patterns	woven	together,	and	this	is	usually	left	entirely	up	to	each	developer
to	figure	out.	Instead	of	having	to	bring	in	two	or	more	different	async	libraries	that	focus	on
different	aspects	of	asynchrony,	asynquence	unifies	them	into	variated	sequence	steps,	with
just	one	core	library	to	learn	and	deploy.

I	believe	the	value	is	strong	enough	with	asynquence	to	make	async	flow	control
programming	with	Promise-style	semantics	super	easy	to	accomplish,	so	that's	why	we'll
exclusively	focus	on	that	library	here.

To	begin,	I'll	explain	the	design	principles	behind	asynquence,	and	then	we'll	illustrate	how
its	API	works	with	code	examples.

Sequences,	Abstraction	Design
Understanding	asynquence	begins	with	understanding	a	fundamental	abstraction:	any	series
of	steps	for	a	task,	whether	they	separately	are	synchronous	or	asynchronous,	can	be
collectively	thought	of	as	a	"sequence".	In	other	words,	a	sequence	is	a	container	that
represents	a	task,	and	is	comprised	of	individual	(potentially	async)	steps	to	complete	that
task.

Each	step	in	the	sequence	is	controlled	under	the	covers	by	a	Promise	(see	Chapter	3).
That	is,	every	step	you	add	to	a	sequence	implicitly	creates	a	Promise	that	is	wired	to	the
previous	end	of	the	sequence.	Because	of	the	semantics	of	Promises,	every	single	step
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advancement	in	a	sequence	is	asynchronous,	even	if	you	synchronously	complete	the	step.

Moreover,	a	sequence	will	always	proceed	linearly	from	step	to	step,	meaning	that	step	2
always	comes	after	step	1	finishes,	and	so	on.

Of	course,	a	new	sequence	can	be	forked	off	an	existing	sequence,	meaning	the	fork	only
occurs	once	the	main	sequence	reaches	that	point	in	the	flow.	Sequences	can	also	be
combined	in	various	ways,	including	having	one	sequence	subsumed	by	another	sequence
at	a	particular	point	in	the	flow.

A	sequence	is	kind	of	like	a	Promise	chain.	However,	with	Promise	chains,	there	is	no
"handle"	to	grab	that	references	the	entire	chain.	Whichever	Promise	you	have	a	reference
to	only	represents	the	current	step	in	the	chain	plus	any	other	steps	hanging	off	it.
Essentially,	you	cannot	hold	a	reference	to	a	Promise	chain	unless	you	hold	a	reference	to
the	first	Promise	in	the	chain.

There	are	many	cases	where	it	turns	out	to	be	quite	useful	to	have	a	handle	that	references
the	entire	sequence	collectively.	The	most	important	of	those	cases	is	with	sequence
abort/cancel.	As	we	covered	extensively	in	Chapter	3,	Promises	themselves	should	never	be
able	to	be	canceled,	as	this	violates	a	fundamental	design	imperative:	external	immutability.

But	sequences	have	no	such	immutability	design	principle,	mostly	because	sequences	are
not	passed	around	as	future-value	containers	that	need	immutable	value	semantics.	So
sequences	are	the	proper	level	of	abstraction	to	handle	abort/cancel	behavior.	asynquence
sequences	can	be		abort()	ed	at	any	time,	and	the	sequence	will	stop	at	that	point	and	not
go	for	any	reason.

There's	plenty	more	reasons	to	prefer	a	sequence	abstraction	on	top	of	Promise	chains,	for
flow	control	purposes.

First,	Promise	chaining	is	a	rather	manual	process	--	one	that	can	get	pretty	tedious	once
you	start	creating	and	chaining	Promises	across	a	wide	swath	of	your	programs	--	and	this
tedium	can	act	counterproductively	to	dissuade	the	developer	from	using	Promises	in	places
where	they	are	quite	appropriate.

Abstractions	are	meant	to	reduce	boilerplate	and	tedium,	so	the	sequence	abstraction	is	a
good	solution	to	this	problem.	With	Promises,	your	focus	is	on	the	individual	step,	and
there's	little	assumption	that	you	will	keep	the	chain	going.	With	sequences,	the	opposite
approach	is	taken,	assuming	the	sequence	will	keep	having	more	steps	added	indefinitely.

This	abstraction	complexity	reduction	is	especially	powerful	when	you	start	thinking	about
higher-order	Promise	patterns	(beyond		race([..])		and		all([..])	.
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For	example,	in	the	middle	of	a	sequence,	you	may	want	to	express	a	step	that	is
conceptually	like	a		try..catch		in	that	the	step	will	always	result	in	success,	either	the
intended	main	success	resolution	or	a	positive	nonerror	signal	for	the	caught	error.	Or,	you
might	want	to	express	a	step	that	is	like	a	retry/until	loop,	where	it	keeps	trying	the	same
step	over	and	over	until	success	occurs.

These	sorts	of	abstractions	are	quite	nontrivial	to	express	using	only	Promise	primitives,	and
doing	so	in	the	middle	of	an	existing	Promise	chain	is	not	pretty.	But	if	you	abstract	your
thinking	to	a	sequence,	and	consider	a	step	as	a	wrapper	around	a	Promise,	that	step
wrapper	can	hide	such	details,	freeing	you	to	think	about	the	flow	control	in	the	most
sensible	way	without	being	bothered	by	the	details.

Second,	and	perhaps	more	importantly,	thinking	of	async	flow	control	in	terms	of	steps	in	a
sequence	allows	you	to	abstract	out	the	details	of	what	types	of	asynchronicity	are	involved
with	each	individual	step.	Under	the	covers,	a	Promise	will	always	control	the	step,	but
above	the	covers,	that	step	can	look	either	like	a	continuation	callback	(the	simple	default),
or	like	a	real	Promise,	or	as	a	run-to-completion	generator,	or	...	Hopefully,	you	get	the
picture.

Third,	sequences	can	more	easily	be	twisted	to	adapt	to	different	modes	of	thinking,	such	as
event-,	stream-,	or	reactive-based	coding.	asynquence	provides	a	pattern	I	call	"reactive
sequences"	(which	we'll	cover	later)	as	a	variation	on	the	"reactive	observable"	ideas	in
RxJS	("Reactive	Extensions"),	that	lets	a	repeatable	event	fire	off	a	new	sequence	instance
each	time.	Promises	are	one-shot-only,	so	it's	quite	awkward	to	express	repetitious
asynchrony	with	Promises	alone.

Another	alternate	mode	of	thinking	inverts	the	resolution/control	capability	in	a	pattern	I	call
"iterable	sequences".	Instead	of	each	individual	step	internally	controlling	its	own	completion
(and	thus	advancement	of	the	sequence),	the	sequence	is	inverted	so	the	advancement
control	is	through	an	external	iterator,	and	each	step	in	the	iterable	sequence	just	responds
to	the		next(..)		iterator	control.

We'll	explore	all	of	these	different	variations	as	we	go	throughout	the	rest	of	this	appendix,
so	don't	worry	if	we	ran	over	those	bits	far	too	quickly	just	now.

The	takeaway	is	that	sequences	are	a	more	powerful	and	sensible	abstraction	for	complex
asynchrony	than	just	Promises	(Promise	chains)	or	just	generators,	and	asynquence	is
designed	to	express	that	abstraction	with	just	the	right	level	of	sugar	to	make	async
programming	more	understandable	and	more	enjoyable.

asynquence	API
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To	start	off,	the	way	you	create	a	sequence	(an	asynquence	instance)	is	with	the		ASQ(..)	
function.	An		ASQ()		call	with	no	parameters	creates	an	empty	initial	sequence,	whereas
passing	one	or	more	values	or	functions	to		ASQ(..)		sets	up	the	sequence	with	each
argument	representing	the	initial	steps	of	the	sequence.

Note:	For	the	purposes	of	all	code	examples	here,	I	will	use	the	asynquence	top-level
identifier	in	global	browser	usage:		ASQ	.	If	you	include	and	use	asynquence	through	a
module	system	(browser	or	server),	you	of	course	can	define	whichever	symbol	you	prefer,
and	asynquence	won't	care!

Many	of	the	API	methods	discussed	here	are	built	into	the	core	of	asynquence,	but	others
are	provided	through	including	the	optional	"contrib"	plug-ins	package.	See	the
documentation	for	asynquence	for	whether	a	method	is	built	in	or	defined	via	plug-in:
http://github.com/getify/asynquence

Steps

If	a	function	represents	a	normal	step	in	the	sequence,	that	function	is	invoked	with	the	first
parameter	being	the	continuation	callback,	and	any	subsequent	parameters	being	any
messages	passed	on	from	the	previous	step.	The	step	will	not	complete	until	the
continuation	callback	is	called.	Once	it's	called,	any	arguments	you	pass	to	it	will	be	sent
along	as	messages	to	the	next	step	in	the	sequence.

To	add	an	additional	normal	step	to	the	sequence,	call		then(..)		(which	has	essentially	the
exact	same	semantics	as	the		ASQ(..)		call):
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ASQ(

				//	step	1

				function(done){

								setTimeout(	function(){

												done(	"Hello"	);

								},	100	);

				},

				//	step	2

				function(done,greeting)	{

								setTimeout(	function(){

												done(	greeting	+	"	World"	);

								},	100	);

				}

)

//	step	3

.then(	function(done,msg){

				setTimeout(	function(){

								done(	msg.toUpperCase()	);

				},	100	);

}	)

//	step	4

.then(	function(done,msg){

				console.log(	msg	);												//	HELLO	WORLD

}	);

Note:	Though	the	name		then(..)		is	identical	to	the	native	Promises	API,	this		then(..)		is
different.	You	can	pass	as	few	or	as	many	functions	or	values	to		then(..)		as	you'd	like,
and	each	is	taken	as	a	separate	step.	There's	no	two-callback	fulfilled/rejected	semantics
involved.

Unlike	with	Promises,	where	to	chain	one	Promise	to	the	next	you	have	to	create	and
	return		that	Promise	from	a		then(..)		fulfillment	handler,	with	asynquence,	all	you	need	to
do	is	call	the	continuation	callback	--	I	always	call	it		done()		but	you	can	name	it	whatever
suits	you	--	and	optionally	pass	it	completion	messages	as	arguments.

Each	step	defined	by		then(..)		is	assumed	to	be	asynchronous.	If	you	have	a	step	that's
synchronous,	you	can	either	just	call		done(..)		right	away,	or	you	can	use	the	simpler
	val(..)		step	helper:
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//	step	1	(sync)

ASQ(	function(done){

				done(	"Hello"	);				//	manually	synchronous

}	)

//	step	2	(sync)

.val(	function(greeting){

				return	greeting	+	"	World";

}	)

//	step	3	(async)

.then(	function(done,msg){

				setTimeout(	function(){

								done(	msg.toUpperCase()	);

				},	100	);

}	)

//	step	4	(sync)

.val(	function(msg){

				console.log(	msg	);

}	);

As	you	can	see,		val(..)	-invoked	steps	don't	receive	a	continuation	callback,	as	that	part	is
assumed	for	you	--	and	the	parameter	list	is	less	cluttered	as	a	result!	To	send	a	message
along	to	the	next	step,	you	simply	use		return	.

Think	of		val(..)		as	representing	a	synchronous	"value-only"	step,	which	is	useful	for
synchronous	value	operations,	logging,	and	the	like.

Errors

One	important	difference	with	asynquence	compared	to	Promises	is	with	error	handling.

With	Promises,	each	individual	Promise	(step)	in	a	chain	can	have	its	own	independent
error,	and	each	subsequent	step	has	the	ability	to	handle	the	error	or	not.	The	main	reason
for	this	semantic	comes	(again)	from	the	focus	on	individual	Promises	rather	than	on	the
chain	(sequence)	as	a	whole.

I	believe	that	most	of	the	time,	an	error	in	one	part	of	a	sequence	is	generally	not
recoverable,	so	the	subsequent	steps	in	the	sequence	are	moot	and	should	be	skipped.	So,
by	default,	an	error	at	any	step	of	a	sequence	throws	the	entire	sequence	into	error	mode,
and	the	rest	of	the	normal	steps	are	ignored.

If	you	do	need	to	have	a	step	where	its	error	is	recoverable,	there	are	several	different	API
methods	that	can	accommodate,	such	as		try(..)		--	previously	mentioned	as	a	kind	of
	try..catch		step	--	or		until(..)		--	a	retry	loop	that	keeps	attempting	the	step	until	it
succeeds	or	you	manually		break()		the	loop.	asynquence	even	has		pThen(..)		and
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	pCatch(..)		methods,	which	work	identically	to	how	normal	Promise		then(..)		and
	catch(..)		work	(see	Chapter	3),	so	you	can	do	localized	mid-sequence	error	handling	if
you	so	choose.

The	point	is,	you	have	both	options,	but	the	more	common	one	in	my	experience	is	the
default.	With	Promises,	to	get	a	chain	of	steps	to	ignore	all	steps	once	an	error	occurs,	you
have	to	take	care	not	to	register	a	rejection	handler	at	any	step;	otherwise,	that	error	gets
swallowed	as	handled,	and	the	sequence	may	continue	(perhaps	unexpectedly).	This	kind	of
desired	behavior	is	a	bit	awkward	to	properly	and	reliably	handle.

To	register	a	sequence	error	notification	handler,	asynquence	provides	an		or(..)	
sequence	method,	which	also	has	an	alias	of		onerror(..)	.	You	can	call	this	method
anywhere	in	the	sequence,	and	you	can	register	as	many	handlers	as	you'd	like.	That
makes	it	easy	for	multiple	different	consumers	to	listen	in	on	a	sequence	to	know	if	it	failed
or	not;	it's	kind	of	like	an	error	event	handler	in	that	respect.

Just	like	with	Promises,	all	JS	exceptions	become	sequence	errors,	or	you	can
programmatically	signal	a	sequence	error:

var	sq	=	ASQ(	function(done){

				setTimeout(	function(){

								//	signal	an	error	for	the	sequence

								done.fail(	"Oops"	);

				},	100	);

}	)

.then(	function(done){

				//	will	never	get	here

}	)

.or(	function(err){

				console.log(	err	);												//	Oops

}	)

.then(	function(done){

				//	won't	get	here	either

}	);

//	later

sq.or(	function(err){

				console.log(	err	);												//	Oops

}	);

Another	really	important	difference	with	error	handling	in	asynquence	compared	to	native
Promises	is	the	default	behavior	of	"unhandled	exceptions".	As	we	discussed	at	length	in
Chapter	3,	a	rejected	Promise	without	a	registered	rejection	handler	will	just	silently	hold
(aka	swallow)	the	error;	you	have	to	remember	to	always	end	a	chain	with	a	final
	catch(..)	.
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In	asynquence,	the	assumption	is	reversed.

If	an	error	occurs	on	a	sequence,	and	it	at	that	moment	has	no	error	handlers	registered,
the	error	is	reported	to	the		console	.	In	other	words,	unhandled	rejections	are	by	default
always	reported	so	as	not	to	be	swallowed	and	missed.

As	soon	as	you	register	an	error	handler	against	a	sequence,	it	opts	that	sequence	out	of
such	reporting,	to	prevent	duplicate	noise.

There	may,	in	fact,	be	cases	where	you	want	to	create	a	sequence	that	may	go	into	the	error
state	before	you	have	a	chance	to	register	the	handler.	This	isn't	common,	but	it	can	happen
from	time	to	time.

In	those	cases,	you	can	also	opt	a	sequence	instance	out	of	error	reporting	by	calling
	defer()		on	the	sequence.	You	should	only	opt	out	of	error	reporting	if	you	are	sure	that
you're	going	to	eventually	handle	such	errors:

var	sq1	=	ASQ(	function(done){

				doesnt.Exist();												//	will	throw	exception	to	console

}	);

var	sq2	=	ASQ(	function(done){

				doesnt.Exist();												//	will	throw	only	a	sequence	error

}	)

//	opt-out	of	error	reporting

.defer();

setTimeout(	function(){

				sq1.or(	function(err){

								console.log(	err	);				//	ReferenceError

				}	);

				sq2.or(	function(err){

								console.log(	err	);				//	ReferenceError

				}	);

},	100	);

//	ReferenceError	(from	sq1)

This	is	better	error	handling	behavior	than	Promises	themselves	have,	because	it's	the	Pit	of
Success,	not	the	Pit	of	Failure	(see	Chapter	3).

Note:	If	a	sequence	is	piped	into	(aka	subsumed	by)	another	sequence	--	see	"Combining
Sequences"	for	a	complete	description	--	then	the	source	sequence	is	opted	out	of	error
reporting,	but	now	the	target	sequence's	error	reporting	or	lack	thereof	must	be	considered.

Parallel	Steps
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Not	all	steps	in	your	sequences	will	have	just	a	single	(async)	task	to	perform;	some	will
need	to	perform	multiple	steps	"in	parallel"	(concurrently).	A	step	in	a	sequence	in	which
multiple	substeps	are	processing	concurrently	is	called	a		gate(..)		--	there's	an		all(..)	
alias	if	you	prefer	--	and	is	directly	symmetric	to	native		Promise.all([..])	.

If	all	the	steps	in	the		gate(..)		complete	successfully,	all	success	messages	will	be	passed
to	the	next	sequence	step.	If	any	of	them	generate	errors,	the	whole	sequence	immediately
goes	into	an	error	state.

Consider:

ASQ(	function(done){

				setTimeout(	done,	100	);

}	)

.gate(

				function(done){

								setTimeout(	function(){

												done(	"Hello"	);

								},	100	);

				},

				function(done){

								setTimeout(	function(){

												done(	"World",	"!"	);

								},	100	);

				}

)

.val(	function(msg1,msg2){

				console.log(	msg1	);				//	Hello

				console.log(	msg2	);				//	[	"World",	"!"	]

}	);

For	illustration,	let's	compare	that	example	to	native	Promises:
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new	Promise(	function(resolve,reject){

				setTimeout(	resolve,	100	);

}	)

.then(	function(){

				return	Promise.all(	[

								new	Promise(	function(resolve,reject){

												setTimeout(	function(){

																resolve(	"Hello"	);

												},	100	);

								}	),

								new	Promise(	function(resolve,reject){

												setTimeout(	function(){

																//	note:	we	need	a	[	]	array	here

																resolve(	[	"World",	"!"	]	);

												},	100	);

								}	)

				]	);

}	)

.then(	function(msgs){

				console.log(	msgs[0]	);				//	Hello

				console.log(	msgs[1]	);				//	[	"World",	"!"	]

}	);

Yuck.	Promises	require	a	lot	more	boilerplate	overhead	to	express	the	same	asynchronous
flow	control.	That's	a	great	illustration	of	why	the	asynquence	API	and	abstraction	make
dealing	with	Promise	steps	a	lot	nicer.	The	improvement	only	goes	higher	the	more	complex
your	asynchrony	is.

Step	Variations

There	are	several	variations	in	the	contrib	plug-ins	on	asynquence's		gate(..)		step	type
that	can	be	quite	helpful:

	any(..)		is	like		gate(..)	,	except	just	one	segment	has	to	eventually	succeed	to
proceed	on	the	main	sequence.
	first(..)		is	like		any(..)	,	except	as	soon	as	any	segment	succeeds,	the	main
sequence	proceeds	(ignoring	subsequent	results	from	other	segments).
	race(..)		(symmetric	with		Promise.race([..])	)	is	like		first(..)	,	except	the	main
sequence	proceeds	as	soon	as	any	segment	completes	(either	success	or	failure).
	last(..)		is	like		any(..)	,	except	only	the	latest	segment	to	complete	successfully
sends	its	message(s)	along	to	the	main	sequence.
	none(..)		is	the	inverse	of		gate(..)	:	the	main	sequence	proceeds	only	if	all	the
segments	fail	(with	all	segment	error	message(s)	transposed	as	success	message(s)
and	vice	versa).

Let's	first	define	some	helpers	to	make	illustration	cleaner:
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function	success1(done)	{

				setTimeout(	function(){

								done(	1	);

				},	100	);

}

function	success2(done)	{

				setTimeout(	function(){

								done(	2	);

				},	100	);

}

function	failure3(done)	{

				setTimeout(	function(){

								done.fail(	3	);

				},	100	);

}

function	output(msg)	{

				console.log(	msg	);

}

Now,	let's	demonstrate	these		gate(..)		step	variations:
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ASQ().race(

				failure3,

				success1

)

.or(	output	);								//	3

ASQ().any(

				success1,

				failure3,

				success2

)

.val(	function(){

				var	args	=	[].slice.call(	arguments	);

				console.log(

								args								//	[	1,	undefined,	2	]

				);

}	);

ASQ().first(

				failure3,

				success1,

				success2

)

.val(	output	);								//	1

ASQ().last(

				failure3,

				success1,

				success2

)

.val(	output	);								//	2

ASQ().none(

				failure3

)

.val(	output	)								//	3

.none(

				failure3

				success1

)

.or(	output	);								//	1

Another	step	variation	is		map(..)	,	which	lets	you	asynchronously	map	elements	of	an	array
to	different	values,	and	the	step	doesn't	proceed	until	all	the	mappings	are	complete.
	map(..)		is	very	similar	to		gate(..)	,	except	it	gets	the	initial	values	from	an	array	instead	of
from	separately	specified	functions,	and	also	because	you	define	a	single	function	callback
to	operate	on	each	value:
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function	double(x,done)	{

				setTimeout(	function(){

								done(	x	*	2	);

				},	100	);

}

ASQ().map(	[1,2,3],	double	)

.val(	output	);																				//	[2,4,6]

Also,		map(..)		can	receive	either	of	its	parameters	(the	array	or	the	callback)	from
messages	passed	from	the	previous	step:

function	plusOne(x,done)	{

				setTimeout(	function(){

								done(	x	+	1	);

				},	100	);

}

ASQ(	[1,2,3]	)

.map(	double	)												//	message	`[1,2,3]`	comes	in

.map(	plusOne	)												//	message	`[2,4,6]`	comes	in

.val(	output	);												//	[3,5,7]

Another	variation	is		waterfall(..)	,	which	is	kind	of	like	a	mixture	between		gate(..)	's
message	collection	behavior	but		then(..)	's	sequential	processing.

Step	1	is	first	executed,	then	the	success	message	from	step	1	is	given	to	step	2,	and	then
both	success	messages	go	to	step	3,	and	then	all	three	success	messages	go	to	step	4,	and
so	on,	such	that	the	messages	sort	of	collect	and	cascade	down	the	"waterfall".

Consider:
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function	double(done)	{

				var	args	=	[].slice.call(	arguments,	1	);

				console.log(	args	);

				setTimeout(	function(){

								done(	args[args.length	-	1]	*	2	);

				},	100	);

}

ASQ(	3	)

.waterfall(

				double,																				//	[	3	]

				double,																				//	[	6	]

				double,																				//	[	6,	12	]

				double																				//	[	6,	12,	24	]

)

.val(	function(){

				var	args	=	[].slice.call(	arguments	);

				console.log(	args	);				//	[	6,	12,	24,	48	]

}	);

If	at	any	point	in	the	"waterfall"	an	error	occurs,	the	whole	sequence	immediately	goes	into
an	error	state.

Error	Tolerance

Sometimes	you	want	to	manage	errors	at	the	step	level	and	not	let	them	necessarily	send
the	whole	sequence	into	the	error	state.	asynquence	offers	two	step	variations	for	that
purpose.

	try(..)		attempts	a	step,	and	if	it	succeeds,	the	sequence	proceeds	as	normal,	but	if	the
step	fails,	the	failure	is	turned	into	a	success	message	formated	as		{	catch:	..	}		with	the
error	message(s)	filled	in:

ASQ()

.try(	success1	)

.val(	output	)												//	1

.try(	failure3	)

.val(	output	)												//	{	catch:	3	}

.or(	function(err){

				//	never	gets	here

}	);

You	could	instead	set	up	a	retry	loop	using		until(..)	,	which	tries	the	step	and	if	it	fails,
retries	the	step	again	on	the	next	event	loop	tick,	and	so	on.
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This	retry	loop	can	continue	indefinitely,	but	if	you	want	to	break	out	of	the	loop,	you	can	call
the		break()		flag	on	the	completion	trigger,	which	sends	the	main	sequence	into	an	error
state:

var	count	=	0;

ASQ(	3	)

.until(	double	)

.val(	output	)																				//	6

.until(	function(done){

				count++;

				setTimeout(	function(){

								if	(count	<	5)	{

												done.fail();

								}

								else	{

												//	break	out	of	the	`until(..)`	retry	loop

												done.break(	"Oops"	);

								}

				},	100	);

}	)

.or(	output	);																				//	Oops

Promise-Style	Steps

If	you	would	prefer	to	have,	inline	in	your	sequence,	Promise-style	semantics	like	Promises'
	then(..)		and		catch(..)		(see	Chapter	3),	you	can	use	the		pThen		and		pCatch		plug-ins:

ASQ(	21	)

.pThen(	function(msg){

				return	msg	*	2;

}	)

.pThen(	output	)																//	42

.pThen(	function(){

				//	throw	an	exception

				doesnt.Exist();

}	)

.pCatch(	function(err){

				//	caught	the	exception	(rejection)

				console.log(	err	);												//	ReferenceError

}	)

.val(	function(){

				//	main	sequence	is	back	in	a

				//	success	state	because	previous

				//	exception	was	caught	by

				//	`pCatch(..)`

}	);
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	pThen(..)		and		pCatch(..)		are	designed	to	run	in	the	sequence,	but	behave	as	if	it	was	a
normal	Promise	chain.	As	such,	you	can	either	resolve	genuine	Promises	or	asynquence
sequences	from	the	"fulfillment"	handler	passed	to		pThen(..)		(see	Chapter	3).

Forking	Sequences

One	feature	that	can	be	quite	useful	about	Promises	is	that	you	can	attach	multiple
	then(..)		handler	registrations	to	the	same	promise,	effectively	"forking"	the	flow-control	at
that	promise:

var	p	=	Promise.resolve(	21	);

//	fork	1	(from	`p`)

p.then(	function(msg){

				return	msg	*	2;

}	)

.then(	function(msg){

				console.log(	msg	);								//	42

}	)

//	fork	2	(from	`p`)

p.then(	function(msg){

				console.log(	msg	);								//	21

}	);

The	same	"forking"	is	easy	in	asynquence	with		fork()	:

var	sq	=	ASQ(..).then(..).then(..);

var	sq2	=	sq.fork();

//	fork	1

sq.then(..)..;

//	fork	2

sq2.then(..)..;

Combining	Sequences

The	reverse	of		fork()	ing,	you	can	combine	two	sequences	by	subsuming	one	into	another,
using	the		seq(..)		instance	method:
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var	sq	=	ASQ(	function(done){

				setTimeout(	function(){

								done(	"Hello	World"	);

				},	200	);

}	);

ASQ(	function(done){

				setTimeout(	done,	100	);

}	)

//	subsume	`sq`	sequence	into	this	sequence

.seq(	sq	)

.val(	function(msg){

				console.log(	msg	);								//	Hello	World

}	)

	seq(..)		can	either	accept	a	sequence	itself,	as	shown	here,	or	a	function.	If	a	function,	it's
expected	that	the	function	when	called	will	return	a	sequence,	so	the	preceding	code	could
have	been	done	with:

//	..

.seq(	function(){

				return	sq;

}	)

//	..

Also,	that	step	could	instead	have	been	accomplished	with	a		pipe(..)	:

//	..

.then(	function(done){

				//	pipe	`sq`	into	the	`done`	continuation	callback

				sq.pipe(	done	);

}	)

//	..

When	a	sequence	is	subsumed,	both	its	success	message	stream	and	its	error	stream	are
piped	in.

Note:	As	mentioned	in	an	earlier	note,	piping	(manually	with		pipe(..)		or	automatically	with
	seq(..)	)	opts	the	source	sequence	out	of	error-reporting,	but	doesn't	affect	the	error
reporting	status	of	the	target	sequence.

Value	and	Error	Sequences
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If	any	step	of	a	sequence	is	just	a	normal	value,	that	value	is	just	mapped	to	that	step's
completion	message:

var	sq	=	ASQ(	42	);

sq.val(	function(msg){

				console.log(	msg	);								//	42

}	);

If	you	want	to	make	a	sequence	that's	automatically	errored:

var	sq	=	ASQ.failed(	"Oops"	);

ASQ()

.seq(	sq	)

.val(	function(msg){

				//	won't	get	here

}	)

.or(	function(err){

				console.log(	err	);								//	Oops

}	);

You	also	may	want	to	automatically	create	a	delayed-value	or	a	delayed-error	sequence.
Using	the		after		and		failAfter		contrib	plug-ins,	this	is	easy:

var	sq1	=	ASQ.after(	100,	"Hello",	"World"	);

var	sq2	=	ASQ.failAfter(	100,	"Oops"	);

sq1.val(	function(msg1,msg2){

				console.log(	msg1,	msg2	);								//	Hello	World

}	);

sq2.or(	function(err){

				console.log(	err	);																//	Oops

}	);

You	can	also	insert	a	delay	in	the	middle	of	a	sequence	using		after(..)	:

ASQ(	42	)

//	insert	a	delay	into	the	sequence

.after(	100	)

.val(	function(msg){

				console.log(	msg	);								//	42

}	);
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Promises	and	Callbacks
I	think	asynquence	sequences	provide	a	lot	of	value	on	top	of	native	Promises,	and	for	the
most	part	you'll	find	it	more	pleasant	and	more	powerful	to	work	at	that	level	of	abstraction.
However,	integrating	asynquence	with	other	non-asynquence	code	will	be	a	reality.

You	can	easily	subsume	a	promise	(e.g.,	thenable	--	see	Chapter	3)	into	a	sequence	using
the		promise(..)		instance	method:

var	p	=	Promise.resolve(	42	);

ASQ()

.promise(	p	)												//	could	also:	`function(){	return	p;	}`

.val(	function(msg){

				console.log(	msg	);				//	42

}	);

And	to	go	the	opposite	direction	and	fork/vend	a	promise	from	a	sequence	at	a	certain	step,
use	the		toPromise		contrib	plug-in:

var	sq	=	ASQ.after(	100,	"Hello	World"	);

sq.toPromise()

//	this	is	a	standard	promise	chain	now

.then(	function(msg){

				return	msg.toUpperCase();

}	)

.then(	function(msg){

				console.log(	msg	);								//	HELLO	WORLD

}	);

To	adapt	asynquence	to	systems	using	callbacks,	there	are	several	helper	facilities.	To
automatically	generate	an	"error-first	style"	callback	from	your	sequence	to	wire	into	a
callback-oriented	utility,	use		errfcb	:
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var	sq	=	ASQ(	function(done){

				//	note:	expecting	"error-first	style"	callback

				someAsyncFuncWithCB(	1,	2,	done.errfcb	)

}	)

.val(	function(msg){

				//	..

}	)

.or(	function(err){

				//	..

}	);

//	note:	expecting	"error-first	style"	callback

anotherAsyncFuncWithCB(	1,	2,	sq.errfcb()	);

You	also	may	want	to	create	a	sequence-wrapped	version	of	a	utility	--	compare	to
"promisory"	in	Chapter	3	and	"thunkory"	in	Chapter	4	--	and	asynquence	provides
	ASQ.wrap(..)		for	that	purpose:

var	coolUtility	=	ASQ.wrap(	someAsyncFuncWithCB	);

coolUtility(	1,	2	)

.val(	function(msg){

				//	..

}	)

.or(	function(err){

				//	..

}	);

Note:	For	the	sake	of	clarity	(and	for	fun!),	let's	coin	yet	another	term,	for	a	sequence-
producing	function	that	comes	from		ASQ.wrap(..)	,	like		coolUtility		here.	I	propose
"sequory"	("sequence"	+	"factory").

Iterable	Sequences
The	normal	paradigm	for	a	sequence	is	that	each	step	is	responsible	for	completing	itself,
which	is	what	advances	the	sequence.	Promises	work	the	same	way.

The	unfortunate	part	is	that	sometimes	you	need	external	control	over	a	Promise/step,	which
leads	to	awkward	"capability	extraction".

Consider	this	Promises	example:
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var	domready	=	new	Promise(	function(resolve,reject){

				//	don't	want	to	put	this	here,	because

				//	it	belongs	logically	in	another	part

				//	of	the	code

				document.addEventListener(	"DOMContentLoaded",	resolve	);

}	);

//	..

domready.then(	function(){

				//	DOM	is	ready!

}	);

The	"capability	extraction"	anti-pattern	with	Promises	looks	like	this:

var	ready;

var	domready	=	new	Promise(	function(resolve,reject){

				//	extract	the	`resolve()`	capability

				ready	=	resolve;

}	);

//	..

domready.then(	function(){

				//	DOM	is	ready!

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	ready	);

Note:	This	anti-pattern	is	an	awkward	code	smell,	in	my	opinion,	but	some	developers	like	it,
for	reasons	I	can't	grasp.

asynquence	offers	an	inverted	sequence	type	I	call	"iterable	sequences",	which	externalizes
the	control	capability	(it's	quite	useful	in	use	cases	like	the		domready	):
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//	note:	`domready`	here	is	an	*iterator*	that

//	controls	the	sequence

var	domready	=	ASQ.iterable();

//	..

domready.val(	function(){

				//	DOM	is	ready

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	domready.next	);

There's	more	to	iterable	sequences	than	what	we	see	in	this	scenario.	We'll	come	back	to
them	in	Appendix	B.

Running	Generators
In	Chapter	4,	we	derived	a	utility	called		run(..)		which	can	run	generators	to	completion,
listening	for		yield	ed	Promises	and	using	them	to	async	resume	the	generator.	asynquence
has	just	such	a	utility	built	in,	called		runner(..)	.

Let's	first	set	up	some	helpers	for	illustration:

function	doublePr(x)	{

				return	new	Promise(	function(resolve,reject){

								setTimeout(	function(){

												resolve(	x	*	2	);

								},	100	);

				}	);

}

function	doubleSeq(x)	{

				return	ASQ(	function(done){

								setTimeout(	function(){

												done(	x	*	2)

								},	100	);

				}	);

}

Now,	we	can	use		runner(..)		as	a	step	in	the	middle	of	a	sequence:
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ASQ(	10,	11	)

.runner(	function*(token){

				var	x	=	token.messages[0]	+	token.messages[1];

				//	yield	a	real	promise

				x	=	yield	doublePr(	x	);

				//	yield	a	sequence

				x	=	yield	doubleSeq(	x	);

				return	x;

}	)

.val(	function(msg){

				console.log(	msg	);												//	84

}	);

Wrapped	Generators

You	can	also	create	a	self-packaged	generator	--	that	is,	a	normal	function	that	runs	your
specified	generator	and	returns	a	sequence	for	its	completion	--	by		ASQ.wrap(..)	ing	it:

var	foo	=	ASQ.wrap(	function*(token){

				var	x	=	token.messages[0]	+	token.messages[1];

				//	yield	a	real	promise

				x	=	yield	doublePr(	x	);

				//	yield	a	sequence

				x	=	yield	doubleSeq(	x	);

				return	x;

},	{	gen:	true	}	);

//	..

foo(	8,	9	)

.val(	function(msg){

				console.log(	msg	);												//	68

}	);

There's	a	lot	more	awesome	that		runner(..)		is	capable	of,	but	we'll	come	back	to	that	in
Appendix	B.

Review
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asynquence	is	a	simple	abstraction	--	a	sequence	is	a	series	of	(async)	steps	--	on	top	of
Promises,	aimed	at	making	working	with	various	asynchronous	patterns	much	easier,
without	any	compromise	in	capability.

There	are	other	goodies	in	the	asynquence	core	API	and	its	contrib	plug-ins	beyond	what	we
saw	in	this	appendix,	but	we'll	leave	that	as	an	exercise	for	the	reader	to	go	check	the	rest	of
the	capabilities	out.

You've	now	seen	the	essence	and	spirit	of	asynquence.	The	key	take	away	is	that	a
sequence	is	comprised	of	steps,	and	those	steps	can	be	any	of	dozens	of	different	variations
on	Promises,	or	they	can	be	a	generator-run,	or...	The	choice	is	up	to	you,	you	have	all	the
freedom	to	weave	together	whatever	async	flow	control	logic	is	appropriate	for	your	tasks.
No	more	library	switching	to	catch	different	async	patterns.

If	these	asynquence	snippets	have	made	sense	to	you,	you're	now	pretty	well	up	to	speed
on	the	library;	it	doesn't	take	that	much	to	learn,	actually!

If	you're	still	a	little	fuzzy	on	how	it	works	(or	why!),	you'll	want	to	spend	a	little	more	time
examining	the	previous	examples	and	playing	around	with	asynquence	yourself,	before
going	on	to	the	next	appendix.	Appendix	B	will	push	asynquence	into	several	more
advanced	and	powerful	async	patterns.
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Appendix	B:	Advanced	Async	Patterns
Appendix	A	introduced	the	asynquence	library	for	sequence-oriented	async	flow	control,
primarily	based	on	Promises	and	generators.

Now	we'll	explore	other	advanced	asynchronous	patterns	built	on	top	of	that	existing
understanding	and	functionality,	and	see	how	asynquence	makes	those	sophisticated	async
techniques	easy	to	mix	and	match	in	our	programs	without	needing	lots	of	separate	libraries.

Iterable	Sequences
We	introduced	asynquence's	iterable	sequences	in	the	previous	appendix,	but	we	want	to
revisit	them	in	more	detail.

To	refresh,	recall:

var	domready	=	ASQ.iterable();

//	..

domready.val(	function(){

				//	DOM	is	ready

}	);

//	..

document.addEventListener(	"DOMContentLoaded",	domready.next	);

Now,	let's	define	a	sequence	of	multiple	steps	as	an	iterable	sequence:
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var	steps	=	ASQ.iterable();

steps

.then(	function	STEP1(x){

				return	x	*	2;

}	)

.then(	function	STEP2(x){

				return	x	+	3;

}	)

.then(	function	STEP3(x){

				return	x	*	4;

}	);

steps.next(	8	).value;				//	16

steps.next(	16	).value;				//	19

steps.next(	19	).value;				//	76

steps.next().done;								//	true

As	you	can	see,	an	iterable	sequence	is	a	standard-compliant	iterator	(see	Chapter	4).	So,	it
can	be	iterated	with	an	ES6		for..of		loop,	just	like	a	generator	(or	any	other	iterable)	can:

var	steps	=	ASQ.iterable();

steps

.then(	function	STEP1(){	return	2;	}	)

.then(	function	STEP2(){	return	4;	}	)

.then(	function	STEP3(){	return	6;	}	)

.then(	function	STEP4(){	return	8;	}	)

.then(	function	STEP5(){	return	10;	}	);

for	(var	v	of	steps)	{

				console.log(	v	);

}

//	2	4	6	8	10

Beyond	the	event	triggering	example	shown	in	the	previous	appendix,	iterable	sequences
are	interesting	because	in	essence	they	can	be	seen	as	a	stand-in	for	generators	or	Promise
chains,	but	with	even	more	flexibility.

Consider	a	multiple	Ajax	request	example	--	we've	seen	the	same	scenario	in	Chapters	3
and	4,	both	as	a	Promise	chain	and	as	a	generator,	respectively	--	expressed	as	an	iterable
sequence:
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//	sequence-aware	ajax

var	request	=	ASQ.wrap(	ajax	);

ASQ(	"http://some.url.1"	)

.runner(

				ASQ.iterable()

				.then(	function	STEP1(token){

								var	url	=	token.messages[0];

								return	request(	url	);

				}	)

				.then(	function	STEP2(resp){

								return	ASQ().gate(

												request(	"http://some.url.2/?v="	+	resp	),

												request(	"http://some.url.3/?v="	+	resp	)

								);

				}	)

				.then(	function	STEP3(r1,r2){	return	r1	+	r2;	}	)

)

.val(	function(msg){

				console.log(	msg	);

}	);

The	iterable	sequence	expresses	a	sequential	series	of	(sync	or	async)	steps	that	looks
awfully	similar	to	a	Promise	chain	--	in	other	words,	it's	much	cleaner	looking	than	just	plain
nested	callbacks,	but	not	quite	as	nice	as	the		yield	-based	sequential	syntax	of	generators.

But	we	pass	the	iterable	sequence	into		ASQ#runner(..)	,	which	runs	it	to	completion	the
same	as	if	it	was	a	generator.	The	fact	that	an	iterable	sequence	behaves	essentially	the
same	as	a	generator	is	notable	for	a	couple	of	reasons.

First,	iterable	sequences	are	kind	of	a	pre-ES6	equivalent	to	a	certain	subset	of	ES6
generators,	which	means	you	can	either	author	them	directly	(to	run	anywhere),	or	you	can
author	ES6	generators	and	transpile/convert	them	to	iterable	sequences	(or	Promise	chains
for	that	matter!).

Thinking	of	an	async-run-to-completion	generator	as	just	syntactic	sugar	for	a	Promise	chain
is	an	important	recognition	of	their	isomorphic	relationship.

Before	we	move	on,	we	should	note	that	the	previous	snippet	could	have	been	expressed	in
asynquence	as:
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ASQ(	"http://some.url.1"	)

.seq(	/*STEP	1*/	request	)

.seq(	function	STEP2(resp){

				return	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

}	)

.val(	function	STEP3(r1,r2){	return	r1	+	r2;	}	)

.val(	function(msg){

				console.log(	msg	);

}	);

Moreover,	step	2	could	have	even	been	expressed	as:

.gate(

				function	STEP2a(done,resp)	{

								request(	"http://some.url.2/?v="	+	resp	)

								.pipe(	done	);

				},

				function	STEP2b(done,resp)	{

								request(	"http://some.url.3/?v="	+	resp	)

								.pipe(	done	);

				}

)

So,	why	would	we	go	to	the	trouble	of	expressing	our	flow	control	as	an	iterable	sequence	in
a		ASQ#runner(..)		step,	when	it	seems	like	a	simpler/flatter	asyquence	chain	does	the	job
well?

Because	the	iterable	sequence	form	has	an	important	trick	up	its	sleeve	that	gives	us	more
capability.	Read	on.

Extending	Iterable	Sequences

Generators,	normal	asynquence	sequences,	and	Promise	chains,	are	all	eagerly	evaluated
--	whatever	flow	control	is	expressed	initially	is	the	fixed	flow	that	will	be	followed.

However,	iterable	sequences	are	lazily	evaluated,	which	means	that	during	execution	of	the
iterable	sequence,	you	can	extend	the	sequence	with	more	steps	if	desired.

Note:	You	can	only	append	to	the	end	of	an	iterable	sequence,	not	inject	into	the	middle	of
the	sequence.

Let's	first	look	at	a	simpler	(synchronous)	example	of	that	capability	to	get	familiar	with	it:
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function	double(x)	{

				x	*=	2;

				//	should	we	keep	extending?

				if	(x	<	500)	{

								isq.then(	double	);

				}

				return	x;

}

//	setup	single-step	iterable	sequence

var	isq	=	ASQ.iterable().then(	double	);

for	(var	v	=	10,	ret;

				(ret	=	isq.next(	v	))	&&	!ret.done;

)	{

				v	=	ret.value;

				console.log(	v	);

}

The	iterable	sequence	starts	out	with	only	one	defined	step	(	isq.then(double)	),	but	the
sequence	keeps	extending	itself	under	certain	conditions	(	x	<	500	).	Both	asynquence
sequences	and	Promise	chains	technically	can	do	something	similar,	but	we'll	see	in	a	little
bit	why	their	capability	is	insufficient.

Though	this	example	is	rather	trivial	and	could	otherwise	be	expressed	with	a		while		loop	in
a	generator,	we'll	consider	more	sophisticated	cases.

For	instance,	you	could	examine	the	response	from	an	Ajax	request	and	if	it	indicates	that
more	data	is	needed,	you	conditionally	insert	more	steps	into	the	iterable	sequence	to	make
the	additional	request(s).	Or	you	could	conditionally	add	a	value-formatting	step	to	the	end	of
your	Ajax	handling.

Consider:
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var	steps	=	ASQ.iterable()

.then(	function	STEP1(token){

				var	url	=	token.messages[0].url;

				//	was	an	additional	formatting	step	provided?

				if	(token.messages[0].format)	{

								steps.then(	token.messages[0].format	);

				}

				return	request(	url	);

}	)

.then(	function	STEP2(resp){

				//	add	another	Ajax	request	to	the	sequence?

				if	(/x1/.test(	resp	))	{

								steps.then(	function	STEP5(text){

												return	request(

																"http://some.url.4/?v="	+	text

												);

								}	);

				}

				return	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

}	)

.then(	function	STEP3(r1,r2){	return	r1	+	r2;	}	);

You	can	see	in	two	different	places	where	we	conditionally	extend		steps		with
	steps.then(..)	.	And	to	run	this		steps		iterable	sequence,	we	just	wire	it	into	our	main
program	flow	with	an	asynquence	sequence	(called		main		here)	using		ASQ#runner(..)	:

var	main	=	ASQ(	{

				url:	"http://some.url.1",

				format:	function	STEP4(text){

								return	text.toUpperCase();

				}

}	)

.runner(	steps	)

.val(	function(msg){

				console.log(	msg	);

}	);

Can	the	flexibility	(conditional	behavior)	of	the		steps		iterable	sequence	be	expressed	with	a
generator?	Kind	of,	but	we	have	to	rearrange	the	logic	in	a	slightly	awkward	way:
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function	*steps(token)	{

				//	**STEP	1**

				var	resp	=	yield	request(	token.messages[0].url	);

				//	**STEP	2**

				var	rvals	=	yield	ASQ().gate(

								request(	"http://some.url.2/?v="	+	resp	),

								request(	"http://some.url.3/?v="	+	resp	)

				);

				//	**STEP	3**

				var	text	=	rvals[0]	+	rvals[1];

				//	**STEP	4**

				//	was	an	additional	formatting	step	provided?

				if	(token.messages[0].format)	{

								text	=	yield	token.messages[0].format(	text	);

				}

				//	**STEP	5**

				//	need	another	Ajax	request	added	to	the	sequence?

				if	(/foobar/.test(	resp	))	{

								text	=	yield	request(

												"http://some.url.4/?v="	+	text

								);

				}

				return	text;

}

//	note:	`*steps()`	can	be	run	by	the	same	`ASQ`	sequence

//	as	`steps`	was	previously

Setting	aside	the	already	identified	benefits	of	the	sequential,	synchronous-looking	syntax	of
generators	(see	Chapter	4),	the		steps		logic	had	to	be	reordered	in	the		*steps()		generator
form,	to	fake	the	dynamicism	of	the	extendable	iterable	sequence		steps	.

What	about	expressing	the	functionality	with	Promises	or	sequences,	though?	You	can	do
something	like	this:
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var	steps	=	something(	..	)

.then(	..	)

.then(	function(..){

				//	..

				//	extending	the	chain,	right?

				steps	=	steps.then(	..	);

				//	..

})

.then(	..	);

The	problem	is	subtle	but	important	to	grasp.	So,	consider	trying	to	wire	up	our		steps	
Promise	chain	into	our	main	program	flow	--	this	time	expressed	with	Promises	instead	of
asynquence:

var	main	=	Promise.resolve(	{

				url:	"http://some.url.1",

				format:	function	STEP4(text){

								return	text.toUpperCase();

				}

}	)

.then(	function(..){

				return	steps;												//	hint!

}	)

.val(	function(msg){

				console.log(	msg	);

}	);

Can	you	spot	the	problem	now?	Look	closely!

There's	a	race	condition	for	sequence	steps	ordering.	When	you		return	steps	,	at	that
moment		steps		might	be	the	originally	defined	promise	chain,	or	it	might	now	point	to	the
extended	promise	chain	via	the		steps	=	steps.then(..)		call,	depending	on	what	order
things	happen.

Here	are	the	two	possible	outcomes:

If		steps		is	still	the	original	promise	chain,	once	it's	later	"extended"	by		steps	=
steps.then(..)	,	that	extended	promise	on	the	end	of	the	chain	is	not	considered	by	the
	main		flow,	as	it's	already	tapped	the		steps		chain.	This	is	the	unfortunately	limiting
eager	evaluation.
If		steps		is	already	the	extended	promise	chain,	it	works	as	we	expect	in	that	the
extended	promise	is	what		main		taps.
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Other	than	the	obvious	fact	that	a	race	condition	is	intolerable,	the	first	case	is	the	concern;	it
illustrates	eager	evaluation	of	the	promise	chain.	By	contrast,	we	easily	extended	the
iterable	sequence	without	such	issues,	because	iterable	sequences	are	lazily	evaluated.

The	more	dynamic	you	need	your	flow	control,	the	more	iterable	sequences	will	shine.

Tip:	Check	out	more	information	and	examples	of	iterable	sequences	on	the	asynquence
site	(https://github.com/getify/asynquence/blob/master/README.md#iterable-sequences).

Event	Reactive
It	should	be	obvious	from	(at	least!)	Chapter	3	that	Promises	are	a	very	powerful	tool	in	your
async	toolbox.	But	one	thing	that's	clearly	lacking	is	in	their	capability	to	handle	streams	of
events,	as	a	Promise	can	only	be	resolved	once.	And	frankly,	this	exact	same	weakness	is
true	of	plain	asynquence	sequences,	as	well.

Consider	a	scenario	where	you	want	to	fire	off	a	series	of	steps	every	time	a	certain	event	is
fired.	A	single	Promise	or	sequence	cannot	represent	all	occurrences	of	that	event.	So,	you
have	to	create	a	whole	new	Promise	chain	(or	sequence)	for	each	event	occurrence,	such
as:

listener.on(	"foobar",	function(data){

				//	create	a	new	event	handling	promise	chain

				new	Promise(	function(resolve,reject){

								//	..

				}	)

				.then(	..	)

				.then(	..	);

}	);

The	base	functionality	we	need	is	present	in	this	approach,	but	it's	far	from	a	desirable	way
to	express	our	intended	logic.	There	are	two	separate	capabilities	conflated	in	this	paradigm:
the	event	listening,	and	responding	to	the	event;	separation	of	concerns	would	implore	us	to
separate	out	these	capabilities.

The	carefully	observant	reader	will	see	this	problem	as	somewhat	symmetrical	to	the
problems	we	detailed	with	callbacks	in	Chapter	2;	it's	kind	of	an	inversion	of	control	problem.

Imagine	uninverting	this	paradigm,	like	so:
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var	observable	=	listener.on(	"foobar"	);

//	later

observable

.then(	..	)

.then(	..	);

//	elsewhere

observable

.then(	..	)

.then(	..	);

The		observable		value	is	not	exactly	a	Promise,	but	you	can	observe	it	much	like	you	can
observe	a	Promise,	so	it's	closely	related.	In	fact,	it	can	be	observed	many	times,	and	it	will
send	out	notifications	every	time	its	event	(	"foobar"	)	occurs.

Tip:	This	pattern	I've	just	illustrated	is	a	massive	simplification	of	the	concepts	and
motivations	behind	reactive	programming	(aka	RP),	which	has	been
implemented/expounded	upon	by	several	great	projects	and	languages.	A	variation	on	RP	is
functional	reactive	programming	(FRP),	which	refers	to	applying	functional	programming
techniques	(immutability,	referential	integrity,	etc.)	to	streams	of	data.	"Reactive"	refers	to
spreading	this	functionality	out	over	time	in	response	to	events.	The	interested	reader	should
consider	studying	"Reactive	Observables"	in	the	fantastic	"Reactive	Extensions"	library
("RxJS"	for	JavaScript)	by	Microsoft	(http://rxjs.codeplex.com/);	it's	much	more	sophisticated
and	powerful	than	I've	just	shown.	Also,	Andre	Staltz	has	an	excellent	write-up
(https://gist.github.com/staltz/868e7e9bc2a7b8c1f754)	that	pragmatically	lays	out	RP	in
concrete	examples.

ES7	Observables

At	the	time	of	this	writing,	there's	an	early	ES7	proposal	for	a	new	data	type	called
"Observable"	(https://github.com/jhusain/asyncgenerator#introducing-observable),	which	in
spirit	is	similar	to	what	we've	laid	out	here,	but	is	definitely	more	sophisticated.

The	notion	of	this	kind	of	Observable	is	that	the	way	you	"subscribe"	to	the	events	from	a
stream	is	to	pass	in	a	generator	--	actually	the	iterator	is	the	interested	party	--	whose
	next(..)		method	will	be	called	for	each	event.

You	could	imagine	it	sort	of	like	this:
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//	`someEventStream`	is	a	stream	of	events,	like	from

//	mouse	clicks,	and	the	like.

var	observer	=	new	Observer(	someEventStream,	function*(){

				while	(var	evt	=	yield)	{

								console.log(	evt	);

				}

}	);

The	generator	you	pass	in	will		yield		pause	the		while		loop	waiting	for	the	next	event.	The
iterator	attached	to	the	generator	instance	will	have	its		next(..)		called	each	time
	someEventStream		has	a	new	event	published,	and	so	that	event	data	will	resume	your
generator/iterator	with	the		evt		data.

In	the	subscription	to	events	functionality	here,	it's	the	iterator	part	that	matters,	not	the
generator.	So	conceptually	you	could	pass	in	practically	any	iterable,	including
	ASQ.iterable()		iterable	sequences.

Interestingly,	there	are	also	proposed	adapters	to	make	it	easy	to	construct	Observables
from	certain	types	of	streams,	such	as		fromEvent(..)		for	DOM	events.	If	you	look	at	a
suggested	implementation	of		fromEvent(..)		in	the	earlier	linked	ES7	proposal,	it	looks	an
awful	lot	like	the		ASQ.react(..)		we'll	see	in	the	next	section.

Of	course,	these	are	all	early	proposals,	so	what	shakes	out	may	very	well	look/behave
differently	than	shown	here.	But	it's	exciting	to	see	the	early	alignments	of	concepts	across
different	libraries	and	language	proposals!

Reactive	Sequences

With	that	crazy	brief	summary	of	Observables	(and	F/RP)	as	our	inspiration	and	motivation,	I
will	now	illustrate	an	adaptation	of	a	small	subset	of	"Reactive	Observables,"	which	I	call
"Reactive	Sequences."

First,	let's	start	with	how	to	create	an	Observable,	using	an	asynquence	plug-in	utility	called
	react(..)	:

var	observable	=	ASQ.react(	function	setup(next){

				listener.on(	"foobar",	next	);

}	);

Now,	let's	see	how	to	define	a	sequence	that	"reacts"	--	in	F/RP,	this	is	typically	called
"subscribing"	--	to	that		observable	:
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observable

.seq(	..	)

.then(	..	)

.val(	..	);

So,	you	just	define	the	sequence	by	chaining	off	the	Observable.	That's	easy,	huh?

In	F/RP,	the	stream	of	events	typically	channels	through	a	set	of	functional	transforms,	like
	scan(..)	,		map(..)	,		reduce(..)	,	and	so	on.	With	reactive	sequences,	each	event
channels	through	a	new	instance	of	the	sequence.	Let's	look	at	a	more	concrete	example:

ASQ.react(	function	setup(next){

				document.getElementById(	"mybtn"	)

				.addEventListener(	"click",	next,	false	);

}	)

.seq(	function(evt){

				var	btnID	=	evt.target.id;

				return	request(

								"http://some.url.1/?id="	+	btnID

				);

}	)

.val(	function(text){

				console.log(	text	);

}	);

The	"reactive"	portion	of	the	reactive	sequence	comes	from	assigning	one	or	more	event
handlers	to	invoke	the	event	trigger	(calling		next(..)	).

The	"sequence"	portion	of	the	reactive	sequence	is	exactly	like	the	sequences	we've	already
explored:	each	step	can	be	whatever	asynchronous	technique	makes	sense,	from
continuation	callback	to	Promise	to	generator.

Once	you	set	up	a	reactive	sequence,	it	will	continue	to	initiate	instances	of	the	sequence	as
long	as	the	events	keep	firing.	If	you	want	to	stop	a	reactive	sequence,	you	can	call		stop()	.

If	a	reactive	sequence	is		stop()	'd,	you	likely	want	the	event	handler(s)	to	be	unregistered
as	well;	you	can	register	a	teardown	handler	for	this	purpose:
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var	sq	=	ASQ.react(	function	setup(next,registerTeardown){

				var	btn	=	document.getElementById(	"mybtn"	);

				btn.addEventListener(	"click",	next,	false	);

				//	will	be	called	once	`sq.stop()`	is	called

				registerTeardown(	function(){

								btn.removeEventListener(	"click",	next,	false	);

				}	);

}	)

.seq(	..	)

.then(	..	)

.val(	..	);

//	later

sq.stop();

Note:	The		this		binding	reference	inside	the		setup(..)		handler	is	the	same		sq		reactive
sequence,	so	you	can	use	the		this		reference	to	add	to	the	reactive	sequence	definition,
call	methods	like		stop()	,	and	so	on.

Here's	an	example	from	the	Node.js	world,	using	reactive	sequences	to	handle	incoming
HTTP	requests:

var	server	=	http.createServer();

server.listen(8000);

//	reactive	observer

var	request	=	ASQ.react(	function	setup(next,registerTeardown){

				server.addListener(	"request",	next	);

				server.addListener(	"close",	this.stop	);

				registerTeardown(	function(){

								server.removeListener(	"request",	next	);

								server.removeListener(	"close",	request.stop	);

				}	);

});

//	respond	to	requests

request

.seq(	pullFromDatabase	)

.val(	function(data,res){

				res.end(	data	);

}	);

//	node	teardown

process.on(	"SIGINT",	request.stop	);
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The		next(..)		trigger	can	also	adapt	to	node	streams	easily,	using		onStream(..)		and
	unStream(..)	:

ASQ.react(	function	setup(next){

				var	fstream	=	fs.createReadStream(	"/some/file"	);

				//	pipe	the	stream's	"data"	event	to	`next(..)`

				next.onStream(	fstream	);

				//	listen	for	the	end	of	the	stream

				fstream.on(	"end",	function(){

								next.unStream(	fstream	);

				}	);

}	)

.seq(	..	)

.then(	..	)

.val(	..	);

You	can	also	use	sequence	combinations	to	compose	multiple	reactive	sequence	streams:

var	sq1	=	ASQ.react(	..	).seq(	..	).then(	..	);

var	sq2	=	ASQ.react(	..	).seq(	..	).then(	..	);

var	sq3	=	ASQ.react(..)

.gate(

				sq1,

				sq2

)

.then(	..	);

The	main	takeaway	is	that		ASQ.react(..)		is	a	lightweight	adaptation	of	F/RP	concepts,
enabling	the	wiring	of	an	event	stream	to	a	sequence,	hence	the	term	"reactive	sequence."
Reactive	sequences	are	generally	capable	enough	for	basic	reactive	uses.

Note:	Here's	an	example	of	using		ASQ.react(..)		in	managing	UI	state
(http://jsbin.com/rozipaki/6/edit?js,output),	and	another	example	of	handling	HTTP
request/response	streams	with		ASQ.react(..)	
(https://gist.github.com/getify/bba5ec0de9d6047b720e).

Generator	Coroutine
Hopefully	Chapter	4	helped	you	get	pretty	familiar	with	ES6	generators.	In	particular,	we
want	to	revisit	the	"Generator	Concurrency"	discussion,	and	push	it	even	further.
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We	imagined	a		runAll(..)		utility	that	could	take	two	or	more	generators	and	run	them
concurrently,	letting	them	cooperatively		yield		control	from	one	to	the	next,	with	optional
message	passing.

In	addition	to	being	able	to	run	a	single	generator	to	completion,	the		ASQ#runner(..)		we
discussed	in	Appendix	A	is	a	similar	implementation	of	the	concepts	of		runAll(..)	,	which
can	run	multiple	generators	concurrently	to	completion.

So	let's	see	how	we	can	implement	the	concurrent	Ajax	scenario	from	Chapter	4:
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ASQ(

				"http://some.url.2"

)

.runner(

				function*(token){

								//	transfer	control

								yield	token;

								var	url1	=	token.messages[0];	//	"http://some.url.1"

								//	clear	out	messages	to	start	fresh

								token.messages	=	[];

								var	p1	=	request(	url1	);

								//	transfer	control

								yield	token;

								token.messages.push(	yield	p1	);

				},

				function*(token){

								var	url2	=	token.messages[0];	//	"http://some.url.2"

								//	message	pass	and	transfer	control

								token.messages[0]	=	"http://some.url.1";

								yield	token;

								var	p2	=	request(	url2	);

								//	transfer	control

								yield	token;

								token.messages.push(	yield	p2	);

								//	pass	along	results	to	next	sequence	step

								return	token.messages;

				}

)

.val(	function(res){

				//	`res[0]`	comes	from	"http://some.url.1"

				//	`res[1]`	comes	from	"http://some.url.2"

}	);

The	main	differences	between		ASQ#runner(..)		and		runAll(..)		are	as	follows:

Each	generator	(coroutine)	is	provided	an	argument	we	call		token	,	which	is	the	special
value	to		yield		when	you	want	to	explicitly	transfer	control	to	the	next	coroutine.
	token.messages		is	an	array	that	holds	any	messages	passed	in	from	the	previous
sequence	step.	It's	also	a	data	structure	that	you	can	use	to	share	messages	between
coroutines.
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	yield	ing	a	Promise	(or	sequence)	value	does	not	transfer	control,	but	instead	pauses
the	coroutine	processing	until	that	value	is	ready.
The	last		return	ed	or		yield	ed	value	from	the	coroutine	processing	run	will	be	forward
passed	to	the	next	step	in	the	sequence.

It's	also	easy	to	layer	helpers	on	top	of	the	base		ASQ#runner(..)		functionality	to	suit
different	uses.

State	Machines

One	example	that	may	be	familiar	to	many	programmers	is	state	machines.	You	can,	with
the	help	of	a	simple	cosmetic	utility,	create	an	easy-to-express	state	machine	processor.

Let's	imagine	such	a	utility.	We'll	call	it		state(..)	,	and	will	pass	it	two	arguments:	a	state
value	and	a	generator	that	handles	that	state.		state(..)		will	do	the	dirty	work	of	creating
and	returning	an	adapter	generator	to	pass	to		ASQ#runner(..)	.

Consider:

function	state(val,handler)	{

				//	make	a	coroutine	handler	for	this	state

				return	function*(token)	{

								//	state	transition	handler

								function	transition(to)	{

												token.messages[0]	=	to;

								}

								//	set	initial	state	(if	none	set	yet)

								if	(token.messages.length	<	1)	{

												token.messages[0]	=	val;

								}

								//	keep	going	until	final	state	(false)	is	reached

								while	(token.messages[0]	!==	false)	{

												//	current	state	matches	this	handler?

												if	(token.messages[0]	===	val)	{

																//	delegate	to	state	handler

																yield	*handler(	transition	);

												}

												//	transfer	control	to	another	state	handler?

												if	(token.messages[0]	!==	false)	{

																yield	token;

												}

								}

				};

}
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If	you	look	closely,	you'll	see	that		state(..)		returns	back	a	generator	that	accepts	a
	token	,	and	then	it	sets	up	a		while		loop	that	will	run	until	the	state	machine	reaches	its
final	state	(which	we	arbitrarily	pick	as	the		false		value);	that's	exactly	the	kind	of	generator
we	want	to	pass	to		ASQ#runner(..)	!

We	also	arbitrarily	reserve	the		token.messages[0]		slot	as	the	place	where	the	current	state
of	our	state	machine	will	be	tracked,	which	means	we	can	even	seed	the	initial	state	as	the
value	passed	in	from	the	previous	step	in	the	sequence.

How	do	we	use	the		state(..)		helper	along	with		ASQ#runner(..)	?
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var	prevState;

ASQ(

				/*	optional:	initial	state	value	*/

				2

)

//	run	our	state	machine

//	transitions:	2	->	3	->	1	->	3	->	false

.runner(

				//	state	`1`	handler

				state(	1,	function	*stateOne(transition){

								console.log(	"in	state	1"	);

								prevState	=	1;

								yield	transition(	3	);				//	goto	state	`3`

				}	),

				//	state	`2`	handler

				state(	2,	function	*stateTwo(transition){

								console.log(	"in	state	2"	);

								prevState	=	2;

								yield	transition(	3	);				//	goto	state	`3`

				}	),

				//	state	`3`	handler

				state(	3,	function	*stateThree(transition){

								console.log(	"in	state	3"	);

								if	(prevState	===	2)	{

												prevState	=	3;

												yield	transition(	1	);	//	goto	state	`1`

								}

								//	all	done!

								else	{

												yield	"That's	all	folks!";

												prevState	=	3;

												yield	transition(	false	);	//	terminal	state

								}

				}	)

)

//	state	machine	complete,	so	move	on

.val(	function(msg){

				console.log(	msg	);				//	That's	all	folks!

}	);

It's	important	to	note	that	the		*stateOne(..)	,		*stateTwo(..)	,	and		*stateThree(..)	
generators	themselves	are	reinvoked	each	time	that	state	is	entered,	and	they	finish	when
you		transition(..)		to	another	value.	While	not	shown	here,	of	course	these	state
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generator	handlers	can	be	asynchronously	paused	by		yield	ing
Promises/sequences/thunks.

The	underneath	hidden	generators	produced	by	the		state(..)		helper	and	actually	passed
to		ASQ#runner(..)		are	the	ones	that	continue	to	run	concurrently	for	the	length	of	the	state
machine,	and	each	of	them	handles	cooperatively		yield	ing	control	to	the	next,	and	so	on.

Note:	See	this	"ping	pong"	example	(http://jsbin.com/qutabu/1/edit?js,output)	for	more
illustration	of	using	cooperative	concurrency	with	generators	driven	by		ASQ#runner(..)	.

Communicating	Sequential	Processes	(CSP)
"Communicating	Sequential	Processes"	(CSP)	was	first	described	by	C.	A.	R.	Hoare	in	a
1978	academic	paper	(http://dl.acm.org/citation.cfm?doid=359576.359585),	and	later	in	a
1985	book	(http://www.usingcsp.com/)	of	the	same	name.	CSP	describes	a	formal	method
for	concurrent	"processes"	to	interact	(aka	"communicate")	during	processing.

You	may	recall	that	we	examined	concurrent	"processes"	back	in	Chapter	1,	so	our
exploration	of	CSP	here	will	build	upon	that	understanding.

Like	most	great	concepts	in	computer	science,	CSP	is	heavily	steeped	in	academic
formalism,	expressed	as	a	process	algebra.	However,	I	suspect	symbolic	algebra	theorems
won't	make	much	practical	difference	to	the	reader,	so	we	will	want	to	find	some	other	way	of
wrapping	our	brains	around	CSP.

I	will	leave	much	of	the	formal	description	and	proof	of	CSP	to	Hoare's	writing,	and	to	many
other	fantastic	writings	since.	Instead,	we	will	try	to	just	briefly	explain	the	idea	of	CSP	in	as
un-academic	and	hopefully	intuitively	understandable	a	way	as	possible.

Message	Passing

The	core	principle	in	CSP	is	that	all	communication/interaction	between	otherwise
independent	processes	must	be	through	formal	message	passing.	Perhaps	counter	to	your
expectations,	CSP	message	passing	is	described	as	a	synchronous	action,	where	the
sender	process	and	the	receiver	process	have	to	mutually	be	ready	for	the	message	to	be
passed.

How	could	such	synchronous	messaging	possibly	be	related	to	asynchronous	programming
in	JavaScript?

The	concreteness	of	relationship	comes	from	the	nature	of	how	ES6	generators	are	used	to
produce	synchronous-looking	actions	that	under	the	covers	can	indeed	either	be
synchronous	or	(more	likely)	asynchronous.
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In	other	words,	two	or	more	concurrently	running	generators	can	appear	to	synchronously
message	each	other	while	preserving	the	fundamental	asynchrony	of	the	system	because
each	generator's	code	is	paused	(aka	"blocked")	waiting	on	resumption	of	an	asynchronous
action.

How	does	this	work?

Imagine	a	generator	(aka	"process")	called	"A"	that	wants	to	send	a	message	to	generator
"B."	First,	"A"		yield	s	the	message	(thus	pausing	"A")	to	be	sent	to	"B."	When	"B"	is	ready
and	takes	the	message,	"A"	is	then	resumed	(unblocked).

Symmetrically,	imagine	a	generator	"A"	that	wants	a	message	from	"B."	"A"		yield	s	its
request	(thus	pausing	"A")	for	the	message	from	"B,"	and	once	"B"	sends	a	message,	"A"
takes	the	message	and	is	resumed.

One	of	the	more	popular	expressions	of	this	CSP	message	passing	theory	comes	from
ClojureScript's	core.async	library,	and	also	from	the	go	language.	These	takes	on	CSP
embody	the	described	communication	semantics	in	a	conduit	that	is	opened	between
processes	called	a	"channel."

Note:	The	term	channel	is	used	in	part	because	there	are	modes	in	which	more	than	one
value	can	be	sent	at	once	into	the	"buffer"	of	the	channel;	this	is	similar	to	what	you	may
think	of	as	a	stream.	We	won't	go	into	depth	about	it	here,	but	it	can	be	a	very	powerful
technique	for	managing	streams	of	data.

In	the	simplest	notion	of	CSP,	a	channel	that	we	create	between	"A"	and	"B"	would	have	a
method	called		take(..)		for	blocking	to	receive	a	value,	and	a	method	called		put(..)		for
blocking	to	send	a	value.

This	might	look	like:
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var	ch	=	channel();

function	*foo()	{

				var	msg	=	yield	take(	ch	);

				console.log(	msg	);

}

function	*bar()	{

				yield	put(	ch,	"Hello	World"	);

				console.log(	"message	sent"	);

}

run(	foo	);

run(	bar	);

//	Hello	World

//	"message	sent"

Compare	this	structured,	synchronous(-looking)	message	passing	interaction	to	the	informal
and	unstructured	message	sharing	that		ASQ#runner(..)		provides	through	the
	token.messages		array	and	cooperative		yield	ing.	In	essence,		yield	put(..)		is	a	single
operation	that	both	sends	the	value	and	pauses	execution	to	transfer	control,	whereas	in
earlier	examples	we	did	those	as	separate	steps.

Moreover,	CSP	stresses	that	you	don't	really	explicitly	"transfer	control,"	but	rather	you
design	your	concurrent	routines	to	block	expecting	either	a	value	received	from	the	channel,
or	to	block	expecting	to	try	to	send	a	message	on	the	channel.	The	blocking	around
receiving	or	sending	messages	is	how	you	coordinate	sequencing	of	behavior	between	the
coroutines.

Note:	Fair	warning:	this	pattern	is	very	powerful	but	it's	also	a	little	mind	twisting	to	get	used
to	at	first.	You	will	want	to	practice	this	a	bit	to	get	used	to	this	new	way	of	thinking	about
coordinating	your	concurrency.

There	are	several	great	libraries	that	have	implemented	this	flavor	of	CSP	in	JavaScript,
most	notably	"js-csp"	(https://github.com/ubolonton/js-csp),	which	James	Long
(http://twitter.com/jlongster)	forked	(https://github.com/jlongster/js-csp)	and	has	written
extensively	about	(http://jlongster.com/Taming-the-Asynchronous-Beast-with-CSP-in-
JavaScript).	Also,	it	cannot	be	stressed	enough	how	amazing	the	many	writings	of	David
Nolen	(http://twitter.com/swannodette)	are	on	the	topic	of	adapting	ClojureScript's	go-style
core.async	CSP	into	JS	generators	(http://swannodette.github.io/2013/08/24/es6-
generators-and-csp).

asynquence	CSP	emulation
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Because	we've	been	discussing	async	patterns	here	in	the	context	of	my	asynquence
library,	you	might	be	interested	to	see	that	we	can	fairly	easily	add	an	emulation	layer	on	top
of		ASQ#runner(..)		generator	handling	as	a	nearly	perfect	porting	of	the	CSP	API	and
behavior.	This	emulation	layer	ships	as	an	optional	part	of	the	"asynquence-contrib"	package
alongside	asynquence.

Very	similar	to	the		state(..)		helper	from	earlier,		ASQ.csp.go(..)		takes	a	generator	--	in
go/core.async	terms,	it's	known	as	a	goroutine	--	and	adapts	it	to	use	with		ASQ#runner(..)	
by	returning	a	new	generator.

Instead	of	being	passed	a		token	,	your	goroutine	receives	an	initially	created	channel	(	ch	
below)	that	all	goroutines	in	this	run	will	share.	You	can	create	more	channels	(which	is	often
quite	helpful!)	with		ASQ.csp.chan(..)	.

In	CSP,	we	model	all	asynchrony	in	terms	of	blocking	on	channel	messages,	rather	than
blocking	waiting	for	a	Promise/sequence/thunk	to	complete.

So,	instead	of		yield	ing	the	Promise	returned	from		request(..)	,		request(..)		should
return	a	channel	that	you		take(..)		a	value	from.	In	other	words,	a	single-value	channel	is
roughly	equivalent	in	this	context/usage	to	a	Promise/sequence.

Let's	first	make	a	channel-aware	version	of		request(..)	:

function	request(url)	{

				var	ch	=	ASQ.csp.channel();

				ajax(	url	).then(	function(content){

								//	`putAsync(..)`	is	a	version	of	`put(..)`	that

								//	can	be	used	outside	of	a	generator.	It	returns

								//	a	promise	for	the	operation's	completion.	We

								//	don't	use	that	promise	here,	but	we	could	if

								//	we	needed	to	be	notified	when	the	value	had

								//	been	`take(..)`n.

								ASQ.csp.putAsync(	ch,	content	);

				}	);

				return	ch;

}

From	Chapter	3,	"promisory"	is	a	Promise-producing	utility,	"thunkory"	from	Chapter	4	is	a
thunk-producing	utility,	and	finally,	in	Appendix	A	we	invented	"sequory"	for	a	sequence-
producing	utility.

Naturally,	we	need	to	coin	a	symmetric	term	here	for	a	channel-producing	utility.	So	let's
unsurprisingly	call	it	a	"chanory"	("channel"	+	"factory").	As	an	exercise	for	the	reader,	try
your	hand	at	defining	a		channelify(..)		utility	similar	to		Promise.wrap(..)	/	promisify(..)	
(Chapter	3),		thunkify(..)		(Chapter	4),	and		ASQ.wrap(..)		(Appendix	A).
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Now	consider	the	concurrent	Ajax	example	using	asyquence-flavored	CSP:

ASQ()

.runner(

				ASQ.csp.go(	function*(ch){

								yield	ASQ.csp.put(	ch,	"http://some.url.2"	);

								var	url1	=	yield	ASQ.csp.take(	ch	);

								//	"http://some.url.1"

								var	res1	=	yield	ASQ.csp.take(	request(	url1	)	);

								yield	ASQ.csp.put(	ch,	res1	);

				}	),

				ASQ.csp.go(	function*(ch){

								var	url2	=	yield	ASQ.csp.take(	ch	);

								//	"http://some.url.2"

								yield	ASQ.csp.put(	ch,	"http://some.url.1"	);

								var	res2	=	yield	ASQ.csp.take(	request(	url2	)	);

								var	res1	=	yield	ASQ.csp.take(	ch	);

								//	pass	along	results	to	next	sequence	step

								ch.buffer_size	=	2;

								ASQ.csp.put(	ch,	res1	);

								ASQ.csp.put(	ch,	res2	);

				}	)

)

.val(	function(res1,res2){

				//	`res1`	comes	from	"http://some.url.1"

				//	`res2`	comes	from	"http://some.url.2"

}	);

The	message	passing	that	trades	the	URL	strings	between	the	two	goroutines	is	pretty
straightforward.	The	first	goroutine	makes	an	Ajax	request	to	the	first	URL,	and	that
response	is	put	onto	the		ch		channel.	The	second	goroutine	makes	an	Ajax	request	to	the
second	URL,	then	gets	the	first	response		res1		off	the		ch		channel.	At	that	point,	both
responses		res1		and		res2		are	completed	and	ready.

If	there	are	any	remaining	values	in	the		ch		channel	at	the	end	of	the	goroutine	run,	they	will
be	passed	along	to	the	next	step	in	the	sequence.	So,	to	pass	out	message(s)	from	the	final
goroutine,		put(..)		them	into		ch	.	As	shown,	to	avoid	the	blocking	of	those	final		put(..)	s,
we	switch		ch		into	buffering	mode	by	setting	its		buffer_size		to		2		(default:		0	).

Note:	See	many	more	examples	of	using	asynquence-flavored	CSP	here
(https://gist.github.com/getify/e0d04f1f5aa24b1947ae).
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Review
Promises	and	generators	provide	the	foundational	building	blocks	upon	which	we	can	build
much	more	sophisticated	and	capable	asynchrony.

asynquence	has	utilities	for	implementing	iterable	sequences,	reactive	sequences	(aka
"Observables"),	concurrent	coroutines,	and	even	CSP	goroutines.

Those	patterns,	combined	with	the	continuation-callback	and	Promise	capabilities,	gives
asynquence	a	powerful	mix	of	different	asynchronous	functionalities,	all	integrated	in	one
clean	async	flow	control	abstraction:	the	sequence.
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Chapter	1:	ES?	Now	&	Future
Before	you	dive	into	this	book,	you	should	have	a	solid	working	proficiency	over	JavaScript
up	to	the	most	recent	standard	(at	the	time	of	this	writing),	which	is	commonly	called	ES5
(technically	ES	5.1).	Here,	we	plan	to	talk	squarely	about	the	upcoming	ES6,	as	well	as	cast
our	vision	beyond	to	understand	how	JS	will	evolve	moving	forward.

If	you	are	still	looking	for	confidence	with	JavaScript,	I	highly	recommend	you	read	the	other
titles	in	this	series	first:

Up	&	Going:	Are	you	new	to	programming	and	JS?	This	is	the	roadmap	you	need	to
consult	as	you	start	your	learning	journey.
Scope	&	Closures:	Did	you	know	that	JS	lexical	scope	is	based	on	compiler	(not
interpreter!)	semantics?	Can	you	explain	how	closures	are	a	direct	result	of	lexical
scope	and	functions	as	values?
this	&	Object	Prototypes:	Can	you	recite	the	four	simple	rules	for	how		this		is	bound?
Have	you	been	muddling	through	fake	"classes"	in	JS	instead	of	adopting	the	simpler
"behavior	delegation"	design	pattern?	Ever	heard	of	objects	linked	to	other	objects
(OLOO)?
Types	&	Grammar:	Do	you	know	the	built-in	types	in	JS,	and	more	importantly,	do	you
know	how	to	properly	and	safely	use	coercion	between	types?	How	comfortable	are	you
with	the	nuances	of	JS	grammar/syntax?
Async	&	Performance:	Are	you	still	using	callbacks	to	manage	your	asynchrony?	Can
you	explain	what	a	promise	is	and	why/how	it	solves	"callback	hell"?	Do	you	know	how
to	use	generators	to	improve	the	legibility	of	async	code?	What	exactly	constitutes
mature	optimization	of	JS	programs	and	individual	operations?

If	you've	already	read	all	those	titles	and	you	feel	pretty	comfortable	with	the	topics	they
cover,	it's	time	we	dive	into	the	evolution	of	JS	to	explore	all	the	changes	coming	not	only
soon	but	farther	over	the	horizon.

Unlike	ES5,	ES6	is	not	just	a	modest	set	of	new	APIs	added	to	the	language.	It	incorporates
a	whole	slew	of	new	syntactic	forms,	some	of	which	may	take	quite	a	bit	of	getting	used	to.
There's	also	a	variety	of	new	organization	forms	and	new	API	helpers	for	various	data	types.

ES6	is	a	radical	jump	forward	for	the	language.	Even	if	you	think	you	know	JS	in	ES5,	ES6
is	full	of	new	stuff	you	don't	know	yet,	so	get	ready!	This	book	explores	all	the	major	themes
of	ES6	that	you	need	to	get	up	to	speed	on,	and	even	gives	you	a	glimpse	of	future	features
coming	down	the	track	that	you	should	be	aware	of.
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Warning:	All	code	in	this	book	assumes	an	ES6+	environment.	At	the	time	of	this	writing,
ES6	support	varies	quite	a	bit	in	browsers	and	JS	environments	(like	Node.js),	so	your
mileage	may	vary.

Versioning
The	JavaScript	standard	is	referred	to	officially	as	"ECMAScript"	(abbreviated	"ES"),	and	up
until	just	recently	has	been	versioned	entirely	by	ordinal	number	(i.e.,	"5"	for	"5th	edition").

The	earliest	versions,	ES1	and	ES2,	were	not	widely	known	or	implemented.	ES3	was	the
first	widespread	baseline	for	JavaScript,	and	constitutes	the	JavaScript	standard	for
browsers	like	IE6-8	and	older	Android	2.x	mobile	browsers.	For	political	reasons	beyond
what	we'll	cover	here,	the	ill-fated	ES4	never	came	about.

In	2009,	ES5	was	officially	finalized	(later	ES5.1	in	2011),	and	settled	as	the	widespread
standard	for	JS	for	the	modern	revolution	and	explosion	of	browsers,	such	as	Firefox,
Chrome,	Opera,	Safari,	and	many	others.

Leading	up	to	the	expected	next	version	of	JS	(slipped	from	2013	to	2014	and	then	2015),
the	obvious	and	common	label	in	discourse	has	been	ES6.

However,	late	into	the	ES6	specification	timeline,	suggestions	have	surfaced	that	versioning
may	in	the	future	switch	to	a	year-based	schema,	such	as	ES2016	(aka	ES7)	to	refer	to
whatever	version	of	the	specification	is	finalized	before	the	end	of	2016.	Some	disagree,	but
ES6	will	likely	maintain	its	dominant	mindshare	over	the	late-change	substitute	ES2015.
However,	ES2016	may	in	fact	signal	the	new	year-based	schema.

It	has	also	been	observed	that	the	pace	of	JS	evolution	is	much	faster	even	than	single-year
versioning.	As	soon	as	an	idea	begins	to	progress	through	standards	discussions,	browsers
start	prototyping	the	feature,	and	early	adopters	start	experimenting	with	the	code.

Usually	well	before	there's	an	official	stamp	of	approval,	a	feature	is	de	facto	standardized
by	virtue	of	this	early	engine/tooling	prototyping.	So	it's	also	valid	to	consider	the	future	of	JS
versioning	to	be	per-feature	rather	than	per-arbitrary-collection-of-major-features	(as	it	is
now)	or	even	per-year	(as	it	may	become).

The	takeaway	is	that	the	version	labels	stop	being	as	important,	and	JavaScript	starts	to	be
seen	more	as	an	evergreen,	living	standard.	The	best	way	to	cope	with	this	is	to	stop
thinking	about	your	code	base	as	being	"ES6-based,"	for	instance,	and	instead	consider	it
feature	by	feature	for	support.

Transpiling
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Made	even	worse	by	the	rapid	evolution	of	features,	a	problem	arises	for	JS	developers	who
at	once	may	both	strongly	desire	to	use	new	features	while	at	the	same	time	being	slapped
with	the	reality	that	their	sites/apps	may	need	to	support	older	browsers	without	such
support.

The	way	ES5	appears	to	have	played	out	in	the	broader	industry,	the	typical	mindset	was
that	code	bases	waited	to	adopt	ES5	until	most	if	not	all	pre-ES5	environments	had	fallen
out	of	their	support	spectrum.	As	a	result,	many	are	just	recently	(at	the	time	of	this	writing)
starting	to	adopt	things	like		strict		mode,	which	landed	in	ES5	over	five	years	ago.

It's	widely	considered	to	be	a	harmful	approach	for	the	future	of	the	JS	ecosystem	to	wait
around	and	trail	the	specification	by	so	many	years.	All	those	responsible	for	evolving	the
language	desire	for	developers	to	begin	basing	their	code	on	the	new	features	and	patterns
as	soon	as	they	stabilize	in	specification	form	and	browsers	have	a	chance	to	implement
them.

So	how	do	we	resolve	this	seeming	contradiction?	The	answer	is	tooling,	specifically	a
technique	called	transpiling	(transformation	+	compiling).	Roughly,	the	idea	is	to	use	a
special	tool	to	transform	your	ES6	code	into	equivalent	(or	close!)	matches	that	work	in	ES5
environments.

For	example,	consider	shorthand	property	definitions	(see	"Object	Literal	Extensions"	in
Chapter	2).	Here's	the	ES6	form:

var	foo	=	[1,2,3];

var	obj	=	{

				foo								//	means	`foo:	foo`

};

obj.foo;				//	[1,2,3]

But	(roughly)	here's	how	that	transpiles:

var	foo	=	[1,2,3];

var	obj	=	{

				foo:	foo

};

obj.foo;				//	[1,2,3]

This	is	a	minor	but	pleasant	transformation	that	lets	us	shorten	the		foo:	foo		in	an	object
literal	declaration	to	just		foo	,	if	the	names	are	the	same.
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Transpilers	perform	these	transformations	for	you,	usually	in	a	build	workflow	step	similar	to
how	you	perform	linting,	minification,	and	other	similar	operations.

Shims/Polyfills

Not	all	new	ES6	features	need	a	transpiler.	Polyfills	(aka	shims)	are	a	pattern	for	defining
equivalent	behavior	from	a	newer	environment	into	an	older	environment,	when	possible.
Syntax	cannot	be	polyfilled,	but	APIs	often	can	be.

For	example,		Object.is(..)		is	a	new	utility	for	checking	strict	equality	of	two	values	but
without	the	nuanced	exceptions	that		===		has	for		NaN		and		-0		values.	The	polyfill	for
	Object.is(..)		is	pretty	easy:

if	(!Object.is)	{

				Object.is	=	function(v1,	v2)	{

								//	test	for	`-0`

								if	(v1	===	0	&&	v2	===	0)	{

												return	1	/	v1	===	1	/	v2;

								}

								//	test	for	`NaN`

								if	(v1	!==	v1)	{

												return	v2	!==	v2;

								}

								//	everything	else

								return	v1	===	v2;

				};

}

Tip:	Pay	attention	to	the	outer		if		statement	guard	wrapped	around	the	polyfill.	This	is	an
important	detail,	which	means	the	snippet	only	defines	its	fallback	behavior	for	older
environments	where	the	API	in	question	isn't	already	defined;	it	would	be	very	rare	that	you'd
want	to	overwrite	an	existing	API.

There's	a	great	collection	of	ES6	shims	called	"ES6	Shim"	(https://github.com/paulmillr/es6-
shim/)	that	you	should	definitely	adopt	as	a	standard	part	of	any	new	JS	project!

It	is	assumed	that	JS	will	continue	to	evolve	constantly,	with	browsers	rolling	out	support	for
features	continually	rather	than	in	large	chunks.	So	the	best	strategy	for	keeping	updated	as
it	evolves	is	to	just	introduce	polyfill	shims	into	your	code	base,	and	a	transpiler	step	into
your	build	workflow,	right	now	and	get	used	to	that	new	reality.

If	you	decide	to	keep	the	status	quo	and	just	wait	around	for	all	browsers	without	a	feature
supported	to	go	away	before	you	start	using	the	feature,	you're	always	going	to	be	way
behind.	You'll	sadly	be	missing	out	on	all	the	innovations	designed	to	make	writing
JavaScript	more	effective,	efficient,	and	robust.
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Review
ES6	(some	may	try	to	call	it	ES2015)	is	just	landing	as	of	the	time	of	this	writing,	and	it	has
lots	of	new	stuff	you	need	to	learn!

But	it's	even	more	important	to	shift	your	mindset	to	align	with	the	new	way	that	JavaScript	is
going	to	evolve.	It's	not	just	waiting	around	for	years	for	some	official	document	to	get	a	vote
of	approval,	as	many	have	done	in	the	past.

Now,	JavaScript	features	land	in	browsers	as	they	become	ready,	and	it's	up	to	you	whether
you'll	get	on	the	train	early	or	whether	you'll	be	playing	costly	catch-up	games	years	from
now.

Whatever	labels	that	future	JavaScript	adopts,	it's	going	to	move	a	lot	quicker	than	it	ever
has	before.	Transpilers	and	shims/polyfills	are	important	tools	to	keep	you	on	the	forefront	of
where	the	language	is	headed.

If	there's	any	narrative	important	to	understand	about	the	new	reality	for	JavaScript,	it's	that
all	JS	developers	are	strongly	implored	to	move	from	the	trailing	edge	of	the	curve	to	the
leading	edge.	And	learning	ES6	is	where	that	all	starts!
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Chapter	2:	Syntax
If	you've	been	writing	JS	for	any	length	of	time,	odds	are	the	syntax	is	pretty	familiar	to	you.
There	are	certainly	many	quirks,	but	overall	it's	a	fairly	reasonable	and	straightforward
syntax	that	draws	many	similarities	from	other	languages.

However,	ES6	adds	quite	a	few	new	syntactic	forms	that	take	some	getting	used	to.	In	this
chapter,	we'll	tour	through	them	to	find	out	what's	in	store.

Tip:	At	the	time	of	this	writing,	some	of	the	features	discussed	in	this	book	have	been
implemented	in	various	browsers	(Firefox,	Chrome,	etc.),	but	some	have	only	been	partially
implemented	and	many	others	have	not	been	implemented	at	all.	Your	experience	may	be
mixed	trying	these	examples	directly.	If	so,	try	them	out	with	transpilers,	as	most	of	these
features	are	covered	by	those	tools.	ES6Fiddle	(http://www.es6fiddle.net/)	is	a	great,	easy-
to-use	playground	for	trying	out	ES6,	as	is	the	online	REPL	for	the	Babel	transpiler
(http://babeljs.io/repl/).

Block-Scoped	Declarations
You're	probably	aware	that	the	fundamental	unit	of	variable	scoping	in	JavaScript	has
always	been	the		function	.	If	you	needed	to	create	a	block	of	scope,	the	most	prevalent
way	to	do	so	other	than	a	regular	function	declaration	was	the	immediately	invoked	function
expression	(IIFE).	For	example:

var	a	=	2;

(function	IIFE(){

				var	a	=	3;

				console.log(	a	);				//	3

})();

console.log(	a	);								//	2

	let		Declarations

However,	we	can	now	create	declarations	that	are	bound	to	any	block,	called
(unsurprisingly)	block	scoping.	This	means	all	we	need	is	a	pair	of		{	..	}		to	create	a
scope.	Instead	of	using		var	,	which	always	declares	variables	attached	to	the	enclosing
function	(or	global,	if	top	level)	scope,	use		let	:
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var	a	=	2;

{

				let	a	=	3;

				console.log(	a	);				//	3

}

console.log(	a	);								//	2

It's	not	very	common	or	idiomatic	thus	far	in	JS	to	use	a	standalone		{	..	}		block,	but	it's
always	been	valid.	And	developers	from	other	languages	that	have	block	scoping	will	readily
recognize	that	pattern.

I	believe	this	is	the	best	way	to	create	block-scoped	variables,	with	a	dedicated		{	..	}	
block.	Moreover,	you	should	always	put	the		let		declaration(s)	at	the	very	top	of	that	block.
If	you	have	more	than	one	to	declare,	I'd	recommend	using	just	one		let	.

Stylistically,	I	even	prefer	to	put	the		let		on	the	same	line	as	the	opening		{	,	to	make	it
clearer	that	this	block	is	only	for	the	purpose	of	declaring	the	scope	for	those	variables.

{				let	a	=	2,	b,	c;

				//	..

}

Now,	that's	going	to	look	strange	and	it's	not	likely	going	to	match	the	recommendations
given	in	most	other	ES6	literature.	But	I	have	reasons	for	my	madness.

There's	another	experimental	(not	standardized)	form	of	the		let		declaration	called	the
	let	-block,	which	looks	like:

let	(a	=	2,	b,	c)	{

				//	..

}

That	form	is	what	I	call	explicit	block	scoping,	whereas	the		let	..		declaration	form	that
mirrors		var		is	more	implicit,	as	it	kind	of	hijacks	whatever		{	..	}		pair	it's	found	in.
Generally	developers	find	explicit	mechanisms	a	bit	more	preferable	than	implicit
mechanisms,	and	I	claim	this	is	one	of	those	cases.

If	you	compare	the	previous	two	snippet	forms,	they're	very	similar,	and	in	my	opinion	both
qualify	stylistically	as	explicit	block	scoping.	Unfortunately,	the		let	(..)	{	..	}		form,	the
most	explicit	of	the	options,	was	not	adopted	in	ES6.	That	may	be	revisited	post-ES6,	but	for
now	the	former	option	is	our	best	bet,	I	think.
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To	reinforce	the	implicit	nature	of		let	..		declarations,	consider	these	usages:

let	a	=	2;

if	(a	>	1)	{

				let	b	=	a	*	3;

				console.log(	b	);								//	6

				for	(let	i	=	a;	i	<=	b;	i++)	{

								let	j	=	i	+	10;

								console.log(	j	);

				}

				//	12	13	14	15	16

				let	c	=	a	+	b;

				console.log(	c	);								//	8

}

Quick	quiz	without	looking	back	at	that	snippet:	which	variable(s)	exist	only	inside	the		if	
statement,	and	which	variable(s)	exist	only	inside	the		for		loop?

The	answers:	the		if		statement	contains		b		and		c		block-scoped	variables,	and	the		for	
loop	contains		i		and		j		block-scoped	variables.

Did	you	have	to	think	about	it	for	a	moment?	Does	it	surprise	you	that		i		isn't	added	to	the
enclosing		if		statement	scope?	That	mental	pause	and	questioning	--	I	call	it	a	"mental	tax"
--	comes	from	the	fact	that	this		let		mechanism	is	not	only	new	to	us,	but	it's	also	implicit.

There's	also	hazard	in	the		let	c	=	..		declaration	appearing	so	far	down	in	the	scope.
Unlike	traditional		var	-declared	variables,	which	are	attached	to	the	entire	enclosing
function	scope	regardless	of	where	they	appear,		let		declarations	attach	to	the	block	scope
but	are	not	initialized	until	they	appear	in	the	block.

Accessing	a		let	-declared	variable	earlier	than	its		let	..		declaration/initialization	causes
an	error,	whereas	with		var		declarations	the	ordering	doesn't	matter	(except	stylistically).

Consider:

{

				console.log(	a	);				//	undefined

				console.log(	b	);				//	ReferenceError!

				var	a;

				let	b;

}
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Warning:	This		ReferenceError		from	accessing	too-early		let	-declared	references	is
technically	called	a	Temporal	Dead	Zone	(TDZ)	error	--	you're	accessing	a	variable	that's
been	declared	but	not	yet	initialized.	This	will	not	be	the	only	time	we	see	TDZ	errors	--	they
crop	up	in	several	places	in	ES6.	Also,	note	that	"initialized"	doesn't	require	explicitly
assigning	a	value	in	your	code,	as		let	b;		is	totally	valid.	A	variable	that's	not	given	an
assignment	at	declaration	time	is	assumed	to	have	been	assigned	the		undefined		value,	so
	let	b;		is	the	same	as		let	b	=	undefined;	.	Explicit	assignment	or	not,	you	cannot	access
	b		until	the		let	b		statement	is	run.

One	last	gotcha:		typeof		behaves	differently	with	TDZ	variables	than	it	does	with
undeclared	(or	declared!)	variables.	For	example:

{

				//	`a`	is	not	declared

				if	(typeof	a	===	"undefined")	{

								console.log(	"cool"	);

				}

				//	`b`	is	declared,	but	in	its	TDZ

				if	(typeof	b	===	"undefined")	{								//	ReferenceError!

								//	..

				}

				//	..

				let	b;

}

The		a		is	not	declared,	so		typeof		is	the	only	safe	way	to	check	for	its	existence	or	not.	But
	typeof	b		throws	the	TDZ	error	because	farther	down	in	the	code	there	happens	to	be	a
	let	b		declaration.	Oops.

Now	it	should	be	clearer	why	I	insist	that		let		declarations	should	all	be	at	the	top	of	their
scope.	That	totally	avoids	the	accidental	errors	of	accessing	too	early.	It	also	makes	it	more
explicit	when	you	look	at	the	start	of	a	block,	any	block,	what	variables	it	contains.

Your	blocks	(	if		statements,		while		loops,	etc.)	don't	have	to	share	their	original	behavior
with	scoping	behavior.

This	explicitness	on	your	part,	which	is	up	to	you	to	maintain	with	discipline,	will	save	you
lots	of	refactor	headaches	and	footguns	down	the	line.

Note:	For	more	information	on		let		and	block	scoping,	see	Chapter	3	of	the	Scope	&
Closures	title	of	this	series.
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	let		+		for	

The	only	exception	I'd	make	to	the	preference	for	the	explicit	form	of		let		declaration
blocking	is	a		let		that	appears	in	the	header	of	a		for		loop.	The	reason	may	seem
nuanced,	but	I	believe	it	to	be	one	of	the	more	important	ES6	features.

Consider:

var	funcs	=	[];

for	(let	i	=	0;	i	<	5;	i++)	{

				funcs.push(	function(){

								console.log(	i	);

				}	);

}

funcs[3]();								//	3

The		let	i		in	the		for		header	declares	an		i		not	just	for	the		for		loop	itself,	but	it
redeclares	a	new		i		for	each	iteration	of	the	loop.	That	means	that	closures	created	inside
the	loop	iteration	close	over	those	per-iteration	variables	the	way	you'd	expect.

If	you	tried	that	same	snippet	but	with		var	i		in	the		for		loop	header,	you'd	get		5		instead
of		3	,	because	there'd	only	be	one		i		in	the	outer	scope	that	was	closed	over,	instead	of	a
new		i		for	each	iteration's	function	to	close	over.

You	could	also	have	accomplished	the	same	thing	slightly	more	verbosely:

var	funcs	=	[];

for	(var	i	=	0;	i	<	5;	i++)	{

				let	j	=	i;

				funcs.push(	function(){

								console.log(	j	);

				}	);

}

funcs[3]();								//	3

Here,	we	forcibly	create	a	new		j		for	each	iteration,	and	then	the	closure	works	the	same
way.	I	prefer	the	former	approach;	that	extra	special	capability	is	why	I	endorse	the		for	(let
..	)	..		form.	It	could	be	argued	it's	somewhat	more	implicit,	but	it's	explicit	enough,	and
useful	enough,	for	my	tastes.

	let		also	works	the	same	way	with		for..in		and		for..of		loops	(see	"	for..of		Loops").
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	const		Declarations

There's	one	other	form	of	block-scoped	declaration	to	consider:	the		const	,	which	creates
constants.

What	exactly	is	a	constant?	It's	a	variable	that's	read-only	after	its	initial	value	is	set.
Consider:

{

				const	a	=	2;

				console.log(	a	);				//	2

				a	=	3;																//	TypeError!

}

You	are	not	allowed	to	change	the	value	the	variable	holds	once	it's	been	set,	at	declaration
time.	A		const		declaration	must	have	an	explicit	initialization.	If	you	wanted	a	constant	with
the		undefined		value,	you'd	have	to	declare		const	a	=	undefined		to	get	it.

Constants	are	not	a	restriction	on	the	value	itself,	but	on	the	variable's	assignment	of	that
value.	In	other	words,	the	value	is	not	frozen	or	immutable	because	of		const	,	just	the
assignment	of	it.	If	the	value	is	complex,	such	as	an	object	or	array,	the	contents	of	the	value
can	still	be	modified:

{

				const	a	=	[1,2,3];

				a.push(	4	);

				console.log(	a	);								//	[1,2,3,4]

				a	=	42;																				//	TypeError!

}

The		a		variable	doesn't	actually	hold	a	constant	array;	rather,	it	holds	a	constant	reference
to	the	array.	The	array	itself	is	freely	mutable.

Warning:	Assigning	an	object	or	array	as	a	constant	means	that	value	will	not	be	able	to	be
garbage	collected	until	that	constant's	lexical	scope	goes	away,	as	the	reference	to	the	value
can	never	be	unset.	That	may	be	desirable,	but	be	careful	if	it's	not	your	intent!

Essentially,		const		declarations	enforce	what	we've	stylistically	signaled	with	our	code	for
years,	where	we	declared	a	variable	name	of	all	uppercase	letters	and	assigned	it	some
literal	value	that	we	took	care	never	to	change.	There's	no	enforcement	on	a		var	
assignment,	but	there	is	now	with	a		const		assignment,	which	can	help	you	catch
unintended	changes.
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	const		can	be	used	with	variable	declarations	of		for	,		for..in	,	and		for..of		loops	(see
"	for..of		Loops").	However,	an	error	will	be	thrown	if	there's	any	attempt	to	reassign,	such
as	the	typical		i++		clause	of	a		for		loop.

	const		Or	Not

There's	some	rumored	assumptions	that	a		const		could	be	more	optimizable	by	the	JS
engine	in	certain	scenarios	than	a		let		or		var		would	be.	Theoretically,	the	engine	more
easily	knows	the	variable's	value/type	will	never	change,	so	it	can	eliminate	some	possible
tracking.

Whether		const		really	helps	here	or	this	is	just	our	own	fantasies	and	intuitions,	the	much
more	important	decision	to	make	is	if	you	intend	constant	behavior	or	not.	Remember:	one
of	the	most	important	roles	for	source	code	is	to	communicate	clearly,	not	only	to	you,	but
your	future	self	and	other	code	collaborators,	what	your	intent	is.

Some	developers	prefer	to	start	out	every	variable	declaration	as	a		const		and	then	relax	a
declaration	back	to	a		let		if	it	becomes	necessary	for	its	value	to	change	in	the	code.	This
is	an	interesting	perspective,	but	it's	not	clear	that	it	genuinely	improves	the	readability	or
reason-ability	of	code.

It's	not	really	a	protection,	as	many	believe,	because	any	later	developer	who	wants	to
change	a	value	of	a		const		can	just	blindly	change		const		to		let		on	the	declaration.	At
best,	it	protects	accidental	change.	But	again,	other	than	our	intuitions	and	sensibilities,
there	doesn't	appear	to	be	objective	and	clear	measure	of	what	constitutes	"accidents"	or
prevention	thereof.	Similar	mindsets	exist	around	type	enforcement.

My	advice:	to	avoid	potentially	confusing	code,	only	use		const		for	variables	that	you're
intentionally	and	obviously	signaling	will	not	change.	In	other	words,	don't	rely	on		const		for
code	behavior,	but	instead	use	it	as	a	tool	for	signaling	intent,	when	intent	can	be	signaled
clearly.

Block-scoped	Functions

Starting	with	ES6,	function	declarations	that	occur	inside	of	blocks	are	now	specified	to	be
scoped	to	that	block.	Prior	to	ES6,	the	specification	did	not	call	for	this,	but	many
implementations	did	it	anyway.	So	now	the	specification	meets	reality.

Consider:
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{

				foo();																				//	works!

				function	foo()	{

								//	..

				}

}

foo();																								//	ReferenceError

The		foo()		function	is	declared	inside	the		{	..	}		block,	and	as	of	ES6	is	block-scoped
there.	So	it's	not	available	outside	that	block.	But	also	note	that	it	is	"hoisted"	within	the
block,	as	opposed	to		let		declarations,	which	suffer	the	TDZ	error	trap	mentioned	earlier.

Block-scoping	of	function	declarations	could	be	a	problem	if	you've	ever	written	code	like
this	before,	and	relied	on	the	old	legacy	non-block-scoped	behavior:

if	(something)	{

				function	foo()	{

								console.log(	"1"	);

				}

}

else	{

				function	foo()	{

								console.log(	"2"	);

				}

}

foo();								//	??

In	pre-ES6	environments,		foo()		would	print		"2"		regardless	of	the	value	of		something	,
because	both	function	declarations	were	hoisted	out	of	the	blocks,	and	the	second	one
always	wins.

In	ES6,	that	last	line	throws	a		ReferenceError	.

Spread/Rest
ES6	introduces	a	new		...		operator	that's	typically	referred	to	as	the	spread	or	rest
operator,	depending	on	where/how	it's	used.	Let's	take	a	look:
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function	foo(x,y,z)	{

				console.log(	x,	y,	z	);

}

foo(	...[1,2,3]	);																//	1	2	3

When		...		is	used	in	front	of	an	array	(actually,	any	iterable,	which	we	cover	in	Chapter	3),
it	acts	to	"spread"	it	out	into	its	individual	values.

You'll	typically	see	that	usage	as	is	shown	in	that	previous	snippet,	when	spreading	out	an
array	as	a	set	of	arguments	to	a	function	call.	In	this	usage,		...		acts	to	give	us	a	simpler
syntactic	replacement	for	the		apply(..)		method,	which	we	would	typically	have	used	pre-
ES6	as:

foo.apply(	null,	[1,2,3]	);								//	1	2	3

But		...		can	be	used	to	spread	out/expand	a	value	in	other	contexts	as	well,	such	as	inside
another	array	declaration:

var	a	=	[2,3,4];

var	b	=	[	1,	...a,	5	];

console.log(	b	);																				//	[1,2,3,4,5]

In	this	usage,		...		is	basically	replacing		concat(..)	,	as	it	behaves	like		[1].concat(	a,	[5]
)		here.

The	other	common	usage	of		...		can	be	seen	as	essentially	the	opposite;	instead	of
spreading	a	value	out,	the		...		gathers	a	set	of	values	together	into	an	array.	Consider:

function	foo(x,	y,	...z)	{

				console.log(	x,	y,	z	);

}

foo(	1,	2,	3,	4,	5	);												//	1	2	[3,4,5]

The		...z		in	this	snippet	is	essentially	saying:	"gather	the	rest	of	the	arguments	(if	any)	into
an	array	called		z	."	Because		x		was	assigned		1	,	and		y		was	assigned		2	,	the	rest	of
the	arguments		3	,		4	,	and		5		were	gathered	into		z	.

Of	course,	if	you	don't	have	any	named	parameters,	the		...		gathers	all	arguments:
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function	foo(...args)	{

				console.log(	args	);

}

foo(	1,	2,	3,	4,	5);												//	[1,2,3,4,5]

Note:	The		...args		in	the		foo(..)		function	declaration	is	usually	called	"rest	parameters,"
because	you're	collecting	the	rest	of	the	parameters.	I	prefer	"gather,"	because	it's	more
descriptive	of	what	it	does	rather	than	what	it	contains.

The	best	part	about	this	usage	is	that	it	provides	a	very	solid	alternative	to	using	the	long-
since-deprecated		arguments		array	--	actually,	it's	not	really	an	array,	but	an	array-like	object.
Because		args		(or	whatever	you	call	it	--	a	lot	of	people	prefer		r		or		rest	)	is	a	real	array,
we	can	get	rid	of	lots	of	silly	pre-ES6	tricks	we	jumped	through	to	make		arguments		into
something	we	can	treat	as	an	array.

Consider:
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//	doing	things	the	new	ES6	way

function	foo(...args)	{

				//	`args`	is	already	a	real	array

				//	discard	first	element	in	`args`

				args.shift();

				//	pass	along	all	of	`args`	as	arguments

				//	to	`console.log(..)`

				console.log(	...args	);

}

//	doing	things	the	old-school	pre-ES6	way

function	bar()	{

				//	turn	`arguments`	into	a	real	array

				var	args	=	Array.prototype.slice.call(	arguments	);

				//	add	some	elements	on	the	end

				args.push(	4,	5	);

				//	filter	out	odd	numbers

				args	=	args.filter(	function(v){

								return	v	%	2	==	0;

				}	);

				//	pass	along	all	of	`args`	as	arguments

				//	to	`foo(..)`

				foo.apply(	null,	args	);

}

bar(	0,	1,	2,	3	);																				//	2	4

The		...args		in	the		foo(..)		function	declaration	gathers	arguments,	and	the		...args		in
the		console.log(..)		call	spreads	them	out.	That's	a	good	illustration	of	the	symmetric	but
opposite	uses	of	the		...		operator.

Besides	the		...		usage	in	a	function	declaration,	there's	another	case	where		...		is	used
for	gathering	values,	and	we'll	look	at	it	in	the	"Too	Many,	Too	Few,	Just	Enough"	section
later	in	this	chapter.

Default	Parameter	Values
Perhaps	one	of	the	most	common	idioms	in	JavaScript	relates	to	setting	a	default	value	for	a
function	parameter.	The	way	we've	done	this	for	years	should	look	quite	familiar:

Syntax

730



function	foo(x,y)	{

				x	=	x	||	11;

				y	=	y	||	31;

				console.log(	x	+	y	);

}

foo();																//	42

foo(	5,	6	);								//	11

foo(	5	);												//	36

foo(	null,	6	);								//	17

Of	course,	if	you've	used	this	pattern	before,	you	know	that	it's	both	helpful	and	a	little	bit
dangerous,	if	for	example	you	need	to	be	able	to	pass	in	what	would	otherwise	be
considered	a	falsy	value	for	one	of	the	parameters.	Consider:

foo(	0,	42	);								//	53	<--	Oops,	not	42

Why?	Because	the		0		is	falsy,	and	so	the		x	||	11		results	in		11	,	not	the	directly	passed	in
	0	.

To	fix	this	gotcha,	some	people	will	instead	write	the	check	more	verbosely	like	this:

function	foo(x,y)	{

				x	=	(x	!==	undefined)	?	x	:	11;

				y	=	(y	!==	undefined)	?	y	:	31;

				console.log(	x	+	y	);

}

foo(	0,	42	);												//	42

foo(	undefined,	6	);				//	17

Of	course,	that	means	that	any	value	except		undefined		can	be	directly	passed	in.	However,
	undefined		will	be	assumed	to	signal,	"I	didn't	pass	this	in."	That	works	great	unless	you
actually	need	to	be	able	to	pass		undefined		in.

In	that	case,	you	could	test	to	see	if	the	argument	is	actually	omitted,	by	it	actually	not	being
present	in	the		arguments		array,	perhaps	like	this:
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function	foo(x,y)	{

				x	=	(0	in	arguments)	?	x	:	11;

				y	=	(1	in	arguments)	?	y	:	31;

				console.log(	x	+	y	);

}

foo(	5	);																//	36

foo(	5,	undefined	);				//	NaN

But	how	would	you	omit	the	first		x		argument	without	the	ability	to	pass	in	any	kind	of	value
(not	even		undefined	)	that	signals	"I'm	omitting	this	argument"?

	foo(,5)		is	tempting,	but	it's	invalid	syntax.		foo.apply(null,[,5])		seems	like	it	should	do
the	trick,	but		apply(..)	's	quirks	here	mean	that	the	arguments	are	treated	as
	[undefined,5]	,	which	of	course	doesn't	omit.

If	you	investigate	further,	you'll	find	you	can	only	omit	arguments	on	the	end	(i.e.,	righthand
side)	by	simply	passing	fewer	arguments	than	"expected,"	but	you	cannot	omit	arguments	in
the	middle	or	at	the	beginning	of	the	arguments	list.	It's	just	not	possible.

There's	a	principle	applied	to	JavaScript's	design	here	that	is	important	to	remember:
	undefined		means	missing.	That	is,	there's	no	difference	between		undefined		and	missing,
at	least	as	far	as	function	arguments	go.

Note:	There	are,	confusingly,	other	places	in	JS	where	this	particular	design	principle
doesn't	apply,	such	as	for	arrays	with	empty	slots.	See	the	Types	&	Grammar	title	of	this
series	for	more	information.

With	all	this	in	mind,	we	can	now	examine	a	nice	helpful	syntax	added	as	of	ES6	to
streamline	the	assignment	of	default	values	to	missing	arguments:

function	foo(x	=	11,	y	=	31)	{

				console.log(	x	+	y	);

}

foo();																				//	42

foo(	5,	6	);												//	11

foo(	0,	42	);												//	42

foo(	5	);																//	36

foo(	5,	undefined	);				//	36	<--	`undefined`	is	missing

foo(	5,	null	);												//	5		<--	null	coerces	to	`0`

foo(	undefined,	6	);				//	17	<--	`undefined`	is	missing

foo(	null,	6	);												//	6		<--	null	coerces	to	`0`
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Notice	the	results	and	how	they	imply	both	subtle	differences	and	similarities	to	the	earlier
approaches.

	x	=	11		in	a	function	declaration	is	more	like		x	!==	undefined	?	x	:	11		than	the	much	more
common	idiom		x	||	11	,	so	you'll	need	to	be	careful	in	converting	your	pre-ES6	code	to	this
ES6	default	parameter	value	syntax.

Note:	A	rest/gather	parameter	(see	"Spread/Rest")	cannot	have	a	default	value.	So,	while
	function	foo(...vals=[1,2,3])	{		might	seem	an	intriguing	capability,	it's	not	valid	syntax.
You'll	need	to	continue	to	apply	that	sort	of	logic	manually	if	necessary.

Default	Value	Expressions

Function	default	values	can	be	more	than	just	simple	values	like		31	;	they	can	be	any	valid
expression,	even	a	function	call:

function	bar(val)	{

				console.log(	"bar	called!"	);

				return	y	+	val;

}

function	foo(x	=	y	+	3,	z	=	bar(	x	))	{

				console.log(	x,	z	);

}

var	y	=	5;

foo();																																//	"bar	called"

																																				//	8	13

foo(	10	);																												//	"bar	called"

																																				//	10	15

y	=	6;

foo(	undefined,	10	);																//	9	10

As	you	can	see,	the	default	value	expressions	are	lazily	evaluated,	meaning	they're	only	run
if	and	when	they're	needed	--	that	is,	when	a	parameter's	argument	is	omitted	or	is
	undefined	.

It's	a	subtle	detail,	but	the	formal	parameters	in	a	function	declaration	are	in	their	own	scope
(think	of	it	as	a	scope	bubble	wrapped	around	just	the		(	..	)		of	the	function	declaration),
not	in	the	function	body's	scope.	That	means	a	reference	to	an	identifier	in	a	default	value
expression	first	matches	the	formal	parameters'	scope	before	looking	to	an	outer	scope.	See
the	Scope	&	Closures	title	of	this	series	for	more	information.

Consider:
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var	w	=	1,	z	=	2;

function	foo(	x	=	w	+	1,	y	=	x	+	1,	z	=	z	+	1	)	{

				console.log(	x,	y,	z	);

}

foo();																				//	ReferenceError

The		w		in	the		w	+	1		default	value	expression	looks	for		w		in	the	formal	parameters'	scope,
but	does	not	find	it,	so	the	outer	scope's		w		is	used.	Next,	The		x		in	the		x	+	1		default
value	expression	finds		x		in	the	formal	parameters'	scope,	and	luckily		x		has	already	been
initialized,	so	the	assignment	to		y		works	fine.

However,	the		z		in		z	+	1		finds		z		as	a	not-yet-initialized-at-that-moment	parameter
variable,	so	it	never	tries	to	find	the		z		from	the	outer	scope.

As	we	mentioned	in	the	"	let		Declarations"	section	earlier	in	this	chapter,	ES6	has	a	TDZ,
which	prevents	a	variable	from	being	accessed	in	its	uninitialized	state.	As	such,	the		z	+	1	
default	value	expression	throws	a	TDZ		ReferenceError		error.

Though	it's	not	necessarily	a	good	idea	for	code	clarity,	a	default	value	expression	can	even
be	an	inline	function	expression	call	--	commonly	referred	to	as	an	immediately	invoked
function	expression	(IIFE):

function	foo(	x	=

				(function(v){	return	v	+	11;	})(	31	)

)	{

				console.log(	x	);

}

foo();												//	42

There	will	very	rarely	be	any	cases	where	an	IIFE	(or	any	other	executed	inline	function
expression)	will	be	appropriate	for	default	value	expressions.	If	you	find	yourself	tempted	to
do	this,	take	a	step	back	and	reevaluate!

Warning:	If	the	IIFE	had	tried	to	access	the		x		identifier	and	had	not	declared	its	own		x	,
this	would	also	have	been	a	TDZ	error,	just	as	discussed	before.

The	default	value	expression	in	the	previous	snippet	is	an	IIFE	in	that	in	the	sense	that	it's	a
function	that's	executed	right	inline,	via		(31)	.	If	we	had	left	that	part	off,	the	default	value
assigned	to		x		would	have	just	been	a	function	reference	itself,	perhaps	like	a	default
callback.	There	will	probably	be	cases	where	that	pattern	will	be	quite	useful,	such	as:
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function	ajax(url,	cb	=	function(){})	{

				//	..

}

ajax(	"http://some.url.1"	);

In	this	case,	we	essentially	want	to	default		cb		to	be	a	no-op	empty	function	call	if	not
otherwise	specified.	The	function	expression	is	just	a	function	reference,	not	a	function	call
itself	(no	invoking		()		on	the	end	of	it),	which	accomplishes	that	goal.

Since	the	early	days	of	JS,	there's	been	a	little-known	but	useful	quirk	available	to	us:
	Function.prototype		is	itself	an	empty	no-op	function.	So,	the	declaration	could	have	been
	cb	=	Function.prototype		and	saved	the	inline	function	expression	creation.

Destructuring
ES6	introduces	a	new	syntactic	feature	called	destructuring,	which	may	be	a	little	less
confusing	if	you	instead	think	of	it	as	structured	assignment.	To	understand	this	meaning,
consider:

function	foo()	{

				return	[1,2,3];

}

var	tmp	=	foo(),

				a	=	tmp[0],	b	=	tmp[1],	c	=	tmp[2];

console.log(	a,	b,	c	);																//	1	2	3

As	you	can	see,	we	created	a	manual	assignment	of	the	values	in	the	array	that		foo()	
returns	to	individual	variables		a	,		b	,	and		c	,	and	to	do	so	we	(unfortunately)	needed	the
	tmp		variable.

Similarly,	we	can	do	the	following	with	objects:
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function	bar()	{

				return	{

								x:	4,

								y:	5,

								z:	6

				};

}

var	tmp	=	bar(),

				x	=	tmp.x,	y	=	tmp.y,	z	=	tmp.z;

console.log(	x,	y,	z	);																//	4	5	6

The		tmp.x		property	value	is	assigned	to	the		x		variable,	and	likewise	for		tmp.y		to		y		and
	tmp.z		to		z	.

Manually	assigning	indexed	values	from	an	array	or	properties	from	an	object	can	be
thought	of	as	structured	assignment.	ES6	adds	a	dedicated	syntax	for	destructuring,
specifically	array	destructuring	and	object	destructuring.	This	syntax	eliminates	the	need	for
the		tmp		variable	in	the	previous	snippets,	making	them	much	cleaner.	Consider:

var	[	a,	b,	c	]	=	foo();

var	{	x:	x,	y:	y,	z:	z	}	=	bar();

console.log(	a,	b,	c	);																//	1	2	3

console.log(	x,	y,	z	);																//	4	5	6

You're	likely	more	accustomed	to	seeing	syntax	like		[a,b,c]		on	the	righthand	side	of	an		=	
assignment,	as	the	value	being	assigned.

Destructuring	symmetrically	flips	that	pattern,	so	that		[a,b,c]		on	the	lefthand	side	of	the		=	
assignment	is	treated	as	a	kind	of	"pattern"	for	decomposing	the	righthand	side	array	value
into	separate	variable	assignments.

Similarly,		{	x:	x,	y:	y,	z:	z	}		specifies	a	"pattern"	to	decompose	the	object	value	from
	bar()		into	separate	variable	assignments.

Object	Property	Assignment	Pattern

Let's	dig	into	that		{	x:	x,	..	}		syntax	from	the	previous	snippet.	If	the	property	name
being	matched	is	the	same	as	the	variable	you	want	to	declare,	you	can	actually	shorten	the
syntax:
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var	{	x,	y,	z	}	=	bar();

console.log(	x,	y,	z	);																//	4	5	6

Pretty	cool,	right?

But	is		{	x,	..	}		leaving	off	the		x:		part	or	leaving	off	the		:	x		part?	We're	actually	leaving
off	the		x:		part	when	we	use	the	shorter	syntax.	That	may	not	seem	like	an	important	detail,
but	you'll	understand	its	importance	in	just	a	moment.

If	you	can	write	the	shorter	form,	why	would	you	ever	write	out	the	longer	form?	Because
that	longer	form	actually	allows	you	to	assign	a	property	to	a	different	variable	name,	which
can	sometimes	be	quite	useful:

var	{	x:	bam,	y:	baz,	z:	bap	}	=	bar();

console.log(	bam,	baz,	bap	);								//	4	5	6

console.log(	x,	y,	z	);																//	ReferenceError

There's	a	subtle	but	super-important	quirk	to	understand	about	this	variation	of	the	object
destructuring	form.	To	illustrate	why	it	can	be	a	gotcha	you	need	to	be	careful	of,	let's
consider	the	"pattern"	of	how	normal	object	literals	are	specified:

var	X	=	10,	Y	=	20;

var	o	=	{	a:	X,	b:	Y	};

console.log(	o.a,	o.b	);												//	10	20

In		{	a:	X,	b:	Y	}	,	we	know	that		a		is	the	object	property,	and		X		is	the	source	value	that
gets	assigned	to	it.	In	other	words,	the	syntactic	pattern	is		target:	source	,	or	more
obviously,		property-alias:	value	.	We	intuitively	understand	this	because	it's	the	same	as
	=		assignment,	where	the	pattern	is		target	=	source	.

However,	when	you	use	object	destructuring	assignment	--	that	is,	putting	the		{	..	}		object
literal-looking	syntax	on	the	lefthand	side	of	the		=		operator	--	you	invert	that		target:
source		pattern.

Recall:

var	{	x:	bam,	y:	baz,	z:	bap	}	=	bar();

Syntax

737



The	syntactic	pattern	here	is		source:	target		(or		value:	variable-alias	).		x:	bam		means
the		x		property	is	the	source	value	and		bam		is	the	target	variable	to	assign	to.	In	other
words,	object	literals	are		target	<--	source	,	and	object	destructuring	assignments	are
	source	-->	target	.	See	how	that's	flipped?

There's	another	way	to	think	about	this	syntax	though,	which	may	help	ease	the	confusion.
Consider:

var	aa	=	10,	bb	=	20;

var	o	=	{	x:	aa,	y:	bb	};

var					{	x:	AA,	y:	BB	}	=	o;

console.log(	AA,	BB	);																//	10	20

In	the		{	x:	aa,	y:	bb	}		line,	the		x		and		y		represent	the	object	properties.	In	the		{	x:
AA,	y:	BB	}		line,	the		x		and	the		y		also	represent	the	object	properties.

Recall	how	earlier	I	asserted	that		{	x,	..	}		was	leaving	off	the		x:		part?	In	those	two
lines,	if	you	erase	the		x:		and		y:		parts	in	that	snippet,	you're	left	only	with		aa,	bb		and
	AA,	BB	,	which	in	effect	--	only	conceptually,	not	actually	--	are	assignments	from		aa		to
	AA		and	from		bb		to		BB	.

So,	that	symmetry	may	help	to	explain	why	the	syntactic	pattern	was	intentionally	flipped	for
this	ES6	feature.

Note:	I	would	have	preferred	the	syntax	to	be		{	AA:	x	,	BB:	y	}		for	the	destructuring
assignment,	as	that	would	have	preserved	consistency	of	the	more	familiar		target:	source	
pattern	for	both	usages.	Alas,	I'm	having	to	train	my	brain	for	the	inversion,	as	some	readers
may	also	have	to	do.

Not	Just	Declarations

So	far,	we've	used	destructuring	assignment	with		var		declarations	(of	course,	they	could
also	use		let		and		const	),	but	destructuring	is	a	general	assignment	operation,	not	just	a
declaration.

Consider:
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var	a,	b,	c,	x,	y,	z;

[a,b,c]	=	foo();

(	{	x,	y,	z	}	=	bar()	);

console.log(	a,	b,	c	);																//	1	2	3

console.log(	x,	y,	z	);																//	4	5	6

The	variables	can	already	be	declared,	and	then	the	destructuring	only	does	assignments,
exactly	as	we've	already	seen.

Note:	For	the	object	destructuring	form	specifically,	when	leaving	off	a		var	/	let	/	const	
declarator,	we	had	to	surround	the	whole	assignment	expression	in		(	)	,	because
otherwise	the		{	..	}		on	the	lefthand	side	as	the	first	element	in	the	statement	is	taken	to
be	a	block	statement	instead	of	an	object.

In	fact,	the	assignment	expressions	(	a	,		y	,	etc.)	don't	actually	need	to	be	just	variable
identifiers.	Anything	that's	a	valid	assignment	expression	is	allowed.	For	example:

var	o	=	{};

[o.a,	o.b,	o.c]	=	foo();

(	{	x:	o.x,	y:	o.y,	z:	o.z	}	=	bar()	);

console.log(	o.a,	o.b,	o.c	);								//	1	2	3

console.log(	o.x,	o.y,	o.z	);								//	4	5	6

You	can	even	use	computed	property	expressions	in	the	destructuring.	Consider:

var	which	=	"x",

				o	=	{};

(	{	[which]:	o[which]	}	=	bar()	);

console.log(	o.x	);																				//	4

The		[which]:		part	is	the	computed	property,	which	results	in		x		--	the	property	to
destructure	from	the	object	in	question	as	the	source	of	the	assignment.	The		o[which]		part
is	just	a	normal	object	key	reference,	which	equates	to		o.x		as	the	target	of	the	assignment.

You	can	use	the	general	assignments	to	create	object	mappings/transformations,	such	as:
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var	o1	=	{	a:	1,	b:	2,	c:	3	},

				o2	=	{};

(	{	a:	o2.x,	b:	o2.y,	c:	o2.z	}	=	o1	);

console.log(	o2.x,	o2.y,	o2.z	);				//	1	2	3

Or	you	can	map	an	object	to	an	array,	such	as:

var	o1	=	{	a:	1,	b:	2,	c:	3	},

				a2	=	[];

(	{	a:	a2[0],	b:	a2[1],	c:	a2[2]	}	=	o1	);

console.log(	a2	);																				//	[1,2,3]

Or	the	other	way	around:

var	a1	=	[	1,	2,	3	],

				o2	=	{};

[	o2.a,	o2.b,	o2.c	]	=	a1;

console.log(	o2.a,	o2.b,	o2.c	);				//	1	2	3

Or	you	could	reorder	one	array	to	another:

var	a1	=	[	1,	2,	3	],

				a2	=	[];

[	a2[2],	a2[0],	a2[1]	]	=	a1;

console.log(	a2	);																				//	[2,3,1]

You	can	even	solve	the	traditional	"swap	two	variables"	task	without	a	temporary	variable:

var	x	=	10,	y	=	20;

[	y,	x	]	=	[	x,	y	];

console.log(	x,	y	);																//	20	10

Warning:	Be	careful:	you	shouldn't	mix	in	declaration	with	assignment	unless	you	want	all	of
the	assignment	expressions	also	to	be	treated	as	declarations.	Otherwise,	you'll	get	syntax
errors.	That's	why	in	the	earlier	example	I	had	to	do		var	a2	=	[]		separately	from	the		[
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a2[0],	..	]	=	..		destructuring	assignment.	It	wouldn't	make	any	sense	to	try		var	[	a2[0],
..	]	=	..	,	because		a2[0]		isn't	a	valid	declaration	identifier;	it	also	obviously	couldn't
implicitly	create	a		var	a2	=	[]		declaration	to	use.

Repeated	Assignments

The	object	destructuring	form	allows	a	source	property	(holding	any	value	type)	to	be	listed
multiple	times.	For	example:

var	{	a:	X,	a:	Y	}	=	{	a:	1	};

X;				//	1

Y;				//	1

That	also	means	you	can	both	destructure	a	sub-object/array	property	and	also	capture	the
sub-object/array's	value	itself.	Consider:

var	{	a:	{	x:	X,	x:	Y	},	a	}	=	{	a:	{	x:	1	}	};

X;				//	1

Y;				//	1

a;				//	{	x:	1	}

(	{	a:	X,	a:	Y,	a:	[	Z	]	}	=	{	a:	[	1	]	}	);

X.push(	2	);

Y[0]	=	10;

X;				//	[10,2]

Y;				//	[10,2]

Z;				//	1

A	word	of	caution	about	destructuring:	it	may	be	tempting	to	list	destructuring	assignments
all	on	a	single	line	as	has	been	done	thus	far	in	our	discussion.	However,	it's	a	much	better
idea	to	spread	destructuring	assignment	patterns	over	multiple	lines,	using	proper
indentation	--	much	like	you	would	in	JSON	or	with	an	object	literal	value	--	for	readability
sake.
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//	harder	to	read:

var	{	a:	{	b:	[	c,	d	],	e:	{	f	}	},	g	}	=	obj;

//	better:

var	{

				a:	{

								b:	[	c,	d	],

								e:	{	f	}

				},

				g

}	=	obj;

Remember:	the	purpose	of	destructuring	is	not	just	less	typing,	but	more	declarative
readability.

Destructuring	Assignment	Expressions

The	assignment	expression	with	object	or	array	destructuring	has	as	its	completion	value	the
full	righthand	object/array	value.	Consider:

var	o	=	{	a:1,	b:2,	c:3	},

				a,	b,	c,	p;

p	=	{	a,	b,	c	}	=	o;

console.log(	a,	b,	c	);												//	1	2	3

p	===	o;																								//	true

In	the	previous	snippet,		p		was	assigned	the		o		object	reference,	not	one	of	the		a	,		b	,	or
	c		values.	The	same	is	true	of	array	destructuring:

var	o	=	[1,2,3],

				a,	b,	c,	p;

p	=	[	a,	b,	c	]	=	o;

console.log(	a,	b,	c	);												//	1	2	3

p	===	o;																								//	true

By	carrying	the	object/array	value	through	as	the	completion,	you	can	chain	destructuring
assignment	expressions	together:
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var	o	=	{	a:1,	b:2,	c:3	},

				p	=	[4,5,6],

				a,	b,	c,	x,	y,	z;

(	{a}	=	{b,c}	=	o	);

[x,y]	=	[z]	=	p;

console.log(	a,	b,	c	);												//	1	2	3

console.log(	x,	y,	z	);												//	4	5	4

Too	Many,	Too	Few,	Just	Enough

With	both	array	destructuring	assignment	and	object	destructuring	assignment,	you	do	not
have	to	assign	all	the	values	that	are	present.	For	example:

var	[,b]	=	foo();

var	{	x,	z	}	=	bar();

console.log(	b,	x,	z	);																//	2	4	6

The		1		and		3		values	that	came	back	from		foo()		are	discarded,	as	is	the		5		value	from
	bar()	.

Similarly,	if	you	try	to	assign	more	values	than	are	present	in	the	value	you're
destructuring/decomposing,	you	get	graceful	fallback	to		undefined	,	as	you'd	expect:

var	[,,c,d]	=	foo();

var	{	w,	z	}	=	bar();

console.log(	c,	z	);																//	3	6

console.log(	d,	w	);																//	undefined	undefined

This	behavior	follows	symmetrically	from	the	earlier	stated	"	undefined		is	missing"	principle.

We	examined	the		...		operator	earlier	in	this	chapter,	and	saw	that	it	can	sometimes	be
used	to	spread	an	array	value	out	into	its	separate	values,	and	sometimes	it	can	be	used	to
do	the	opposite:	to	gather	a	set	of	values	together	into	an	array.

In	addition	to	the	gather/rest	usage	in	function	declarations,		...		can	perform	the	same
behavior	in	destructuring	assignments.	To	illustrate,	let's	recall	a	snippet	from	earlier	in	this
chapter:
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var	a	=	[2,3,4];

var	b	=	[	1,	...a,	5	];

console.log(	b	);																				//	[1,2,3,4,5]

Here	we	see	that		...a		is	spreading		a		out,	because	it	appears	in	the	array		[	..	]		value
position.	If		...a		appears	in	an	array	destructuring	position,	it	performs	the	gather	behavior:

var	a	=	[2,3,4];

var	[	b,	...c	]	=	a;

console.log(	b,	c	);																//	2	[3,4]

The		var	[	..	]	=	a		destructuring	assignment	spreads		a		out	to	be	assigned	to	the	pattern
described	inside	the		[	..	]	.	The	first	part	names		b		for	the	first	value	in		a		(	2	).	But	then
	...c		gathers	the	rest	of	the	values	(	3		and		4	)	into	an	array	and	calls	it		c	.

Note:	We've	seen	how		...		works	with	arrays,	but	what	about	with	objects?	It's	not	an	ES6
feature,	but	see	Chapter	8	for	discussion	of	a	possible	"beyond	ES6"	feature	where		...	
works	with	spreading	or	gathering	objects.

Default	Value	Assignment

Both	forms	of	destructuring	can	offer	a	default	value	option	for	an	assignment,	using	the		=	
syntax	similar	to	the	default	function	argument	values	discussed	earlier.

Consider:

var	[	a	=	3,	b	=	6,	c	=	9,	d	=	12	]	=	foo();

var	{	x	=	5,	y	=	10,	z	=	15,	w	=	20	}	=	bar();

console.log(	a,	b,	c,	d	);												//	1	2	3	12

console.log(	x,	y,	z,	w	);												//	4	5	6	20

You	can	combine	the	default	value	assignment	with	the	alternative	assignment	expression
syntax	covered	earlier.	For	example:

var	{	x,	y,	z,	w:	WW	=	20	}	=	bar();

console.log(	x,	y,	z,	WW	);												//	4	5	6	20
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Be	careful	about	confusing	yourself	(or	other	developers	who	read	your	code)	if	you	use	an
object	or	array	as	the	default	value	in	a	destructuring.	You	can	create	some	really	hard	to
understand	code:

var	x	=	200,	y	=	300,	z	=	100;

var	o1	=	{	x:	{	y:	42	},	z:	{	y:	z	}	};

(	{	y:	x	=	{	y:	y	}	}	=	o1	);

(	{	z:	y	=	{	y:	z	}	}	=	o1	);

(	{	x:	z	=	{	y:	x	}	}	=	o1	);

Can	you	tell	from	that	snippet	what	values		x	,		y	,	and		z		have	at	the	end?	Takes	a
moment	of	pondering,	I	would	imagine.	I'll	end	the	suspense:

console.log(	x.y,	y.y,	z.y	);								//	300	100	42

The	takeaway	here:	destructuring	is	great	and	can	be	very	useful,	but	it's	also	a	sharp	sword
that	can	cause	injury	(to	someone's	brain)	if	used	unwisely.

Nested	Destructuring

If	the	values	you're	destructuring	have	nested	objects	or	arrays,	you	can	destructure	those
nested	values	as	well:

var	a1	=	[	1,	[2,	3,	4],	5	];

var	o1	=	{	x:	{	y:	{	z:	6	}	}	};

var	[	a,	[	b,	c,	d	],	e	]	=	a1;

var	{	x:	{	y:	{	z:	w	}	}	}	=	o1;

console.log(	a,	b,	c,	d,	e	);								//	1	2	3	4	5

console.log(	w	);																				//	6

Nested	destructuring	can	be	a	simple	way	to	flatten	out	object	namespaces.	For	example:

var	App	=	{

				model:	{

								User:	function(){	..	}

				}

};

//	instead	of:

//	var	User	=	App.model.User;

var	{	model:	{	User	}	}	=	App;
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Destructuring	Parameters

In	the	following	snippet,	can	you	spot	the	assignment?

function	foo(x)	{

				console.log(	x	);

}

foo(	42	);

The	assignment	is	kinda	hidden:		42		(the	argument)	is	assigned	to		x		(the	parameter)
when		foo(42)		is	executed.	If	parameter/argument	pairing	is	an	assignment,	then	it	stands
to	reason	that	it's	an	assignment	that	could	be	destructured,	right?	Of	course!

Consider	array	destructuring	for	parameters:

function	foo(	[	x,	y	]	)	{

				console.log(	x,	y	);

}

foo(	[	1,	2	]	);																				//	1	2

foo(	[	1	]	);																								//	1	undefined

foo(	[]	);																												//	undefined	undefined

Object	destructuring	for	parameters	works,	too:

function	foo(	{	x,	y	}	)	{

				console.log(	x,	y	);

}

foo(	{	y:	1,	x:	2	}	);																//	2	1

foo(	{	y:	42	}	);																				//	undefined	42

foo(	{}	);																												//	undefined	undefined

This	technique	is	an	approximation	of	named	arguments	(a	long	requested	feature	for	JS!),
in	that	the	properties	on	the	object	map	to	the	destructured	parameters	of	the	same	names.
That	also	means	that	we	get	optional	parameters	(in	any	position)	for	free,	as	you	can	see
leaving	off	the		x		"parameter"	worked	as	we'd	expect.

Of	course,	all	the	previously	discussed	variations	of	destructuring	are	available	to	us	with
parameter	destructuring,	including	nested	destructuring,	default	values,	and	more.
Destructuring	also	mixes	fine	with	other	ES6	function	parameter	capabilities,	like	default
parameter	values	and	rest/gather	parameters.

Consider	these	quick	illustrations	(certainly	not	exhaustive	of	the	possible	variations):
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function	f1([	x=2,	y=3,	z	])	{	..	}

function	f2([	x,	y,	...z],	w)	{	..	}

function	f3([	x,	y,	...z],	...w)	{	..	}

function	f4({	x:	X,	y	})	{	..	}

function	f5({	x:	X	=	10,	y	=	20	})	{	..	}

function	f6({	x	=	10	}	=	{},	{	y	}	=	{	y:	10	})	{	..	}

Let's	take	one	example	from	this	snippet	and	examine	it,	for	illustration	purposes:

function	f3([	x,	y,	...z],	...w)	{

				console.log(	x,	y,	z,	w	);

}

f3(	[]	);																												//	undefined	undefined	[]	[]

f3(	[1,2,3,4],	5,	6	);																//	1	2	[3,4]	[5,6]

There	are	two		...		operators	in	use	here,	and	they're	both	gathering	values	in	arrays	(	z	
and		w	),	though		...z		gathers	from	the	rest	of	the	values	left	over	in	the	first	array
argument,	while		...w		gathers	from	the	rest	of	the	main	arguments	left	over	after	the	first.

Destructuring	Defaults	+	Parameter	Defaults

There's	one	subtle	point	you	should	be	particularly	careful	to	notice	--	the	difference	in
behavior	between	a	destructuring	default	value	and	a	function	parameter	default	value.	For
example:

function	f6({	x	=	10	}	=	{},	{	y	}	=	{	y:	10	})	{

				console.log(	x,	y	);

}

f6();																																//	10	10

At	first,	it	would	seem	that	we've	declared	a	default	value	of		10		for	both	the		x		and		y	
parameters,	but	in	two	different	ways.	However,	these	two	different	approaches	will	behave
differently	in	certain	cases,	and	the	difference	is	awfully	subtle.

Consider:

f6(	{},	{}	);																								//	10	undefined

Wait,	why	did	that	happen?	It's	pretty	clear	that	named	parameter		x		is	defaulting	to		10		if
not	passed	as	a	property	of	that	same	name	in	the	first	argument's	object.
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But	what	about		y		being		undefined	?	The		{	y:	10	}		value	is	an	object	as	a	function
parameter	default	value,	not	a	destructuring	default	value.	As	such,	it	only	applies	if	the
second	argument	is	not	passed	at	all,	or	is	passed	as		undefined	.

In	the	previous	snippet,	we	are	passing	a	second	argument	(	{}	),	so	the	default		{	y:	10	}	
value	is	not	used,	and	the		{	y	}		destructuring	occurs	against	the	passed	in		{}		empty
object	value.

Now,	compare		{	y	}	=	{	y:	10	}		to		{	x	=	10	}	=	{}	.

For	the		x	's	form	usage,	if	the	first	function	argument	is	omitted	or		undefined	,	the		{}	
empty	object	default	applies.	Then,	whatever	value	is	in	the	first	argument	position	--	either
the	default		{}		or	whatever	you	passed	in	--	is	destructured	with	the		{	x	=	10	}	,	which
checks	to	see	if	an		x		property	is	found,	and	if	not	found	(or		undefined	),	the		10		default
value	is	applied	to	the		x		named	parameter.

Deep	breath.	Read	back	over	those	last	few	paragraphs	a	couple	of	times.	Let's	review	via
code:

function	f6({	x	=	10	}	=	{},	{	y	}	=	{	y:	10	})	{

				console.log(	x,	y	);

}

f6();																																//	10	10

f6(	undefined,	undefined	);												//	10	10

f6(	{},	undefined	);																//	10	10

f6(	{},	{}	);																								//	10	undefined

f6(	undefined,	{}	);																//	10	undefined

f6(	{	x:	2	},	{	y:	3	}	);												//	2	3

It	would	generally	seem	that	the	defaulting	behavior	of	the		x		parameter	is	probably	the
more	desirable	and	sensible	case	compared	to	that	of		y	.	As	such,	it's	important	to
understand	why	and	how		{	x	=	10	}	=	{}		form	is	different	from		{	y	}	=	{	y:	10	}		form.

If	that's	still	a	bit	fuzzy,	go	back	and	read	it	again,	and	play	with	this	yourself.	Your	future	self
will	thank	you	for	taking	the	time	to	get	this	very	subtle	gotcha	nuance	detail	straight.

Nested	Defaults:	Destructured	and	Restructured

Although	it	may	at	first	be	difficult	to	grasp,	an	interesting	idiom	emerges	for	setting	defaults
for	a	nested	object's	properties:	using	object	destructuring	along	with	what	I'd	call
restructuring.

Consider	a	set	of	defaults	in	a	nested	object	structure,	like	the	following:
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//	taken	from:	http://es-discourse.com/t/partial-default-arguments/120/7

var	defaults	=	{

				options:	{

								remove:	true,

								enable:	false,

								instance:	{}

				},

				log:	{

								warn:	true,

								error:	true

				}

};

Now,	let's	say	that	you	have	an	object	called		config	,	which	has	some	of	these	applied,	but
perhaps	not	all,	and	you'd	like	to	set	all	the	defaults	into	this	object	in	the	missing	spots,	but
not	override	specific	settings	already	present:

var	config	=	{

				options:	{

								remove:	false,

								instance:	null

				}

};

You	can	of	course	do	so	manually,	as	you	might	have	done	in	the	past:

config.options	=	config.options	||	{};

config.options.remove	=	(config.options.remove	!==	undefined)	?

				config.options.remove	:	defaults.options.remove;

config.options.enable	=	(config.options.enable	!==	undefined)	?

				config.options.enable	:	defaults.options.enable;

...

Yuck.

Others	may	prefer	the	assign-overwrite	approach	to	this	task.	You	might	be	tempted	by	the
ES6		Object.assign(..)		utility	(see	Chapter	6)	to	clone	the	properties	first	from		defaults	
and	then	overwritten	with	the	cloned	properties	from		config	,	as	so:

config	=	Object.assign(	{},	defaults,	config	);

That	looks	way	nicer,	huh?	But	there's	a	major	problem!		Object.assign(..)		is	shallow,
which	means	when	it	copies		defaults.options	,	it	just	copies	that	object	reference,	not	deep
cloning	that	object's	properties	to	a		config.options		object.		Object.assign(..)		would	need
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to	be	applied	(sort	of	"recursively")	at	all	levels	of	your	object's	tree	to	get	the	deep	cloning
you're	expecting.

Note:	Many	JS	utility	libraries/frameworks	provide	their	own	option	for	deep	cloning	of	an
object,	but	those	approaches	and	their	gotchas	are	beyond	our	scope	to	discuss	here.

So	let's	examine	if	ES6	object	destructuring	with	defaults	can	help	at	all:

config.options	=	config.options	||	{};

config.log	=	config.log	||	{};

({

				options:	{

								remove:	config.options.remove	=	defaults.options.remove,

								enable:	config.options.enable	=	defaults.options.enable,

								instance:	config.options.instance	=	defaults.options.instance

				}	=	{},

				log:	{

								warn:	config.log.warn	=	defaults.log.warn,

								error:	config.log.error	=	defaults.log.error

				}	=	{}

}	=	config);

Not	as	nice	as	the	false	promise	of		Object.assign(..)		(being	that	it's	shallow	only),	but	it's
better	than	the	manual	approach	by	a	fair	bit,	I	think.	It	is	still	unfortunately	verbose	and
repetitive,	though.

The	previous	snippet's	approach	works	because	I'm	hacking	the	destructuring	and	defaults
mechanism	to	do	the	property		===	undefined		checks	and	assignment	decisions	for	me.	It's
a	trick	in	that	I'm	destructuring		config		(see	the		=	config		at	the	end	of	the	snippet),	but	I'm
reassigning	all	the	destructured	values	right	back	into		config	,	with	the
	config.options.enable		assignment	references.

Still	too	much,	though.	Let's	see	if	we	can	make	anything	better.

The	following	trick	works	best	if	you	know	that	all	the	various	properties	you're	destructuring
are	uniquely	named.	You	can	still	do	it	even	if	that's	not	the	case,	but	it's	not	as	nice	--	you'll
have	to	do	the	destructuring	in	stages,	or	create	unique	local	variables	as	temporary	aliases.

If	we	fully	destructure	all	the	properties	into	top-level	variables,	we	can	then	immediately
restructure	to	reconstitute	the	original	nested	object	structure.

But	all	those	temporary	variables	hanging	around	would	pollute	scope.	So,	let's	use	block
scoping	(see	"Block-Scoped	Declarations"	earlier	in	this	chapter)	with	a	general		{	}	
enclosing	block:
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//	merge	`defaults`	into	`config`

{

				//	destructure	(with	default	value	assignments)

				let	{

								options:	{

												remove	=	defaults.options.remove,

												enable	=	defaults.options.enable,

												instance	=	defaults.options.instance

								}	=	{},

								log:	{

												warn	=	defaults.log.warn,

												error	=	defaults.log.error

								}	=	{}

				}	=	config;

				//	restructure

				config	=	{

								options:	{	remove,	enable,	instance	},

								log:	{	warn,	error	}

				};

}

That	seems	a	fair	bit	nicer,	huh?

Note:	You	could	also	accomplish	the	scope	enclosure	with	an	arrow	IIFE	instead	of	the
general		{	}		block	and		let		declarations.	Your	destructuring	assignments/defaults	would
be	in	the	parameter	list	and	your	restructuring	would	be	the		return		statement	in	the
function	body.

The		{	warn,	error	}		syntax	in	the	restructuring	part	may	look	new	to	you;	that's	called
"concise	properties"	and	we	cover	it	in	the	next	section!

Object	Literal	Extensions
ES6	adds	a	number	of	important	convenience	extensions	to	the	humble		{	..	}		object
literal.

Concise	Properties

You're	certainly	familiar	with	declaring	object	literals	in	this	form:
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var	x	=	2,	y	=	3,

				o	=	{

								x:	x,

								y:	y

				};

If	it's	always	felt	redundant	to	say		x:	x		all	over,	there's	good	news.	If	you	need	to	define	a
property	that	is	the	same	name	as	a	lexical	identifier,	you	can	shorten	it	from		x:	x		to		x	.
Consider:

var	x	=	2,	y	=	3,

				o	=	{

								x,

								y

				};

Concise	Methods

In	a	similar	spirit	to	concise	properties	we	just	examined,	functions	attached	to	properties	in
object	literals	also	have	a	concise	form,	for	convenience.

The	old	way:

var	o	=	{

				x:	function(){

								//	..

				},

				y:	function(){

								//	..

				}

}

And	as	of	ES6:

var	o	=	{

				x()	{

								//	..

				},

				y()	{

								//	..

				}

}
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Warning:	While		x()	{	..	}		seems	to	just	be	shorthand	for		x:	function(){	..	}	,	concise
methods	have	special	behaviors	that	their	older	counterparts	don't;	specifically,	the
allowance	for		super		(see	"Object		super	"	later	in	this	chapter).

Generators	(see	Chapter	4)	also	have	a	concise	method	form:

var	o	=	{

				*foo()	{	..	}

};

Concisely	Unnamed

While	that	convenience	shorthand	is	quite	attractive,	there's	a	subtle	gotcha	to	be	aware	of.
To	illustrate,	let's	examine	pre-ES6	code	like	the	following,	which	you	might	try	to	refactor	to
use	concise	methods:

function	runSomething(o)	{

				var	x	=	Math.random(),

								y	=	Math.random();

				return	o.something(	x,	y	);

}

runSomething(	{

				something:	function	something(x,y)	{

								if	(x	>	y)	{

												//	recursively	call	with	`x`

												//	and	`y`	swapped

												return	something(	y,	x	);

								}

								return	y	-	x;

				}

}	);

This	obviously	silly	code	just	generates	two	random	numbers	and	subtracts	the	smaller	from
the	bigger.	But	what's	important	here	isn't	what	it	does,	but	rather	how	it's	defined.	Let's
focus	on	the	object	literal	and	function	definition,	as	we	see	here:

runSomething(	{

				something:	function	something(x,y)	{

								//	..

				}

}	);
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Why	do	we	say	both		something:		and		function	something	?	Isn't	that	redundant?	Actually,
no,	both	are	needed	for	different	purposes.	The	property		something		is	how	we	can	call
	o.something(..)	,	sort	of	like	its	public	name.	But	the	second		something		is	a	lexical	name	to
refer	to	the	function	from	inside	itself,	for	recursion	purposes.

Can	you	see	why	the	line		return	something(y,x)		needs	the	name		something		to	refer	to	the
function?	There's	no	lexical	name	for	the	object,	such	that	it	could	have	said		return
o.something(y,x)		or	something	of	that	sort.

That's	actually	a	pretty	common	practice	when	the	object	literal	does	have	an	identifying
name,	such	as:

var	controller	=	{

				makeRequest:	function(..){

								//	..

								controller.makeRequest(..);

				}

};

Is	this	a	good	idea?	Perhaps,	perhaps	not.	You're	assuming	that	the	name		controller		will
always	point	to	the	object	in	question.	But	it	very	well	may	not	--	the		makeRequest(..)	
function	doesn't	control	the	outer	code	and	so	can't	force	that	to	be	the	case.	This	could
come	back	to	bite	you.

Others	prefer	to	use		this		to	define	such	things:

var	controller	=	{

				makeRequest:	function(..){

								//	..

								this.makeRequest(..);

				}

};

That	looks	fine,	and	should	work	if	you	always	invoke	the	method	as
	controller.makeRequest(..)	.	But	you	now	have	a		this		binding	gotcha	if	you	do	something
like:

btn.addEventListener(	"click",	controller.makeRequest,	false	);

Of	course,	you	can	solve	that	by	passing		controller.makeRequest.bind(controller)		as	the
handler	reference	to	bind	the	event	to.	But	yuck	--	it	isn't	very	appealing.
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Or	what	if	your	inner		this.makeRequest(..)		call	needs	to	be	made	from	a	nested	function?
You'll	have	another		this		binding	hazard,	which	people	will	often	solve	with	the	hacky		var
self	=	this	,	such	as:

var	controller	=	{

				makeRequest:	function(..){

								var	self	=	this;

								btn.addEventListener(	"click",	function(){

												//	..

												self.makeRequest(..);

								},	false	);

				}

};

More	yuck.

Note:	For	more	information	on		this		binding	rules	and	gotchas,	see	Chapters	1-2	of	the
this	&	Object	Prototypes	title	of	this	series.

OK,	what	does	all	this	have	to	do	with	concise	methods?	Recall	our		something(..)		method
definition:

runSomething(	{

				something:	function	something(x,y)	{

								//	..

				}

}	);

The	second		something		here	provides	a	super	convenient	lexical	identifier	that	will	always
point	to	the	function	itself,	giving	us	the	perfect	reference	for	recursion,	event
binding/unbinding,	and	so	on	--	no	messing	around	with		this		or	trying	to	use	an
untrustable	object	reference.

Great!

So,	now	we	try	to	refactor	that	function	reference	to	this	ES6	concise	method	form:

Syntax

755



runSomething(	{

				something(x,y)	{

								if	(x	>	y)	{

												return	something(	y,	x	);

								}

								return	y	-	x;

				}

}	);

Seems	fine	at	first	glance,	except	this	code	will	break.	The		return	something(..)		call	will
not	find	a		something		identifier,	so	you'll	get	a		ReferenceError	.	Oops.	But	why?

The	above	ES6	snippet	is	interpreted	as	meaning:

runSomething(	{

				something:	function(x,y){

								if	(x	>	y)	{

												return	something(	y,	x	);

								}

								return	y	-	x;

				}

}	);

Look	closely.	Do	you	see	the	problem?	The	concise	method	definition	implies		something:
function(x,y)	.	See	how	the	second		something		we	were	relying	on	has	been	omitted?	In
other	words,	concise	methods	imply	anonymous	function	expressions.

Yeah,	yuck.

Note:	You	may	be	tempted	to	think	that		=>		arrow	functions	are	a	good	solution	here,	but
they're	equally	insufficient,	as	they're	also	anonymous	function	expressions.	We'll	cover
them	in	"Arrow	Functions"	later	in	this	chapter.

The	partially	redeeming	news	is	that	our		something(x,y)		concise	method	won't	be	totally
anonymous.	See	"Function	Names"	in	Chapter	7	for	information	about	ES6	function	name
inference	rules.	That	won't	help	us	for	our	recursion,	but	it	helps	with	debugging	at	least.

So	what	are	we	left	to	conclude	about	concise	methods?	They're	short	and	sweet,	and	a
nice	convenience.	But	you	should	only	use	them	if	you're	never	going	to	need	them	to	do
recursion	or	event	binding/unbinding.	Otherwise,	stick	to	your	old-school		something:
function	something(..)		method	definitions.

A	lot	of	your	methods	are	probably	going	to	benefit	from	concise	method	definitions,	so	that's
great	news!	Just	be	careful	of	the	few	where	there's	an	un-naming	hazard.
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ES5	Getter/Setter

Technically,	ES5	defined	getter/setter	literals	forms,	but	they	didn't	seem	to	get	used	much,
mostly	due	to	the	lack	of	transpilers	to	handle	that	new	syntax	(the	only	major	new	syntax
added	in	ES5,	really).	So	while	it's	not	a	new	ES6	feature,	we'll	briefly	refresh	on	that	form,
as	it's	probably	going	to	be	much	more	useful	with	ES6	going	forward.

Consider:

var	o	=	{

				__id:	10,

				get	id()	{	return	this.__id++;	},

				set	id(v)	{	this.__id	=	v;	}

}

o.id;												//	10

o.id;												//	11

o.id	=	20;

o.id;												//	20

//	and:

o.__id;												//	21

o.__id;												//	21	--	still!

These	getter	and	setter	literal	forms	are	also	present	in	classes;	see	Chapter	3.

Warning:	It	may	not	be	obvious,	but	the	setter	literal	must	have	exactly	one	declared
parameter;	omitting	it	or	listing	others	is	illegal	syntax.	The	single	required	parameter	can
use	destructuring	and	defaults	(e.g.,		set	id({	id:	v	=	0	})	{	..	}	),	but	the	gather/rest
	...		is	not	allowed	(	set	id(...v)	{	..	}	).

Computed	Property	Names

You've	probably	been	in	a	situation	like	the	following	snippet,	where	you	have	one	or	more
property	names	that	come	from	some	sort	of	expression	and	thus	can't	be	put	into	the	object
literal:

var	prefix	=	"user_";

var	o	=	{

				baz:	function(..){	..	}

};

o[	prefix	+	"foo"	]	=	function(..){	..	};

o[	prefix	+	"bar"	]	=	function(..){	..	};

..
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ES6	adds	a	syntax	to	the	object	literal	definition	which	allows	you	to	specify	an	expression
that	should	be	computed,	whose	result	is	the	property	name	assigned.	Consider:

var	prefix	=	"user_";

var	o	=	{

				baz:	function(..){	..	},

				[	prefix	+	"foo"	]:	function(..){	..	},

				[	prefix	+	"bar"	]:	function(..){	..	}

				..

};

Any	valid	expression	can	appear	inside	the		[	..	]		that	sits	in	the	property	name	position	of
the	object	literal	definition.

Probably	the	most	common	use	of	computed	property	names	will	be	with		Symbol	s	(which
we	cover	in	"Symbols"	later	in	this	chapter),	such	as:

var	o	=	{

				[Symbol.toStringTag]:	"really	cool	thing",

				..

};

	Symbol.toStringTag		is	a	special	built-in	value,	which	we	evaluate	with	the		[	..	]		syntax,
so	we	can	assign	the		"really	cool	thing"		value	to	the	special	property	name.

Computed	property	names	can	also	appear	as	the	name	of	a	concise	method	or	a	concise
generator:

var	o	=	{

				["f"	+	"oo"]()	{	..	}				//	computed	concise	method

				*["b"	+	"ar"]()	{	..	}				//	computed	concise	generator

};

Setting		[[Prototype]]	

We	won't	cover	prototypes	in	detail	here,	so	for	more	information,	see	the	this	&	Object
Prototypes	title	of	this	series.

Sometimes	it	will	be	helpful	to	assign	the		[[Prototype]]		of	an	object	at	the	same	time
you're	declaring	its	object	literal.	The	following	has	been	a	nonstandard	extension	in	many
JS	engines	for	a	while,	but	is	standardized	as	of	ES6:
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var	o1	=	{

				//	..

};

var	o2	=	{

				__proto__:	o1,

				//	..

};

	o2		is	declared	with	a	normal	object	literal,	but	it's	also		[[Prototype]]	-linked	to		o1	.	The
	__proto__		property	name	here	can	also	be	a	string		"__proto__"	,	but	note	that	it	cannot	be
the	result	of	a	computed	property	name	(see	the	previous	section).

	__proto__		is	controversial,	to	say	the	least.	It's	a	decades-old	proprietary	extension	to	JS
that	is	finally	standardized,	somewhat	begrudgingly	it	seems,	in	ES6.	Many	developers	feel	it
shouldn't	ever	be	used.	In	fact,	it's	in	"Annex	B"	of	ES6,	which	is	the	section	that	lists	things
JS	feels	it	has	to	standardize	for	compatibility	reasons	only.

Warning:	Though	I'm	narrowly	endorsing		__proto__		as	a	key	in	an	object	literal	definition,	I
definitely	do	not	endorse	using	it	in	its	object	property	form,	like		o.__proto__	.	That	form	is
both	a	getter	and	setter	(again	for	compatibility	reasons),	but	there	are	definitely	better
options.	See	the	this	&	Object	Prototypes	title	of	this	series	for	more	information.

For	setting	the		[[Prototype]]		of	an	existing	object,	you	can	use	the	ES6	utility
	Object.setPrototypeOf(..)	.	Consider:

var	o1	=	{

				//	..

};

var	o2	=	{

				//	..

};

Object.setPrototypeOf(	o2,	o1	);

Note:	We'll	discuss		Object		again	in	Chapter	6.	"	Object.setPrototypeOf(..)		Static
Function"	provides	additional	details	on		Object.setPrototypeOf(..)	.	Also	see
"	Object.assign(..)		Static	Function"	for	another	form	that	relates		o2		prototypically	to		o1	.

Object		super	

Syntax

759



	super		is	typically	thought	of	as	being	only	related	to	classes.	However,	due	to	JS's
classless-objects-with-prototypes	nature,		super		is	equally	effective,	and	nearly	the	same	in
behavior,	with	plain	objects'	concise	methods.

Consider:

var	o1	=	{

				foo()	{

								console.log(	"o1:foo"	);

				}

};

var	o2	=	{

				foo()	{

								super.foo();

								console.log(	"o2:foo"	);

				}

};

Object.setPrototypeOf(	o2,	o1	);

o2.foo();								//	o1:foo

																//	o2:foo

Warning:		super		is	only	allowed	in	concise	methods,	not	regular	function	expression
properties.	It	also	is	only	allowed	in		super.XXX		form	(for	property/method	access),	not	in
	super()		form.

The		super		reference	in	the		o2.foo()		method	is	locked	statically	to		o2	,	and	specifically	to
the		[[Prototype]]		of		o2	.		super		here	would	basically	be		Object.getPrototypeOf(o2)		--
resolves	to		o1		of	course	--	which	is	how	it	finds	and	calls		o1.foo()	.

For	complete	details	on		super	,	see	"Classes"	in	Chapter	3.

Template	Literals
At	the	very	outset	of	this	section,	I'm	going	to	have	to	call	out	the	name	of	this	ES6	feature
as	being	awfully...	misleading,	depending	on	your	experiences	with	what	the	word	template
means.

Many	developers	think	of	templates	as	being	reusable	renderable	pieces	of	text,	such	as	the
capability	provided	by	most	template	engines	(Mustache,	Handlebars,	etc.).	ES6's	use	of	the
word	template	would	imply	something	similar,	like	a	way	to	declare	inline	template	literals
that	can	be	re-rendered.	However,	that's	not	at	all	the	right	way	to	think	about	this	feature.
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So,	before	we	go	on,	I'm	renaming	to	what	it	should	have	been	called:	interpolated	string
literals	(or	interpoliterals	for	short).

You're	already	well	aware	of	declaring	string	literals	with		"		or		'		delimiters,	and	you	also
know	that	these	are	not	smart	strings	(as	some	languages	have),	where	the	contents	would
be	parsed	for	interpolation	expressions.

However,	ES6	introduces	a	new	type	of	string	literal,	using	the	 	̀ 			backtick	as	the	delimiter.
These	string	literals	allow	basic	string	interpolation	expressions	to	be	embedded,	which	are
then	automatically	parsed	and	evaluated.

Here's	the	old	pre-ES6	way:

var	name	=	"Kyle";

var	greeting	=	"Hello	"	+	name	+	"!";

console.log(	greeting	);												//	"Hello	Kyle!"

console.log(	typeof	greeting	);								//	"string"

Now,	consider	the	new	ES6	way:

var	name	=	"Kyle";

var	greeting	=	`Hello	${name}!`;

console.log(	greeting	);												//	"Hello	Kyle!"

console.log(	typeof	greeting	);								//	"string"

As	you	can	see,	we	used	the	 	̀ ..`			around	a	series	of	characters,	which	are	interpreted	as
a	string	literal,	but	any	expressions	of	the	form		${..}		are	parsed	and	evaluated	inline
immediately.	The	fancy	term	for	such	parsing	and	evaluating	is	interpolation	(much	more
accurate	than	templating).

The	result	of	the	interpolated	string	literal	expression	is	just	a	plain	old	normal	string,
assigned	to	the		greeting		variable.

Warning:		typeof	greeting	==	"string"		illustrates	why	it's	important	not	to	think	of	these
entities	as	special	template	values,	as	you	cannot	assign	the	unevaluated	form	of	the	literal
to	something	and	reuse	it.	The	 	̀ ..`			string	literal	is	more	like	an	IIFE	in	the	sense	that	it's
automatically	evaluated	inline.	The	result	of	a	 	̀ ..`			string	literal	is,	simply,	just	a	string.

One	really	nice	benefit	of	interpolated	string	literals	is	they	are	allowed	to	split	across
multiple	lines:
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var	text	=

`Now	is	the	time	for	all	good	men

to	come	to	the	aid	of	their

country!`;

console.log(	text	);

//	Now	is	the	time	for	all	good	men

//	to	come	to	the	aid	of	their

//	country!

The	line	breaks	(newlines)	in	the	interpolated	string	literal	were	preserved	in	the	string	value.

Unless	appearing	as	explicit	escape	sequences	in	the	literal	value,	the	value	of	the		\r	
carriage	return	character	(code	point		U+000D	)	or	the	value	of	the		\r\n		carriage	return	+
line	feed	sequence	(code	points		U+000D		and		U+000A	)	are	both	normalized	to	a		\n		line
feed	character	(code	point		U+000A	).	Don't	worry	though;	this	normalization	is	rare	and	would
likely	only	happen	if	copy-pasting	text	into	your	JS	file.

Interpolated	Expressions

Any	valid	expression	is	allowed	to	appear	inside		${..}		in	an	interpolated	string	literal,
including	function	calls,	inline	function	expression	calls,	and	even	other	interpolated	string
literals!

Consider:

function	upper(s)	{

				return	s.toUpperCase();

}

var	who	=	"reader";

var	text	=

`A	very	${upper(	"warm"	)}	welcome

to	all	of	you	${upper(	`${who}s`	)}!`;

console.log(	text	);

//	A	very	WARM	welcome

//	to	all	of	you	READERS!

Here,	the	inner	 	̀ ${who}s`			interpolated	string	literal	was	a	little	bit	nicer	convenience	for	us
when	combining	the		who		variable	with	the		"s"		string,	as	opposed	to		who	+	"s"	.	There
will	be	cases	that	nesting	interpolated	string	literals	is	helpful,	but	be	wary	if	you	find	yourself
doing	that	kind	of	thing	often,	or	if	you	find	yourself	nesting	several	levels	deep.
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If	that's	the	case,	the	odds	are	good	that	your	string	value	production	could	benefit	from
some	abstractions.

Warning:	As	a	word	of	caution,	be	very	careful	about	the	readability	of	your	code	with	such
new	found	power.	Just	like	with	default	value	expressions	and	destructuring	assignment
expressions,	just	because	you	can	do	something	doesn't	mean	you	should	do	it.	Never	go
so	overboard	with	new	ES6	tricks	that	your	code	becomes	more	clever	than	you	or	your
other	team	members.

Expression	Scope

One	quick	note	about	the	scope	that	is	used	to	resolve	variables	in	expressions.	I	mentioned
earlier	that	an	interpolated	string	literal	is	kind	of	like	an	IIFE,	and	it	turns	out	thinking	about	it
like	that	explains	the	scoping	behavior	as	well.

Consider:

function	foo(str)	{

				var	name	=	"foo";

				console.log(	str	);

}

function	bar()	{

				var	name	=	"bar";

				foo(	`Hello	from	${name}!`	);

}

var	name	=	"global";

bar();																				//	"Hello	from	bar!"

At	the	moment	the	 	̀ ..`			string	literal	is	expressed,	inside	the		bar()		function,	the	scope
available	to	it	finds		bar()	's		name		variable	with	value		"bar"	.	Neither	the	global		name		nor
	foo(..)	's		name		matter.	In	other	words,	an	interpolated	string	literal	is	just	lexically	scoped
where	it	appears,	not	dynamically	scoped	in	any	way.

Tagged	Template	Literals

Again,	renaming	the	feature	for	sanity	sake:	tagged	string	literals.

To	be	honest,	this	is	one	of	the	cooler	tricks	that	ES6	offers.	It	may	seem	a	little	strange,	and
perhaps	not	all	that	generally	practical	at	first.	But	once	you've	spent	some	time	with	it,
tagged	string	literals	may	just	surprise	you	in	their	usefulness.

For	example:
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function	foo(strings,	...values)	{

				console.log(	strings	);

				console.log(	values	);

}

var	desc	=	"awesome";

foo`Everything	is	${desc}!`;

//	[	"Everything	is	",	"!"]

//	[	"awesome"	]

Let's	take	a	moment	to	consider	what's	happening	in	the	previous	snippet.	First,	the	most
jarring	thing	that	jumps	out	is		foo`Everything...`;	.	That	doesn't	look	like	anything	we've
seen	before.	What	is	it?

It's	essentially	a	special	kind	of	function	call	that	doesn't	need	the		(	..	)	.	The	tag	--	the
	foo		part	before	the	 	̀ ..`			string	literal	--	is	a	function	value	that	should	be	called.	Actually,
it	can	be	any	expression	that	results	in	a	function,	even	a	function	call	that	returns	another
function,	like:

function	bar()	{

				return	function	foo(strings,	...values)	{

								console.log(	strings	);

								console.log(	values	);

				}

}

var	desc	=	"awesome";

bar()`Everything	is	${desc}!`;

//	[	"Everything	is	",	"!"]

//	[	"awesome"	]

But	what	gets	passed	to	the		foo(..)		function	when	invoked	as	a	tag	for	a	string	literal?

The	first	argument	--	we	called	it		strings		--	is	an	array	of	all	the	plain	strings	(the	stuff
between	any	interpolated	expressions).	We	get	two	values	in	the		strings		array:
	"Everything	is	"		and		"!"	.

For	convenience	sake	in	our	example,	we	then	gather	up	all	subsequent	arguments	into	an
array	called		values		using	the		...		gather/rest	operator	(see	the	"Spread/Rest"	section
earlier	in	this	chapter),	though	you	could	of	course	have	left	them	as	individual	named
parameters	following	the		strings		parameter.
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The	argument(s)	gathered	into	our		values		array	are	the	results	of	the	already-evaluated
interpolation	expressions	found	in	the	string	literal.	So	obviously	the	only	element	in		values	
in	our	example	is		"awesome"	.

You	can	think	of	these	two	arrays	as:	the	values	in		values		are	the	separators	if	you	were	to
splice	them	in	between	the	values	in		strings	,	and	then	if	you	joined	everything	together,
you'd	get	the	complete	interpolated	string	value.

A	tagged	string	literal	is	like	a	processing	step	after	the	interpolation	expressions	are
evaluated	but	before	the	final	string	value	is	compiled,	allowing	you	more	control	over
generating	the	string	from	the	literal.

Typically,	the	string	literal	tag	function	(	foo(..)		in	the	previous	snippets)	should	compute
an	appropriate	string	value	and	return	it,	so	that	you	can	use	the	tagged	string	literal	as	a
value	just	like	untagged	string	literals:

function	tag(strings,	...values)	{

				return	strings.reduce(	function(s,v,idx){

								return	s	+	(idx	>	0	?	values[idx-1]	:	"")	+	v;

				},	""	);

}

var	desc	=	"awesome";

var	text	=	tag`Everything	is	${desc}!`;

console.log(	text	);												//	Everything	is	awesome!

In	this	snippet,		tag(..)		is	a	pass-through	operation,	in	that	it	doesn't	perform	any	special
modifications,	but	just	uses		reduce(..)		to	loop	over	and	splice/interleave		strings		and
	values		together	the	same	way	an	untagged	string	literal	would	have	done.

So	what	are	some	practical	uses?	There	are	many	advanced	ones	that	are	beyond	our
scope	to	discuss	here.	But	here's	a	simple	idea	that	formats	numbers	as	U.S.	dollars	(sort	of
like	basic	localization):
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function	dollabillsyall(strings,	...values)	{

				return	strings.reduce(	function(s,v,idx){

								if	(idx	>	0)	{

												if	(typeof	values[idx-1]	==	"number")	{

																//	look,	also	using	interpolated

																//	string	literals!

																s	+=	`$${values[idx-1].toFixed(	2	)}`;

												}

												else	{

																s	+=	values[idx-1];

												}

								}

								return	s	+	v;

				},	""	);

}

var	amt1	=	11.99,

				amt2	=	amt1	*	1.08,

				name	=	"Kyle";

var	text	=	dollabillsyall

`Thanks	for	your	purchase,	${name}!	Your

product	cost	was	${amt1},	which	with	tax

comes	out	to	${amt2}.`

console.log(	text	);

//	Thanks	for	your	purchase,	Kyle!	Your

//	product	cost	was	$11.99,	which	with	tax

//	comes	out	to	$12.95.

If	a		number		value	is	encountered	in	the		values		array,	we	put		"$"		in	front	of	it	and	format	it
to	two	decimal	places	with		toFixed(2)	.	Otherwise,	we	let	the	value	pass-through
untouched.

Raw	Strings

In	the	previous	snippets,	our	tag	functions	receive	the	first	argument	we	called		strings	,
which	is	an	array.	But	there's	an	additional	bit	of	data	included:	the	raw	unprocessed
versions	of	all	the	strings.	You	can	access	those	raw	string	values	using	the		.raw		property,
like	this:
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function	showraw(strings,	...values)	{

				console.log(	strings	);

				console.log(	strings.raw	);

}

showraw`Hello\nWorld`;

//	[	"Hello

//	World"	]

//	[	"Hello\nWorld"	]

The	raw	version	of	the	value	preserves	the	raw	escaped		\n		sequence	(the		\		and	the		n	
are	separate	characters),	while	the	processed	version	considers	it	a	single	newline
character.	However,	the	earlier	mentioned	line-ending	normalization	is	applied	to	both
values.

ES6	comes	with	a	built-in	function	that	can	be	used	as	a	string	literal	tag:		String.raw(..)	.	It
simply	passes	through	the	raw	versions	of	the		strings		values:

console.log(	`Hello\nWorld`	);

//	Hello

//	World

console.log(	String.raw`Hello\nWorld`	);

//	Hello\nWorld

String.raw`Hello\nWorld`.length;

//	12

Other	uses	for	string	literal	tags	included	special	processing	for	internationalization,
localization,	and	more!

Arrow	Functions
We've	touched	on		this		binding	complications	with	functions	earlier	in	this	chapter,	and
they're	covered	at	length	in	the	this	&	Object	Prototypes	title	of	this	series.	It's	important	to
understand	the	frustrations	that		this	-based	programming	with	normal	functions	brings,
because	that	is	the	primary	motivation	for	the	new	ES6		=>		arrow	function	feature.

Let's	first	illustrate	what	an	arrow	function	looks	like,	as	compared	to	normal	functions:
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function	foo(x,y)	{

				return	x	+	y;

}

//	versus

var	foo	=	(x,y)	=>	x	+	y;

The	arrow	function	definition	consists	of	a	parameter	list	(of	zero	or	more	parameters,	and
surrounding		(	..	)		if	there's	not	exactly	one	parameter),	followed	by	the		=>		marker,
followed	by	a	function	body.

So,	in	the	previous	snippet,	the	arrow	function	is	just	the		(x,y)	=>	x	+	y		part,	and	that
function	reference	happens	to	be	assigned	to	the	variable		foo	.

The	body	only	needs	to	be	enclosed	by		{	..	}		if	there's	more	than	one	expression,	or	if
the	body	consists	of	a	non-expression	statement.	If	there's	only	one	expression,	and	you
omit	the	surrounding		{	..	}	,	there's	an	implied		return		in	front	of	the	expression,	as
illustrated	in	the	previous	snippet.

Here's	some	other	arrow	function	variations	to	consider:

var	f1	=	()	=>	12;

var	f2	=	x	=>	x	*	2;

var	f3	=	(x,y)	=>	{

				var	z	=	x	*	2	+	y;

				y++;

				x	*=	3;

				return	(x	+	y	+	z)	/	2;

};

Arrow	functions	are	always	function	expressions;	there	is	no	arrow	function	declaration.	It
also	should	be	clear	that	they	are	anonymous	function	expressions	--	they	have	no	named
reference	for	the	purposes	of	recursion	or	event	binding/unbinding	--	though	"Function
Names"	in	Chapter	7	will	describe	ES6's	function	name	inference	rules	for	debugging
purposes.

Note:	All	the	capabilities	of	normal	function	parameters	are	available	to	arrow	functions,
including	default	values,	destructuring,	rest	parameters,	and	so	on.

Arrow	functions	have	a	nice,	shorter	syntax,	which	makes	them	on	the	surface	very
attractive	for	writing	terser	code.	Indeed,	nearly	all	literature	on	ES6	(other	than	the	titles	in
this	series)	seems	to	immediately	and	exclusively	adopt	the	arrow	function	as	"the	new
function."
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It	is	telling	that	nearly	all	examples	in	discussion	of	arrow	functions	are	short	single
statement	utilities,	such	as	those	passed	as	callbacks	to	various	utilities.	For	example:

var	a	=	[1,2,3,4,5];

a	=	a.map(	v	=>	v	*	2	);

console.log(	a	);																//	[2,4,6,8,10]

In	those	cases,	where	you	have	such	inline	function	expressions,	and	they	fit	the	pattern	of
computing	a	quick	calculation	in	a	single	statement	and	returning	that	result,	arrow	functions
indeed	look	to	be	an	attractive	and	lightweight	alternative	to	the	more	verbose		function	
keyword	and	syntax.

Most	people	tend	to	ooh	and	aah	at	nice	terse	examples	like	that,	as	I	imagine	you	just	did!

However,	I	would	caution	you	that	it	would	seem	to	me	somewhat	a	misapplication	of	this
feature	to	use	arrow	function	syntax	with	otherwise	normal,	multistatement	functions,
especially	those	that	would	otherwise	be	naturally	expressed	as	function	declarations.

Recall	the		dollabillsyall(..)		string	literal	tag	function	from	earlier	in	this	chapter	--	let's
change	it	to	use		=>		syntax:

var	dollabillsyall	=	(strings,	...values)	=>

				strings.reduce(	(s,v,idx)	=>	{

								if	(idx	>	0)	{

												if	(typeof	values[idx-1]	==	"number")	{

																//	look,	also	using	interpolated

																//	string	literals!

																s	+=	`$${values[idx-1].toFixed(	2	)}`;

												}

												else	{

																s	+=	values[idx-1];

												}

								}

								return	s	+	v;

				},	""	);

In	this	example,	the	only	modifications	I	made	were	the	removal	of		function	,		return	,	and
some		{	..	}	,	and	then	the	insertion	of		=>		and	a		var	.	Is	this	a	significant	improvement	in
the	readability	of	the	code?	Meh.

I'd	actually	argue	that	the	lack	of		return		and	outer		{	..	}		partially	obscures	the	fact	that
the		reduce(..)		call	is	the	only	statement	in	the		dollabillsyall(..)		function	and	that	its
result	is	the	intended	result	of	the	call.	Also,	the	trained	eye	that	is	so	used	to	hunting	for	the
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word		function		in	code	to	find	scope	boundaries	now	needs	to	look	for	the		=>		marker,
which	can	definitely	be	harder	to	find	in	the	thick	of	the	code.

While	not	a	hard-and-fast	rule,	I'd	say	that	the	readability	gains	from		=>		arrow	function
conversion	are	inversely	proportional	to	the	length	of	the	function	being	converted.	The
longer	the	function,	the	less		=>		helps;	the	shorter	the	function,	the	more		=>		can	shine.

I	think	it's	probably	more	sensible	and	reasonable	to	adopt		=>		for	the	places	in	code	where
you	do	need	short	inline	function	expressions,	but	leave	your	normal-length	main	functions
as	is.

Not	Just	Shorter	Syntax,	But		this	

Most	of	the	popular	attention	toward		=>		has	been	on	saving	those	precious	keystrokes	by
dropping		function	,		return	,	and		{	..	}		from	your	code.

But	there's	a	big	detail	we've	skipped	over	so	far.	I	said	at	the	beginning	of	the	section	that
	=>		functions	are	closely	related	to		this		binding	behavior.	In	fact,		=>		arrow	functions	are
primarily	designed	to	alter		this		behavior	in	a	specific	way,	solving	a	particular	and
common	pain	point	with		this	-aware	coding.

The	saving	of	keystrokes	is	a	red	herring,	a	misleading	sideshow	at	best.

Let's	revisit	another	example	from	earlier	in	this	chapter:

var	controller	=	{

				makeRequest:	function(..){

								var	self	=	this;

								btn.addEventListener(	"click",	function(){

												//	..

												self.makeRequest(..);

								},	false	);

				}

};

We	used	the		var	self	=	this		hack,	and	then	referenced		self.makeRequest(..)	,	because
inside	the	callback	function	we're	passing	to		addEventListener(..)	,	the		this		binding	will
not	be	the	same	as	it	is	in		makeRequest(..)		itself.	In	other	words,	because		this		bindings
are	dynamic,	we	fall	back	to	the	predictability	of	lexical	scope	via	the		self		variable.

Herein	we	finally	can	see	the	primary	design	characteristic	of		=>		arrow	functions.	Inside
arrow	functions,	the		this		binding	is	not	dynamic,	but	is	instead	lexical.	In	the	previous
snippet,	if	we	used	an	arrow	function	for	the	callback,		this		will	be	predictably	what	we
wanted	it	to	be.

Syntax

770



Consider:

var	controller	=	{

				makeRequest:	function(..){

								btn.addEventListener(	"click",	()	=>	{

												//	..

												this.makeRequest(..);

								},	false	);

				}

};

Lexical		this		in	the	arrow	function	callback	in	the	previous	snippet	now	points	to	the	same
value	as	in	the	enclosing		makeRequest(..)		function.	In	other	words,		=>		is	a	syntactic	stand-
in	for		var	self	=	this	.

In	cases	where		var	self	=	this		(or,	alternatively,	a	function		.bind(this)		call)	would
normally	be	helpful,		=>		arrow	functions	are	a	nicer	alternative	operating	on	the	same
principle.	Sounds	great,	right?

Not	quite	so	simple.

If		=>		replaces		var	self	=	this		or		.bind(this)		and	it	helps,	guess	what	happens	if	you
use		=>		with	a		this	-aware	function	that	doesn't	need		var	self	=	this		to	work?	You	might
be	able	to	guess	that	it's	going	to	mess	things	up.	Yeah.

Consider:

var	controller	=	{

				makeRequest:	(..)	=>	{

								//	..

								this.helper(..);

				},

				helper:	(..)	=>	{

								//	..

				}

};

controller.makeRequest(..);

Although	we	invoke	as		controller.makeRequest(..)	,	the		this.helper		reference	fails,
because		this		here	doesn't	point	to		controller		as	it	normally	would.	Where	does	it	point?
It	lexically	inherits		this		from	the	surrounding	scope.	In	this	previous	snippet,	that's	the
global	scope,	where		this		points	to	the	global	object.	Ugh.

Syntax

771



In	addition	to	lexical		this	,	arrow	functions	also	have	lexical		arguments		--	they	don't	have
their	own		arguments		array	but	instead	inherit	from	their	parent	--	as	well	as	lexical		super	
and		new.target		(see	"Classes"	in	Chapter	3).

So	now	we	can	conclude	a	more	nuanced	set	of	rules	for	when		=>		is	appropriate	and	not:

If	you	have	a	short,	single-statement	inline	function	expression,	where	the	only
statement	is	a		return		of	some	computed	value,	and	that	function	doesn't	already
make	a		this		reference	inside	it,	and	there's	no	self-reference	(recursion,	event
binding/unbinding),	and	you	don't	reasonably	expect	the	function	to	ever	be	that	way,
you	can	probably	safely	refactor	it	to	be	an		=>		arrow	function.
If	you	have	an	inner	function	expression	that's	relying	on	a		var	self	=	this		hack	or	a
	.bind(this)		call	on	it	in	the	enclosing	function	to	ensure	proper		this		binding,	that
inner	function	expression	can	probably	safely	become	an		=>		arrow	function.
If	you	have	an	inner	function	expression	that's	relying	on	something	like		var	args	=
Array.prototype.slice.call(arguments)		in	the	enclosing	function	to	make	a	lexical	copy
of		arguments	,	that	inner	function	expression	can	probably	safely	become	an		=>		arrow
function.
For	everything	else	--	normal	function	declarations,	longer	multistatement	function
expressions,	functions	that	need	a	lexical	name	identifier	self-reference	(recursion,	etc.),
and	any	other	function	that	doesn't	fit	the	previous	characteristics	--	you	should	probably
avoid		=>		function	syntax.

Bottom	line:		=>		is	about	lexical	binding	of		this	,		arguments	,	and		super	.	These	are
intentional	features	designed	to	fix	some	common	problems,	not	bugs,	quirks,	or	mistakes	in
ES6.

Don't	believe	any	hype	that		=>		is	primarily,	or	even	mostly,	about	fewer	keystrokes.
Whether	you	save	keystrokes	or	waste	them,	you	should	know	exactly	what	you	are
intentionally	doing	with	every	character	typed.

Tip:	If	you	have	a	function	that	for	any	of	these	articulated	reasons	is	not	a	good	match	for
an		=>		arrow	function,	but	it's	being	declared	as	part	of	an	object	literal,	recall	from	"Concise
Methods"	earlier	in	this	chapter	that	there's	another	option	for	shorter	function	syntax.

If	you	prefer	a	visual	decision	chart	for	how/why	to	pick	an	arrow	function:
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	for..of		Loops
Joining	the		for		and		for..in		loops	from	the	JavaScript	we're	all	familiar	with,	ES6	adds	a
	for..of		loop,	which	loops	over	the	set	of	values	produced	by	an	iterator.
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The	value	you	loop	over	with		for..of		must	be	an	iterable,	or	it	must	be	a	value	which	can
be	coerced/boxed	to	an	object	(see	the	Types	&	Grammar	title	of	this	series)	that	is	an
iterable.	An	iterable	is	simply	an	object	that	is	able	to	produce	an	iterator,	which	the	loop
then	uses.

Let's	compare		for..of		to		for..in		to	illustrate	the	difference:

var	a	=	["a","b","c","d","e"];

for	(var	idx	in	a)	{

				console.log(	idx	);

}

//	0	1	2	3	4

for	(var	val	of	a)	{

				console.log(	val	);

}

//	"a"	"b"	"c"	"d"	"e"

As	you	can	see,		for..in		loops	over	the	keys/indexes	in	the		a		array,	while		for..of		loops
over	the	values	in		a	.

Here's	the	pre-ES6	version	of	the		for..of		from	that	previous	snippet:

var	a	=	["a","b","c","d","e"],

				k	=	Object.keys(	a	);

for	(var	val,	i	=	0;	i	<	k.length;	i++)	{

				val	=	a[	k[i]	];

				console.log(	val	);

}

//	"a"	"b"	"c"	"d"	"e"

And	here's	the	ES6	but	non-	for..of		equivalent,	which	also	gives	a	glimpse	at	manually
iterating	an	iterator	(see	"Iterators"	in	Chapter	3):

var	a	=	["a","b","c","d","e"];

for	(var	val,	ret,	it	=	a[Symbol.iterator]();

				(ret	=	it.next())	&&	!ret.done;

)	{

				val	=	ret.value;

				console.log(	val	);

}

//	"a"	"b"	"c"	"d"	"e"
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Under	the	covers,	the		for..of		loop	asks	the	iterable	for	an	iterator	(using	the	built-in
	Symbol.iterator	;	see	"Well-Known	Symbols"	in	Chapter	7),	then	it	repeatedly	calls	the
iterator	and	assigns	its	produced	value	to	the	loop	iteration	variable.

Standard	built-in	values	in	JavaScript	that	are	by	default	iterables	(or	provide	them)	include:

Arrays
Strings
Generators	(see	Chapter	3)
Collections	/	TypedArrays	(see	Chapter	5)

Warning:	Plain	objects	are	not	by	default	suitable	for		for..of		looping.	That's	because	they
don't	have	a	default	iterator,	which	is	intentional,	not	a	mistake.	However,	we	won't	go	any
further	into	those	nuanced	reasonings	here.	In	"Iterators"	in	Chapter	3,	we'll	see	how	to
define	iterators	for	our	own	objects,	which	lets		for..of		loop	over	any	object	to	get	a	set	of
values	we	define.

Here's	how	to	loop	over	the	characters	in	a	primitive	string:

for	(var	c	of	"hello")	{

				console.log(	c	);

}

//	"h"	"e"	"l"	"l"	"o"

The		"hello"		primitive	string	value	is	coerced/boxed	to	the		String		object	wrapper
equivalent,	which	is	an	iterable	by	default.

In		for	(XYZ	of	ABC)..	,	the		XYZ		clause	can	either	be	an	assignment	expression	or	a
declaration,	identical	to	that	same	clause	in		for		and		for..in		loops.	So	you	can	do	stuff
like	this:

var	o	=	{};

for	(o.a	of	[1,2,3])	{

				console.log(	o.a	);

}

//	1	2	3

for	({x:	o.a}	of	[	{x:	1},	{x:	2},	{x:	3}	])	{

		console.log(	o.a	);

}

//	1	2	3
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	for..of		loops	can	be	prematurely	stopped,	just	like	other	loops,	with		break	,		continue	,
	return		(if	in	a	function),	and	thrown	exceptions.	In	any	of	these	cases,	the	iterator's
	return(..)		function	is	automatically	called	(if	one	exists)	to	let	the	iterator	perform	cleanup
tasks,	if	necessary.

Note:	See	"Iterators"	in	Chapter	3	for	more	complete	coverage	on	iterables	and	iterators.

Regular	Expressions
Let's	face	it:	regular	expressions	haven't	changed	much	in	JS	in	a	long	time.	So	it's	a	great
thing	that	they've	finally	learned	a	couple	of	new	tricks	in	ES6.	We'll	briefly	cover	the
additions	here,	but	the	overall	topic	of	regular	expressions	is	so	dense	that	you'll	need	to
turn	to	chapters/books	dedicated	to	it	(of	which	there	are	many!)	if	you	need	a	refresher.

Unicode	Flag

We'll	cover	the	topic	of	Unicode	in	more	detail	in	"Unicode"	later	in	this	chapter.	Here,	we'll
just	look	briefly	at	the	new		u		flag	for	ES6+	regular	expressions,	which	turns	on	Unicode
matching	for	that	expression.

JavaScript	strings	are	typically	interpreted	as	sequences	of	16-bit	characters,	which
correspond	to	the	characters	in	the	Basic	Multilingual	Plane	(BMP)
(http://en.wikipedia.org/wiki/Plane_%28Unicode%29).	But	there	are	many	UTF-16
characters	that	fall	outside	this	range,	and	so	strings	may	have	these	multibyte	characters	in
them.

Prior	to	ES6,	regular	expressions	could	only	match	based	on	BMP	characters,	which	means
that	those	extended	characters	were	treated	as	two	separate	characters	for	matching
purposes.	This	is	often	not	ideal.

So,	as	of	ES6,	the		u		flag	tells	a	regular	expression	to	process	a	string	with	the
interpretation	of	Unicode	(UTF-16)	characters,	such	that	such	an	extended	character	will	be
matched	as	a	single	entity.

Warning:	Despite	the	name	implication,	"UTF-16"	doesn't	strictly	mean	16	bits.	Modern
Unicode	uses	21	bits,	and	standards	like	UTF-8	and	UTF-16	refer	roughly	to	how	many	bits
are	used	in	the	representation	of	a	character.

An	example	(straight	from	the	ES6	specification):		(the	musical	symbol	G-clef)	is	Unicode
point	U+1D11E	(0x1D11E).
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If	this	character	appears	in	a	regular	expression	pattern	(like		// 	),	the	standard	BMP
interpretation	would	be	that	it's	two	separate	characters	(0xD834	and	0xDD1E)	to	match
with.	But	the	new	ES6	Unicode-aware	mode	means	that		//u 		(or	the	escaped	Unicode
form		/\u{1D11E}/u	)	will	match		"" 		in	a	string	as	a	single	matched	character.

You	might	be	wondering	why	this	matters?	In	non-Unicode	BMP	mode,	the	pattern	is	treated
as	two	separate	characters,	but	would	still	find	the	match	in	a	string	with	the		"" 		character
in	it,	as	you	can	see	if	you	try:

//.test(	 "-clef" 	);												//	true

The	length	of	the	match	is	what	matters.	For	example:

/^.-clef/	.test(	"-clef" 	);								//	false

/^.-clef/u.test(	"-clef" 	);								//	true

The	 	̂ .-clef		in	the	pattern	says	to	match	only	a	single	character	at	the	beginning	before
the	normal		"-clef"		text.	In	standard	BMP	mode,	the	match	fails	(two	characters),	but	with
	u		Unicode	mode	flagged	on,	the	match	succeeds	(one	character).

It's	also	important	to	note	that		u		makes	quantifiers	like		+		and		*		apply	to	the	entire
Unicode	code	point	as	a	single	character,	not	just	the	lower	surrogate	(aka	rightmost	half	of
the	symbol)	of	the	character.	The	same	goes	for	Unicode	characters	appearing	in	character
classes,	like		/[-]/u 	.

Note:	There's	plenty	more	nitty-gritty	details	about		u		behavior	in	regular	expressions,
which	Mathias	Bynens	(https://twitter.com/mathias)	has	written	extensively	about
(https://mathiasbynens.be/notes/es6-unicode-regex).

Sticky	Flag

Another	flag	mode	added	to	ES6	regular	expressions	is		y	,	which	is	often	called	"sticky
mode."	Sticky	essentially	means	the	regular	expression	has	a	virtual	anchor	at	its	beginning
that	keeps	it	rooted	to	matching	at	only	the	position	indicated	by	the	regular	expression's
	lastIndex		property.

To	illustrate,	let's	consider	two	regular	expressions,	the	first	without	sticky	mode	and	the
second	with:
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var	re1	=	/foo/,

				str	=	"++foo++";

re1.lastIndex;												//	0

re1.test(	str	);								//	true

re1.lastIndex;												//	0	--	not	updated

re1.lastIndex	=	4;

re1.test(	str	);								//	true	--	ignored	`lastIndex`

re1.lastIndex;												//	4	--	not	updated

Three	things	to	observe	about	this	snippet:

	test(..)		doesn't	pay	any	attention	to		lastIndex	's	value,	and	always	just	performs	its
match	from	the	beginning	of	the	input	string.
Because	our	pattern	does	not	have	a	 	̂ 		start-of-input	anchor,	the	search	for		"foo"		is
free	to	move	ahead	through	the	whole	string	looking	for	a	match.
	lastIndex		is	not	updated	by		test(..)	.

Now,	let's	try	a	sticky	mode	regular	expression:

var	re2	=	/foo/y,								//	<--	notice	the	`y`	sticky	flag

				str	=	"++foo++";

re2.lastIndex;												//	0

re2.test(	str	);								//	false	--	"foo"	not	found	at	`0`

re2.lastIndex;												//	0

re2.lastIndex	=	2;

re2.test(	str	);								//	true

re2.lastIndex;												//	5	--	updated	to	after	previous	match

re2.test(	str	);								//	false

re2.lastIndex;												//	0	--	reset	after	previous	match	failure

And	so	our	new	observations	about	sticky	mode:

	test(..)		uses		lastIndex		as	the	exact	and	only	position	in		str		to	look	to	make	a
match.	There	is	no	moving	ahead	to	look	for	the	match	--	it's	either	there	at	the
	lastIndex		position	or	not.
If	a	match	is	made,		test(..)		updates		lastIndex		to	point	to	the	character	immediately
following	the	match.	If	a	match	fails,		test(..)		resets		lastIndex		back	to		0	.

Normal	non-sticky	patterns	that	aren't	otherwise	 	̂ 	-rooted	to	the	start-of-input	are	free	to
move	ahead	in	the	input	string	looking	for	a	match.	But	sticky	mode	restricts	the	pattern	to
matching	just	at	the	position	of		lastIndex	.
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As	I	suggested	at	the	beginning	of	this	section,	another	way	of	looking	at	this	is	that		y	
implies	a	virtual	anchor	at	the	beginning	of	the	pattern	that	is	relative	(aka	constrains	the
start	of	the	match)	to	exactly	the		lastIndex		position.

Warning:	In	previous	literature	on	the	topic,	it	has	alternatively	been	asserted	that	this
behavior	is	like		y		implying	a	 	̂ 		(start-of-input)	anchor	in	the	pattern.	This	is	inaccurate.
We'll	explain	in	further	detail	in	"Anchored	Sticky"	later.

Sticky	Positioning

It	may	seem	strangely	limiting	that	to	use		y		for	repeated	matches,	you	have	to	manually
ensure		lastIndex		is	in	the	exact	right	position,	as	it	has	no	move-ahead	capability	for
matching.

Here's	one	possible	scenario:	if	you	know	that	the	match	you	care	about	is	always	going	to
be	at	a	position	that's	a	multiple	of	a	number	(e.g.,		0	,		10	,		20	,	etc.),	you	can	just
construct	a	limited	pattern	matching	what	you	care	about,	but	then	manually	set		lastIndex	
each	time	before	match	to	those	fixed	positions.

Consider:

var	re	=	/f../y,

				str	=	"foo							far							fad";

str.match(	re	);								//	["foo"]

re.lastIndex	=	10;

str.match(	re	);								//	["far"]

re.lastIndex	=	20;

str.match(	re	);								//	["fad"]

However,	if	you're	parsing	a	string	that	isn't	formatted	in	fixed	positions	like	that,	figuring	out
what	to	set		lastIndex		to	before	each	match	is	likely	going	to	be	untenable.

There's	a	saving	nuance	to	consider	here.		y		requires	that		lastIndex		be	in	the	exact
position	for	a	match	to	occur.	But	it	doesn't	strictly	require	that	you	manually	set		lastIndex	.

Instead,	you	can	construct	your	expressions	in	such	a	way	that	they	capture	in	each	main
match	everything	before	and	after	the	thing	you	care	about,	up	to	right	before	the	next	thing
you'll	care	to	match.

Because		lastIndex		will	set	to	the	next	character	beyond	the	end	of	a	match,	if	you've
matched	everything	up	to	that	point,		lastIndex		will	always	be	in	the	correct	position	for	the
	y		pattern	to	start	from	the	next	time.
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Warning:	If	you	can't	predict	the	structure	of	the	input	string	in	a	sufficiently	patterned	way
like	that,	this	technique	may	not	be	suitable	and	you	may	not	be	able	to	use		y	.

Having	structured	string	input	is	likely	the	most	practical	scenario	where		y		will	be	capable
of	performing	repeated	matching	throughout	a	string.	Consider:

var	re	=	/\d+\.\s(.*?)(?:\s|$)/y

				str	=	"1.	foo	2.	bar	3.	baz";

str.match(	re	);								//	[	"1.	foo	",	"foo"	]

re.lastIndex;												//	7	--	correct	position!

str.match(	re	);								//	[	"2.	bar	",	"bar"	]

re.lastIndex;												//	14	--	correct	position!

str.match(	re	);								//	["3.	baz",	"baz"]

This	works	because	I	knew	something	ahead	of	time	about	the	structure	of	the	input	string:
there	is	always	a	numeral	prefix	like		"1.	"		before	the	desired	match	(	"foo"	,	etc.),	and
either	a	space	after	it,	or	the	end	of	the	string	(	$		anchor).	So	the	regular	expression	I
constructed	captures	all	of	that	in	each	main	match,	and	then	I	use	a	matching	group		(	)	
so	that	the	stuff	I	really	care	about	is	separated	out	for	convenience.

After	the	first	match	(	"1.	foo	"	),	the		lastIndex		is		7	,	which	is	already	the	position
needed	to	start	the	next	match,	for		"2.	bar	"	,	and	so	on.

If	you're	going	to	use		y		sticky	mode	for	repeated	matches,	you'll	probably	want	to	look	for
opportunities	to	have		lastIndex		automatically	positioned	as	we've	just	demonstrated.

Sticky	Versus	Global

Some	readers	may	be	aware	that	you	can	emulate	something	like	this		lastIndex	-relative
matching	with	the		g		global	match	flag	and	the		exec(..)		method,	as	so:
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var	re	=	/o+./g,								//	<--	look,	`g`!

				str	=	"foot	book	more";

re.exec(	str	);												//	["oot"]

re.lastIndex;												//	4

re.exec(	str	);												//	["ook"]

re.lastIndex;												//	9

re.exec(	str	);												//	["or"]

re.lastIndex;												//	13

re.exec(	str	);												//	null	--	no	more	matches!

re.lastIndex;												//	0	--	starts	over	now!

While	it's	true	that		g		pattern	matches	with		exec(..)		start	their	matching	from		lastIndex	's
current	value,	and	also	update		lastIndex		after	each	match	(or	failure),	this	is	not	the	same
thing	as		y	's	behavior.

Notice	in	the	previous	snippet	that		"ook"	,	located	at	position		6	,	was	matched	and	found
by	the	second		exec(..)		call,	even	though	at	the	time,		lastIndex		was		4		(from	the	end	of
the	previous	match).	Why?	Because	as	we	said	earlier,	non-sticky	matches	are	free	to	move
ahead	in	their	matching.	A	sticky	mode	expression	would	have	failed	here,	because	it	would
not	be	allowed	to	move	ahead.

In	addition	to	perhaps	undesired	move-ahead	matching	behavior,	another	downside	to	just
using		g		instead	of		y		is	that		g		changes	the	behavior	of	some	matching	methods,	like
	str.match(re)	.

Consider:

var	re	=	/o+./g,								//	<--	look,	`g`!

				str	=	"foot	book	more";

str.match(	re	);								//	["oot","ook","or"]

See	how	all	the	matches	were	returned	at	once?	Sometimes	that's	OK,	but	sometimes	that's
not	what	you	want.

The		y		sticky	flag	will	give	you	one-at-a-time	progressive	matching	with	utilities	like
	test(..)		and		match(..)	.	Just	make	sure	the		lastIndex		is	always	in	the	right	position	for
each	match!

Anchored	Sticky
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As	we	warned	earlier,	it's	inaccurate	to	think	of	sticky	mode	as	implying	a	pattern	starts	with
	̂ 	.	The	 	̂ 		anchor	has	a	distinct	meaning	in	regular	expressions,	which	is	not	altered	by
sticky	mode.	 	̂ 		is	an	anchor	that	always	refers	to	the	beginning	of	the	input,	and	is	not	in
any	way	relative	to		lastIndex	.

Besides	poor/inaccurate	documentation	on	this	topic,	the	confusion	is	unfortunately
strengthened	further	because	an	older	pre-ES6	experiment	with	sticky	mode	in	Firefox	did
make	 	̂ 		relative	to		lastIndex	,	so	that	behavior	has	been	around	for	years.

ES6	elected	not	to	do	it	that	way.	 	̂ 		in	a	pattern	means	start-of-input	absolutely	and	only.

As	a	consequence,	a	pattern	like		/^foo/y		will	always	and	only	find	a		"foo"		match	at	the
beginning	of	a	string,	if	it's	allowed	to	match	there.	If		lastIndex		is	not		0	,	the	match	will	fail.
Consider:

var	re	=	/^foo/y,

				str	=	"foo";

re.test(	str	);												//	true

re.test(	str	);												//	false

re.lastIndex;												//	0	--	reset	after	failure

re.lastIndex	=	1;

re.test(	str	);												//	false	--	failed	for	positioning

re.lastIndex;												//	0	--	reset	after	failure

Bottom	line:		y		plus	 	̂ 		plus		lastIndex	>	0		is	an	incompatible	combination	that	will	always
cause	a	failed	match.

Note:	While		y		does	not	alter	the	meaning	of	 	̂ 		in	any	way,	the		m		multiline	mode	does,
such	that	 	̂ 		means	start-of-input	or	start	of	text	after	a	newline.	So,	if	you	combine		y		and
	m		flags	together	for	a	pattern,	you	can	find	multiple	 	̂ 	-rooted	matches	in	a	string.	But
remember:	because	it's		y		sticky,	you'll	have	to	make	sure		lastIndex		is	pointing	at	the
correct	new	line	position	(likely	by	matching	to	the	end	of	the	line)	each	subsequent	time,	or
no	subsequent	matches	will	be	made.

Regular	Expression		flags	

Prior	to	ES6,	if	you	wanted	to	examine	a	regular	expression	object	to	see	what	flags	it	had
applied,	you	needed	to	parse	them	out	--	ironically,	probably	with	another	regular	expression
--	from	the	content	of	the		source		property,	such	as:
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var	re	=	/foo/ig;

re.toString();												//	"/foo/ig"

var	flags	=	re.toString().match(	/\/([gim]*)$/	)[1];

flags;																				//	"ig"

As	of	ES6,	you	can	now	get	these	values	directly,	with	the	new		flags		property:

var	re	=	/foo/ig;

re.flags;																//	"gi"

It's	a	small	nuance,	but	the	ES6	specification	calls	for	the	expression's	flags	to	be	listed	in
this	order:		"gimuy"	,	regardless	of	what	order	the	original	pattern	was	specified	with.	That's
the	reason	for	the	difference	between		/ig		and		"gi"	.

No,	the	order	of	flags	specified	or	listed	doesn't	matter.

Another	tweak	from	ES6	is	that	the		RegExp(..)		constructor	is	now		flags	-aware	if	you
pass	it	an	existing	regular	expression:

var	re1	=	/foo*/y;

re1.source;																												//	"foo*"

re1.flags;																												//	"y"

var	re2	=	new	RegExp(	re1	);

re2.source;																												//	"foo*"

re2.flags;																												//	"y"

var	re3	=	new	RegExp(	re1,	"ig"	);

re3.source;																												//	"foo*"

re3.flags;																												//	"gi"

Prior	to	ES6,	the		re3		construction	would	throw	an	error,	but	as	of	ES6	you	can	override	the
flags	when	duplicating.

Number	Literal	Extensions
Prior	to	ES5,	number	literals	looked	like	the	following	--	the	octal	form	was	not	officially
specified,	only	allowed	as	an	extension	that	browsers	had	come	to	de	facto	agreement	on:
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var	dec	=	42,

				oct	=	052,

				hex	=	0x2a;

Note:	Though	you	are	specifying	a	number	in	different	bases,	the	number's	mathematic
value	is	what	is	stored,	and	the	default	output	interpretation	is	always	base-10.	The	three
variables	in	the	previous	snippet	all	have	the		42		value	stored	in	them.

To	further	illustrate	that		052		was	a	nonstandard	form	extension,	consider:

Number(	"42"	);																//	42

Number(	"052"	);												//	52

Number(	"0x2a"	);												//	42

ES5	continued	to	permit	the	browser-extended	octal	form	(including	such	inconsistencies),
except	that	in	strict	mode,	the	octal	literal	(	052	)	form	is	disallowed.	This	restriction	was
done	mainly	because	many	developers	had	the	habit	(from	other	languages)	of	seemingly
innocuously	prefixing	otherwise	base-10	numbers	with		0	's	for	code	alignment	purposes,
and	then	running	into	the	accidental	fact	that	they'd	changed	the	number	value	entirely!

ES6	continues	the	legacy	of	changes/variations	to	how	number	literals	outside	base-10
numbers	can	be	represented.	There's	now	an	official	octal	form,	an	amended	hexadecimal
form,	and	a	brand-new	binary	form.	For	web	compatibility	reasons,	the	old	octal		052		form
will	continue	to	be	legal	(though	unspecified)	in	non-strict	mode,	but	should	really	never	be
used	anymore.

Here	are	the	new	ES6	number	literal	forms:

var	dec	=	42,

				oct	=	0o52,												//	or	`0O52`	:(

				hex	=	0x2a,												//	or	`0X2a`	:/

				bin	=	0b101010;								//	or	`0B101010`	:/

The	only	decimal	form	allowed	is	base-10.	Octal,	hexadecimal,	and	binary	are	all	integer
forms.

And	the	string	representations	of	these	forms	are	all	able	to	be	coerced/converted	to	their
number	equivalent:

Number(	"42"	);												//	42

Number(	"0o52"	);								//	42

Number(	"0x2a"	);								//	42

Number(	"0b101010"	);				//	42

Syntax

784



Though	not	strictly	new	to	ES6,	it's	a	little-known	fact	that	you	can	actually	go	the	opposite
direction	of	conversion	(well,	sort	of):

var	a	=	42;

a.toString();												//	"42"	--	also	`a.toString(	10	)`

a.toString(	8	);								//	"52"

a.toString(	16	);								//	"2a"

a.toString(	2	);								//	"101010"

In	fact,	you	can	represent	a	number	this	way	in	any	base	from		2		to		36	,	though	it'd	be	rare
that	you'd	go	outside	the	standard	bases:	2,	8,	10,	and	16.

Unicode
Let	me	just	say	that	this	section	is	not	an	exhaustive	everything-you-ever-wanted-to-know-
about-Unicode	resource.	I	want	to	cover	what	you	need	to	know	that's	changing	for	Unicode
in	ES6,	but	we	won't	go	much	deeper	than	that.	Mathias	Bynens	(http://twitter.com/mathias)
has	written/spoken	extensively	and	brilliantly	about	JS	and	Unicode	(see
https://mathiasbynens.be/notes/javascript-unicode	and	http://fluentconf.com/javascript-html-
2015/public/content/2015/02/18-javascript-loves-unicode).

The	Unicode	characters	that	range	from		0x0000		to		0xFFFF		contain	all	the	standard	printed
characters	(in	various	languages)	that	you're	likely	to	have	seen	or	interacted	with.	This
group	of	characters	is	called	the	Basic	Multilingual	Plane	(BMP).	The	BMP	even	contains	fun
symbols	like	this	cool	snowman:	☃	(U+2603).

There	are	lots	of	other	extended	Unicode	characters	beyond	this	BMP	set,	which	range	up
to		0x10FFFF	.	These	symbols	are	often	referred	to	as	astral	symbols,	as	that's	the	name
given	to	the	set	of	16	planes	(e.g.,	layers/groupings)	of	characters	beyond	the	BMP.
Examples	of	astral	symbols	include		(U+1D11E)	and		(U+1F4A9).

Prior	to	ES6,	JavaScript	strings	could	specify	Unicode	characters	using	Unicode	escaping,
such	as:

var	snowman	=	"\u2603";

console.log(	snowman	);												//	"☃"

However,	the		\uXXXX		Unicode	escaping	only	supports	four	hexadecimal	characters,	so	you
can	only	represent	the	BMP	set	of	characters	in	this	way.	To	represent	an	astral	character
using	Unicode	escaping	prior	to	ES6,	you	need	to	use	a	surrogate	pair	--	basically	two
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specially	calculated	Unicode-escaped	characters	side	by	side,	which	JS	interprets	together
as	a	single	astral	character:

var	gclef	=	"\uD834\uDD1E";

console.log(	gclef	);												//	""

As	of	ES6,	we	now	have	a	new	form	for	Unicode	escaping	(in	strings	and	regular
expressions),	called	Unicode	code	point	escaping:

var	gclef	=	"\u{1D11E}";

console.log(	gclef	);												//	""

As	you	can	see,	the	difference	is	the	presence	of	the		{	}		in	the	escape	sequence,	which
allows	it	to	contain	any	number	of	hexadecimal	characters.	Because	you	only	need	six	to
represent	the	highest	possible	code	point	value	in	Unicode	(i.e.,	0x10FFFF),	this	is	sufficient.

Unicode-Aware	String	Operations

By	default,	JavaScript	string	operations	and	methods	are	not	sensitive	to	astral	symbols	in
string	values.	So,	they	treat	each	BMP	character	individually,	even	the	two	surrogate	halves
that	make	up	an	otherwise	single	astral	character.	Consider:

var	snowman	=	"☃";
snowman.length;																				//	1

var	gclef	=	"" ;

gclef.length;																				//	2

So,	how	do	we	accurately	calculate	the	length	of	such	a	string?	In	this	scenario,	the
following	trick	will	work:

var	gclef	=	"" ;

[...gclef].length;																//	1

Array.from(	gclef	).length;								//	1

Recall	from	the	"	for..of		Loops"	section	earlier	in	this	chapter	that	ES6	strings	have	built-in
iterators.	This	iterator	happens	to	be	Unicode-aware,	meaning	it	will	automatically	output	an
astral	symbol	as	a	single	value.	We	take	advantage	of	that	using	the		...		spread	operator
in	an	array	literal,	which	creates	an	array	of	the	string's	symbols.	Then	we	just	inspect	the
length	of	that	resultant	array.	ES6's		Array.from(..)		does	basically	the	same	thing	as
	[...XYZ]	,	but	we'll	cover	that	utility	in	detail	in	Chapter	6.
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Warning:	It	should	be	noted	that	constructing	and	exhausting	an	iterator	just	to	get	the
length	of	a	string	is	quite	expensive	on	performance,	relatively	speaking,	compared	to	what
a	theoretically	optimized	native	utility/property	would	do.

Unfortunately,	the	full	answer	is	not	as	simple	or	straightforward.	In	addition	to	the	surrogate
pairs	(which	the	string	iterator	takes	care	of),	there	are	special	Unicode	code	points	that
behave	in	other	special	ways,	which	is	much	harder	to	account	for.	For	example,	there's	a
set	of	code	points	that	modify	the	previous	adjacent	character,	known	as	Combining
Diacritical	Marks.

Consider	these	two	string	outputs:

console.log(	s1	);																//	"é"

console.log(	s2	);																//	"é"

They	look	the	same,	but	they're	not!	Here's	how	we	created		s1		and		s2	:

var	s1	=	"\xE9",

				s2	=	"e\u0301";

As	you	can	probably	guess,	our	previous		length		trick	doesn't	work	with		s2	:

[...s1].length;																				//	1

[...s2].length;																				//	2

So	what	can	we	do?	In	this	case,	we	can	perform	a	Unicode	normalization	on	the	value
before	inquiring	about	its	length,	using	the	ES6		String#normalize(..)		utility	(which	we'll
cover	more	in	Chapter	6):

var	s1	=	"\xE9",

				s2	=	"e\u0301";

s1.normalize().length;												//	1

s2.normalize().length;												//	1

s1	===	s2;																								//	false

s1	===	s2.normalize();												//	true

Essentially,		normalize(..)		takes	a	sequence	like		"e\u0301"		and	normalizes	it	to		"\xE9"	.
Normalization	can	even	combine	multiple	adjacent	combining	marks	if	there's	a	suitable
Unicode	character	they	combine	to:
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var	s1	=	"o\u0302\u0300",

				s2	=	s1.normalize(),

				s3	=	"ồ";

s1.length;																								//	3

s2.length;																								//	1

s3.length;																								//	1

s2	===	s3;																								//	true

Unfortunately,	normalization	isn't	fully	perfect	here,	either.	If	you	have	multiple	combining
marks	modifying	a	single	character,	you	may	not	get	the	length	count	you'd	expect,	because
there	may	not	be	a	single	defined	normalized	character	that	represents	the	combination	of
all	the	marks.	For	example:

var	s1	=	"e\u0301\u0330";

console.log(	s1	);																//	"ḛ́"

s1.normalize().length;												//	2

The	further	you	go	down	this	rabbit	hole,	the	more	you	realize	that	it's	difficult	to	get	one
precise	definition	for	"length."	What	we	see	visually	rendered	as	a	single	character	--	more
precisely	called	a	grapheme	--	doesn't	always	strictly	relate	to	a	single	"character"	in	the
program	processing	sense.

Tip:	If	you	want	to	see	just	how	deep	this	rabbit	hole	goes,	check	out	the	"Grapheme	Cluster
Boundaries"	algorithm
(http://www.Unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries).

Character	Positioning

Similar	to	length	complications,	what	does	it	actually	mean	to	ask,	"what	is	the	character	at
position	2?"	The	naive	pre-ES6	answer	comes	from		charAt(..)	,	which	will	not	respect	the
atomicity	of	an	astral	character,	nor	will	it	take	into	account	combining	marks.

Consider:
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var	s1	=	"abc\u0301d",

				s2	=	"ab\u0107d",

				s3	=	"ab\u{1d49e}d";

console.log(	s1	);																//	"abćd"

console.log(	s2	);																//	"abćd"

console.log(	s3	);																//	"abd"

s1.charAt(	2	);																				//	"c"

s2.charAt(	2	);																				//	"ć"

s3.charAt(	2	);																				//	""	<--	unprintable	surrogate

s3.charAt(	3	);																				//	""	<--	unprintable	surrogate

So,	is	ES6	giving	us	a	Unicode-aware	version	of		charAt(..)	?	Unfortunately,	no.	At	the	time
of	this	writing,	there's	a	proposal	for	such	a	utility	that's	under	consideration	for	post-ES6.

But	with	what	we	explored	in	the	previous	section	(and	of	course	with	the	limitations	noted
thereof!),	we	can	hack	an	ES6	answer:

var	s1	=	"abc\u0301d",

				s2	=	"ab\u0107d",

				s3	=	"ab\u{1d49e}d";

[...s1.normalize()][2];												//	"ć"

[...s2.normalize()][2];												//	"ć"

[...s3.normalize()][2];												//	""

Warning:	Reminder	of	an	earlier	warning:	constructing	and	exhausting	an	iterator	each	time
you	want	to	get	at	a	single	character	is...	not	very	ideal,	performance	wise.	Let's	hope	we	get
a	built-in	and	optimized	utility	for	this	soon,	post-ES6.

What	about	a	Unicode-aware	version	of	the		charCodeAt(..)		utility?	ES6	gives	us
	codePointAt(..)	:

var	s1	=	"abc\u0301d",

				s2	=	"ab\u0107d",

				s3	=	"ab\u{1d49e}d";

s1.normalize().codePointAt(	2	).toString(	16	);

//	"107"

s2.normalize().codePointAt(	2	).toString(	16	);

//	"107"

s3.normalize().codePointAt(	2	).toString(	16	);

//	"1d49e"
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What	about	the	other	direction?	A	Unicode-aware	version	of		String.fromCharCode(..)		is
ES6's		String.fromCodePoint(..)	:

String.fromCodePoint(	0x107	);								//	"ć"

String.fromCodePoint(	0x1d49e	);				//	""

So	wait,	can	we	just	combine		String.fromCodePoint(..)		and		codePointAt(..)		to	get	a
better	version	of	a	Unicode-aware		charAt(..)		from	earlier?	Yep!

var	s1	=	"abc\u0301d",

				s2	=	"ab\u0107d",

				s3	=	"ab\u{1d49e}d";

String.fromCodePoint(	s1.normalize().codePointAt(	2	)	);

//	"ć"

String.fromCodePoint(	s2.normalize().codePointAt(	2	)	);

//	"ć"

String.fromCodePoint(	s3.normalize().codePointAt(	2	)	);

//	""

There's	quite	a	few	other	string	methods	we	haven't	addressed	here,	including
	toUpperCase()	,		toLowerCase()	,		substring(..)	,		indexOf(..)	,		slice(..)	,	and	a	dozen
others.	None	of	these	have	been	changed	or	augmented	for	full	Unicode	awareness,	so	you
should	be	very	careful	--	probably	just	avoid	them!	--	when	working	with	strings	containing
astral	symbols.

There	are	also	several	string	methods	that	use	regular	expressions	for	their	behavior,	like
	replace(..)		and		match(..)	.	Thankfully,	ES6	brings	Unicode	awareness	to	regular
expressions,	as	we	covered	in	"Unicode	Flag"	earlier	in	this	chapter.

OK,	there	we	have	it!	JavaScript's	Unicode	string	support	is	significantly	better	over	pre-ES6
(though	still	not	perfect)	with	the	various	additions	we've	just	covered.

Unicode	Identifier	Names

Unicode	can	also	be	used	in	identifier	names	(variables,	properties,	etc.).	Prior	to	ES6,	you
could	do	this	with	Unicode-escapes,	like:

var	\u03A9	=	42;

//	same	as:	var	Ω	=	42;
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As	of	ES6,	you	can	also	use	the	earlier	explained	code	point	escape	syntax:

var	\u{2B400}	=	42;

//	same	as:	var		=	42;

There's	a	complex	set	of	rules	around	exactly	which	Unicode	characters	are	allowed.
Furthermore,	some	are	allowed	only	if	they're	not	the	first	character	of	the	identifier	name.

Note:	Mathias	Bynens	has	a	great	post	(https://mathiasbynens.be/notes/javascript-
identifiers-es6)	on	all	the	nitty-gritty	details.

The	reasons	for	using	such	unusual	characters	in	identifier	names	are	rather	rare	and
academic.	You	typically	won't	be	best	served	by	writing	code	that	relies	on	these	esoteric
capabilities.

Symbols
With	ES6,	for	the	first	time	in	quite	a	while,	a	new	primitive	type	has	been	added	to
JavaScript:	the		symbol	.	Unlike	the	other	primitive	types,	however,	symbols	don't	have	a
literal	form.

Here's	how	you	create	a	symbol:

var	sym	=	Symbol(	"some	optional	description"	);

typeof	sym;								//	"symbol"

Some	things	to	note:

You	cannot	and	should	not	use		new		with		Symbol(..)	.	It's	not	a	constructor,	nor	are
you	producing	an	object.
The	parameter	passed	to		Symbol(..)		is	optional.	If	passed,	it	should	be	a	string	that
gives	a	friendly	description	for	the	symbol's	purpose.
The		typeof		output	is	a	new	value	(	"symbol"	)	that	is	the	primary	way	to	identify	a
symbol.

The	description,	if	provided,	is	solely	used	for	the	stringification	representation	of	the	symbol:

sym.toString();								//	"Symbol(some	optional	description)"
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Similar	to	how	primitive	string	values	are	not	instances	of		String	,	symbols	are	also	not
instances	of		Symbol	.	If,	for	some	reason,	you	want	to	construct	a	boxed	wrapper	object
form	of	a	symbol	value,	you	can	do	the	following:

sym	instanceof	Symbol;								//	false

var	symObj	=	Object(	sym	);

symObj	instanceof	Symbol;				//	true

symObj.valueOf()	===	sym;				//	true

Note:		symObj		in	this	snippet	is	interchangeable	with		sym	;	either	form	can	be	used	in	all
places	symbols	are	utilized.	There's	not	much	reason	to	use	the	boxed	wrapper	object	form
(	symObj	)	instead	of	the	primitive	form	(	sym	).	Keeping	with	similar	advice	for	other
primitives,	it's	probably	best	to	prefer		sym		over		symObj	.

The	internal	value	of	a	symbol	itself	--	referred	to	as	its		name		--	is	hidden	from	the	code	and
cannot	be	obtained.	You	can	think	of	this	symbol	value	as	an	automatically	generated,
unique	(within	your	application)	string	value.

But	if	the	value	is	hidden	and	unobtainable,	what's	the	point	of	having	a	symbol	at	all?

The	main	point	of	a	symbol	is	to	create	a	string-like	value	that	can't	collide	with	any	other
value.	So,	for	example,	consider	using	a	symbol	as	a	constant	representing	an	event	name:

const	EVT_LOGIN	=	Symbol(	"event.login"	);

You'd	then	use		EVT_LOGIN		in	place	of	a	generic	string	literal	like		"event.login"	:

evthub.listen(	EVT_LOGIN,	function(data){

				//	..

}	);

The	benefit	here	is	that		EVT_LOGIN		holds	a	value	that	cannot	be	duplicated	(accidentally	or
otherwise)	by	any	other	value,	so	it	is	impossible	for	there	to	be	any	confusion	of	which
event	is	being	dispatched	or	handled.

Note:	Under	the	covers,	the		evthub		utility	assumed	in	the	previous	snippet	would	almost
certainly	be	using	the	symbol	value	from	the		EVT_LOGIN		argument	directly	as	the
property/key	in	some	internal	object	(hash)	that	tracks	event	handlers.	If		evthub		instead
needed	to	use	the	symbol	value	as	a	real	string,	it	would	need	to	explicitly	coerce	with
	String(..)		or		toString()	,	as	implicit	string	coercion	of	symbols	is	not	allowed.
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You	may	use	a	symbol	directly	as	a	property	name/key	in	an	object,	such	as	a	special
property	that	you	want	to	treat	as	hidden	or	meta	in	usage.	It's	important	to	know	that
although	you	intend	to	treat	it	as	such,	it	is	not	actually	a	hidden	or	untouchable	property.

Consider	this	module	that	implements	the	singleton	pattern	behavior	--	that	is,	it	only	allows
itself	to	be	created	once:

const	INSTANCE	=	Symbol(	"instance"	);

function	HappyFace()	{

				if	(HappyFace[INSTANCE])	return	HappyFace[INSTANCE];

				function	smile()	{	..	}

				return	HappyFace[INSTANCE]	=	{

								smile:	smile

				};

}

var	me	=	HappyFace(),

				you	=	HappyFace();

me	===	you;												//	true

The		INSTANCE		symbol	value	here	is	a	special,	almost	hidden,	meta-like	property	stored
statically	on	the		HappyFace()		function	object.

It	could	alternatively	have	been	a	plain	old	property	like		__instance	,	and	the	behavior	would
have	been	identical.	The	usage	of	a	symbol	simply	improves	the	metaprogramming	style,
keeping	this		INSTANCE		property	set	apart	from	any	other	normal	properties.

Symbol	Registry

One	mild	downside	to	using	symbols	as	in	the	last	few	examples	is	that	the		EVT_LOGIN		and
	INSTANCE		variables	had	to	be	stored	in	an	outer	scope	(perhaps	even	the	global	scope),	or
otherwise	somehow	stored	in	a	publicly	available	location,	so	that	all	parts	of	the	code	that
need	to	use	the	symbols	can	access	them.

To	aid	in	organizing	code	with	access	to	these	symbols,	you	can	create	symbol	values	with
the	global	symbol	registry.	For	example:

const	EVT_LOGIN	=	Symbol.for(	"event.login"	);

console.log(	EVT_LOGIN	);								//	Symbol(event.login)
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And:

function	HappyFace()	{

				const	INSTANCE	=	Symbol.for(	"instance"	);

				if	(HappyFace[INSTANCE])	return	HappyFace[INSTANCE];

				//	..

				return	HappyFace[INSTANCE]	=	{	..	};

}

	Symbol.for(..)		looks	in	the	global	symbol	registry	to	see	if	a	symbol	is	already	stored	with
the	provided	description	text,	and	returns	it	if	so.	If	not,	it	creates	one	to	return.	In	other
words,	the	global	symbol	registry	treats	symbol	values,	by	description	text,	as	singletons
themselves.

But	that	also	means	that	any	part	of	your	application	can	retrieve	the	symbol	from	the
registry	using		Symbol.for(..)	,	as	long	as	the	matching	description	name	is	used.

Ironically,	symbols	are	basically	intended	to	replace	the	use	of	magic	strings	(arbitrary	string
values	given	special	meaning)	in	your	application.	But	you	precisely	use	magic	description
string	values	to	uniquely	identify/locate	them	in	the	global	symbol	registry!

To	avoid	accidental	collisions,	you'll	probably	want	to	make	your	symbol	descriptions	quite
unique.	One	easy	way	of	doing	that	is	to	include	prefix/context/namespacing	information	in
them.

For	example,	consider	a	utility	such	as	the	following:

function	extractValues(str)	{

				var	key	=	Symbol.for(	"extractValues.parse"	),

								re	=	extractValues[key]	||

												/[^=&]+?=([^&]+?)(?=&|$)/g,

								values	=	[],	match;

				while	(match	=	re.exec(	str	))	{

								values.push(	match[1]	);

				}

				return	values;

}

We	use	the	magic	string	value		"extractValues.parse"		because	it's	quite	unlikely	that	any
other	symbol	in	the	registry	would	ever	collide	with	that	description.
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If	a	user	of	this	utility	wants	to	override	the	parsing	regular	expression,	they	can	also	use	the
symbol	registry:

extractValues[Symbol.for(	"extractValues.parse"	)]	=

				/..some	pattern../g;

extractValues(	"..some	string.."	);

Aside	from	the	assistance	the	symbol	registry	provides	in	globally	storing	these	values,
everything	we're	seeing	here	could	have	been	done	by	just	actually	using	the	magic	string
	"extractValues.parse"		as	the	key,	rather	than	the	symbol.	The	improvements	exist	at	the
metaprogramming	level	more	than	the	functional	level.

You	may	have	occasion	to	use	a	symbol	value	that	has	been	stored	in	the	registry	to	look	up
what	description	text	(key)	it's	stored	under.	For	example,	you	may	need	to	signal	to	another
part	of	your	application	how	to	locate	a	symbol	in	the	registry	because	you	cannot	pass	the
symbol	value	itself.

You	can	retrieve	a	registered	symbol's	description	text	(key)	using		Symbol.keyFor(..)	:

var	s	=	Symbol.for(	"something	cool"	);

var	desc	=	Symbol.keyFor(	s	);

console.log(	desc	);												//	"something	cool"

//	get	the	symbol	from	the	registry	again

var	s2	=	Symbol.for(	desc	);

s2	===	s;																								//	true

Symbols	as	Object	Properties

If	a	symbol	is	used	as	a	property/key	of	an	object,	it's	stored	in	a	special	way	so	that	the
property	will	not	show	up	in	a	normal	enumeration	of	the	object's	properties:

var	o	=	{

				foo:	42,

				[	Symbol(	"bar"	)	]:	"hello	world",

				baz:	true

};

Object.getOwnPropertyNames(	o	);				//	[	"foo","baz"	]

To	retrieve	an	object's	symbol	properties:
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Object.getOwnPropertySymbols(	o	);				//	[	Symbol(bar)	]

This	makes	it	clear	that	a	property	symbol	is	not	actually	hidden	or	inaccessible,	as	you	can
always	see	it	in	the		Object.getOwnPropertySymbols(..)		list.

Built-In	Symbols

ES6	comes	with	a	number	of	predefined	built-in	symbols	that	expose	various	meta
behaviors	on	JavaScript	object	values.	However,	these	symbols	are	not	registered	in	the
global	symbol	registry,	as	one	might	expect.

Instead,	they're	stored	as	properties	on	the		Symbol		function	object.	For	example,	in	the
"	for..of	"	section	earlier	in	this	chapter,	we	introduced	the		Symbol.iterator		value:

var	a	=	[1,2,3];

a[Symbol.iterator];												//	native	function

The	specification	uses	the		@@		prefix	notation	to	refer	to	the	built-in	symbols,	the	most
common	ones	being:		@@iterator	,		@@toStringTag	,		@@toPrimitive	.	Several	others	are
defined	as	well,	though	they	probably	won't	be	used	as	often.

Note:	See	"Well	Known	Symbols"	in	Chapter	7	for	detailed	information	about	how	these
built-in	symbols	are	used	for	meta	programming	purposes.

Review
ES6	adds	a	heap	of	new	syntax	forms	to	JavaScript,	so	there's	plenty	to	learn!

Most	of	these	are	designed	to	ease	the	pain	points	of	common	programming	idioms,	such	as
setting	default	values	to	function	parameters	and	gathering	the	"rest"	of	the	parameters	into
an	array.	Destructuring	is	a	powerful	tool	for	more	concisely	expressing	assignments	of
values	from	arrays	and	nested	objects.

While	features	like		=>		arrow	functions	appear	to	also	be	all	about	shorter	and	nicer-looking
syntax,	they	actually	have	very	specific	behaviors	that	you	should	intentionally	use	only	in
appropriate	situations.

Expanded	Unicode	support,	new	tricks	for	regular	expressions,	and	even	a	new	primitive
	symbol		type	round	out	the	syntactic	evolution	of	ES6.
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Chapter	3:	Organization
It's	one	thing	to	write	JS	code,	but	it's	another	to	properly	organize	it.	Utilizing	common
patterns	for	organization	and	reuse	goes	a	long	way	to	improving	the	readability	and
understandability	of	your	code.	Remember:	code	is	at	least	as	much	about	communicating
to	other	developers	as	it	is	about	feeding	the	computer	instructions.

ES6	has	several	important	features	that	help	significantly	improve	these	patterns,	including:
iterators,	generators,	modules,	and	classes.

Iterators
An	iterator	is	a	structured	pattern	for	pulling	information	from	a	source	in	one-at-a-time
fashion.	This	pattern	has	been	around	programming	for	a	long	time.	And	to	be	sure,	JS
developers	have	been	ad	hoc	designing	and	implementing	iterators	in	JS	programs	since
before	anyone	can	remember,	so	it's	not	at	all	a	new	topic.

What	ES6	has	done	is	introduce	an	implicit	standardized	interface	for	iterators.	Many	of	the
built-in	data	structures	in	JavaScript	will	now	expose	an	iterator	implementing	this	standard.
And	you	can	also	construct	your	own	iterators	adhering	to	the	same	standard,	for	maximal
interoperability.

Iterators	are	a	way	of	organizing	ordered,	sequential,	pull-based	consumption	of	data.

For	example,	you	may	implement	a	utility	that	produces	a	new	unique	identifier	each	time	it's
requested.	Or	you	may	produce	an	infinite	series	of	values	that	rotate	through	a	fixed	list,	in
round-robin	fashion.	Or	you	could	attach	an	iterator	to	a	database	query	result	to	pull	out
new	rows	one	at	a	time.

Although	they	have	not	commonly	been	used	in	JS	in	such	a	manner,	iterators	can	also	be
thought	of	as	controlling	behavior	one	step	at	a	time.	This	can	be	illustrated	quite	clearly
when	considering	generators	(see	"Generators"	later	in	this	chapter),	though	you	can
certainly	do	the	same	without	generators.

Interfaces

At	the	time	of	this	writing,	ES6	section	25.1.1.2	(https://people.mozilla.org/~jorendorff/es6-
draft.html#sec-iterator-interface)	details	the		Iterator		interface	as	having	the	following
requirement:
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Iterator	[required]

				next()	{method}:	retrieves	next	IteratorResult

There	are	two	optional	members	that	some	iterators	are	extended	with:

Iterator	[optional]

				return()	{method}:	stops	iterator	and	returns	IteratorResult

				throw()	{method}:	signals	error	and	returns	IteratorResult

The		IteratorResult		interface	is	specified	as:

IteratorResult

				value	{property}:	current	iteration	value	or	final	return	value

								(optional	if	`undefined`)

				done	{property}:	boolean,	indicates	completion	status

Note:	I	call	these	interfaces	implicit	not	because	they're	not	explicitly	called	out	in	the
specification	--	they	are!	--	but	because	they're	not	exposed	as	direct	objects	accessible	to
code.	JavaScript	does	not,	in	ES6,	support	any	notion	of	"interfaces,"	so	adherence	for	your
own	code	is	purely	conventional.	However,	wherever	JS	expects	an	iterator	--	a		for..of	
loop,	for	instance	--	what	you	provide	must	adhere	to	these	interfaces	or	the	code	will	fail.

There's	also	an		Iterable		interface,	which	describes	objects	that	must	be	able	to	produce
iterators:

Iterable

				@@iterator()	{method}:	produces	an	Iterator

If	you	recall	from	"Built-In	Symbols"	in	Chapter	2,		@@iterator		is	the	special	built-in	symbol
representing	the	method	that	can	produce	iterator(s)	for	the	object.

IteratorResult

The		IteratorResult		interface	specifies	that	the	return	value	from	any	iterator	operation	will
be	an	object	of	the	form:

{	value:	..	,	done:	true	/	false	}

Built-in	iterators	will	always	return	values	of	this	form,	but	more	properties	are,	of	course,
allowed	to	be	present	on	the	return	value,	as	necessary.
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For	example,	a	custom	iterator	may	add	additional	metadata	to	the	result	object	(e.g.,	where
the	data	came	from,	how	long	it	took	to	retrieve,	cache	expiration	length,	frequency	for	the
appropriate	next	request,	etc.).

Note:	Technically,		value		is	optional	if	it	would	otherwise	be	considered	absent	or	unset,
such	as	in	the	case	of	the	value		undefined	.	Because	accessing		res.value		will	produce
	undefined		whether	it's	present	with	that	value	or	absent	entirely,	the	presence/absence	of
the	property	is	more	an	implementation	detail	or	an	optimization	(or	both),	rather	than	a
functional	issue.

	next()		Iteration

Let's	look	at	an	array,	which	is	an	iterable,	and	the	iterator	it	can	produce	to	consume	its
values:

var	arr	=	[1,2,3];

var	it	=	arr[Symbol.iterator]();

it.next();								//	{	value:	1,	done:	false	}

it.next();								//	{	value:	2,	done:	false	}

it.next();								//	{	value:	3,	done:	false	}

it.next();								//	{	value:	undefined,	done:	true	}

Each	time	the	method	located	at		Symbol.iterator		(see	Chapters	2	and	7)	is	invoked	on	this
	arr		value,	it	will	produce	a	new	fresh	iterator.	Most	structures	will	do	the	same,	including	all
the	built-in	data	structures	in	JS.

However,	a	structure	like	an	event	queue	consumer	might	only	ever	produce	a	single	iterator
(singleton	pattern).	Or	a	structure	might	only	allow	one	unique	iterator	at	a	time,	requiring	the
current	one	to	be	completed	before	a	new	one	can	be	created.

The		it		iterator	in	the	previous	snippet	doesn't	report		done:	true		when	you	receive	the		3	
value.	You	have	to	call		next()		again,	in	essence	going	beyond	the	end	of	the	array's
values,	to	get	the	complete	signal		done:	true	.	It	may	not	be	clear	why	until	later	in	this
section,	but	that	design	decision	will	typically	be	considered	a	best	practice.

Primitive	string	values	are	also	iterables	by	default:
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var	greeting	=	"hello	world";

var	it	=	greeting[Symbol.iterator]();

it.next();								//	{	value:	"h",	done:	false	}

it.next();								//	{	value:	"e",	done:	false	}

..

Note:	Technically,	the	primitive	value	itself	isn't	iterable,	but	thanks	to	"boxing",		"hello
world"		is	coerced/converted	to	its		String		object	wrapper	form,	which	is	an	iterable.	See
the	Types	&	Grammar	title	of	this	series	for	more	information.

ES6	also	includes	several	new	data	structures,	called	collections	(see	Chapter	5).	These
collections	are	not	only	iterables	themselves,	but	they	also	provide	API	method(s)	to
generate	an	iterator,	such	as:

var	m	=	new	Map();

m.set(	"foo",	42	);

m.set(	{	cool:	true	},	"hello	world"	);

var	it1	=	m[Symbol.iterator]();

var	it2	=	m.entries();

it1.next();								//	{	value:	[	"foo",	42	],	done:	false	}

it2.next();								//	{	value:	[	"foo",	42	],	done:	false	}

..

The		next(..)		method	of	an	iterator	can	optionally	take	one	or	more	arguments.	The	built-in
iterators	mostly	do	not	exercise	this	capability,	though	a	generator's	iterator	definitely	does
(see	"Generators"	later	in	this	chapter).

By	general	convention,	including	all	the	built-in	iterators,	calling		next(..)		on	an	iterator
that's	already	been	exhausted	is	not	an	error,	but	will	simply	continue	to	return	the	result		{
value:	undefined,	done:	true	}	.

Optional:		return(..)		and		throw(..)	

The	optional	methods	on	the	iterator	interface	--		return(..)		and		throw(..)		--	are	not
implemented	on	most	of	the	built-in	iterators.	However,	they	definitely	do	mean	something	in
the	context	of	generators,	so	see	"Generators"	for	more	specific	information.

	return(..)		is	defined	as	sending	a	signal	to	an	iterator	that	the	consuming	code	is
complete	and	will	not	be	pulling	any	more	values	from	it.	This	signal	can	be	used	to	notify
the	producer	(the	iterator	responding	to		next(..)		calls)	to	perform	any	cleanup	it	may	need
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to	do,	such	as	releasing/closing	network,	database,	or	file	handle	resources.

If	an	iterator	has	a		return(..)		present	and	any	condition	occurs	that	can	automatically	be
interpreted	as	abnormal	or	early	termination	of	consuming	the	iterator,		return(..)		will
automatically	be	called.	You	can	call		return(..)		manually	as	well.

	return(..)		will	return	an		IteratorResult		object	just	like		next(..)		does.	In	general,	the
optional	value	you	send	to		return(..)		would	be	sent	back	as		value		in	this
	IteratorResult	,	though	there	are	nuanced	cases	where	that	might	not	be	true.

	throw(..)		is	used	to	signal	an	exception/error	to	an	iterator,	which	possibly	may	be	used
differently	by	the	iterator	than	the	completion	signal	implied	by		return(..)	.	It	does	not
necessarily	imply	a	complete	stop	of	the	iterator	as		return(..)		generally	does.

For	example,	with	generator	iterators,		throw(..)		actually	injects	a	thrown	exception	into	the
generator's	paused	execution	context,	which	can	be	caught	with	a		try..catch	.	An
uncaught		throw(..)		exception	would	end	up	abnormally	aborting	the	generator's	iterator.

Note:	By	general	convention,	an	iterator	should	not	produce	any	more	results	after	having
called		return(..)		or		throw(..)	.

Iterator	Loop

As	we	covered	in	the	"	for..of	"	section	in	Chapter	2,	the	ES6		for..of		loop	directly
consumes	a	conforming	iterable.

If	an	iterator	is	also	an	iterable,	it	can	be	used	directly	with	the		for..of		loop.	You	make	an
iterator	an	iterable	by	giving	it	a		Symbol.iterator		method	that	simply	returns	the	iterator
itself:

var	it	=	{

				//	make	the	`it`	iterator	an	iterable

				[Symbol.iterator]()	{	return	this;	},

				next()	{	..	},

				..

};

it[Symbol.iterator]()	===	it;								//	true

Now	we	can	consume	the		it		iterator	with	a		for..of		loop:

for	(var	v	of	it)	{

				console.log(	v	);

}
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To	fully	understand	how	such	a	loop	works,	recall	the		for		equivalent	of	a		for..of		loop
from	Chapter	2:

for	(var	v,	res;	(res	=	it.next())	&&	!res.done;	)	{

				v	=	res.value;

				console.log(	v	);

}

If	you	look	closely,	you'll	see	that		it.next()		is	called	before	each	iteration,	and	then
	res.done		is	consulted.	If		res.done		is		true	,	the	expression	evaluates	to		false		and	the
iteration	doesn't	occur.

Recall	earlier	that	we	suggested	iterators	should	in	general	not	return		done:	true		along
with	the	final	intended	value	from	the	iterator.	Now	you	can	see	why.

If	an	iterator	returned		{	done:	true,	value:	42	}	,	the		for..of		loop	would	completely
discard	the		42		value	and	it'd	be	lost.	For	this	reason,	assuming	that	your	iterator	may	be
consumed	by	patterns	like	the		for..of		loop	or	its	manual		for		equivalent,	you	should
probably	wait	to	return		done:	true		for	signaling	completion	until	after	you've	already
returned	all	relevant	iteration	values.

Warning:	You	can,	of	course,	intentionally	design	your	iterator	to	return	some	relevant
	value		at	the	same	time	as	returning		done:	true	.	But	don't	do	this	unless	you've
documented	that	as	the	case,	and	thus	implicitly	forced	consumers	of	your	iterator	to	use	a
different	pattern	for	iteration	than	is	implied	by		for..of		or	its	manual	equivalent	we
depicted.

Custom	Iterators

In	addition	to	the	standard	built-in	iterators,	you	can	make	your	own!	All	it	takes	to	make
them	interoperate	with	ES6's	consumption	facilities	(e.g.,	the		for..of		loop	and	the		...	
operator)	is	to	adhere	to	the	proper	interface(s).

Let's	try	constructing	an	iterator	that	produces	the	infinite	series	of	numbers	in	the	Fibonacci
sequence:
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var	Fib	=	{

				[Symbol.iterator]()	{

								var	n1	=	1,	n2	=	1;

								return	{

												//	make	the	iterator	an	iterable

												[Symbol.iterator]()	{	return	this;	},

												next()	{

																var	current	=	n2;

																n2	=	n1;

																n1	=	n1	+	current;

																return	{	value:	current,	done:	false	};

												},

												return(v)	{

																console.log(

																				"Fibonacci	sequence	abandoned."

																);

																return	{	value:	v,	done:	true	};

												}

								};

				}

};

for	(var	v	of	Fib)	{

				console.log(	v	);

				if	(v	>	50)	break;

}

//	1	1	2	3	5	8	13	21	34	55

//	Fibonacci	sequence	abandoned.

Warning:	If	we	hadn't	inserted	the		break		condition,	this		for..of		loop	would	have	run
forever,	which	is	probably	not	the	desired	result	in	terms	of	breaking	your	program!

The		Fib[Symbol.iterator]()		method	when	called	returns	the	iterator	object	with		next()	
and		return(..)		methods	on	it.	State	is	maintained	via		n1		and		n2		variables,	which	are
kept	by	the	closure.

Let's	next	consider	an	iterator	that	is	designed	to	run	through	a	series	(aka	a	queue)	of
actions,	one	item	at	a	time:
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var	tasks	=	{

				[Symbol.iterator]()	{

								var	steps	=	this.actions.slice();

								return	{

												//	make	the	iterator	an	iterable

												[Symbol.iterator]()	{	return	this;	},

												next(...args)	{

																if	(steps.length	>	0)	{

																				let	res	=	steps.shift()(	...args	);

																				return	{	value:	res,	done:	false	};

																}

																else	{

																				return	{	done:	true	}

																}

												},

												return(v)	{

																steps.length	=	0;

																return	{	value:	v,	done:	true	};

												}

								};

				},

				actions:	[]

};

The	iterator	on		tasks		steps	through	functions	found	in	the		actions		array	property,	if	any,
and	executes	them	one	at	a	time,	passing	in	whatever	arguments	you	pass	to		next(..)	,
and	returning	any	return	value	to	you	in	the	standard		IteratorResult		object.

Here's	how	we	could	use	this		tasks		queue:
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tasks.actions.push(

				function	step1(x){

								console.log(	"step	1:",	x	);

								return	x	*	2;

				},

				function	step2(x,y){

								console.log(	"step	2:",	x,	y	);

								return	x	+	(y	*	2);

				},

				function	step3(x,y,z){

								console.log(	"step	3:",	x,	y,	z	);

								return	(x	*	y)	+	z;

				}

);

var	it	=	tasks[Symbol.iterator]();

it.next(	10	);												//	step	1:	10

																								//	{	value:			20,	done:	false	}

it.next(	20,	50	);								//	step	2:	20	50

																								//	{	value:		120,	done:	false	}

it.next(	20,	50,	120	);				//	step	3:	20	50	120

																								//	{	value:	1120,	done:	false	}

it.next();																//	{	done:	true	}

This	particular	usage	reinforces	that	iterators	can	be	a	pattern	for	organizing	functionality,
not	just	data.	It's	also	reminiscent	of	what	we'll	see	with	generators	in	the	next	section.

You	could	even	get	creative	and	define	an	iterator	that	represents	meta	operations	on	a
single	piece	of	data.	For	example,	we	could	define	an	iterator	for	numbers	that	by	default
ranges	from		0		up	to	(or	down	to,	for	negative	numbers)	the	number	in	question.

Consider:
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if	(!Number.prototype[Symbol.iterator])	{

				Object.defineProperty(

								Number.prototype,

								Symbol.iterator,

								{

												writable:	true,

												configurable:	true,

												enumerable:	false,

												value:	function	iterator(){

																var	i,	inc,	done	=	false,	top	=	+this;

																//	iterate	positively	or	negatively?

																inc	=	1	*	(top	<	0	?	-1	:	1);

																return	{

																				//	make	the	iterator	itself	an	iterable!

																				[Symbol.iterator](){	return	this;	},

																				next()	{

																								if	(!done)	{

																												//	initial	iteration	always	0

																												if	(i	==	null)	{

																																i	=	0;

																												}

																												//	iterating	positively

																												else	if	(top	>=	0)	{

																																i	=	Math.min(top,i	+	inc);

																												}

																												//	iterating	negatively

																												else	{

																																i	=	Math.max(top,i	+	inc);

																												}

																												//	done	after	this	iteration?

																												if	(i	==	top)	done	=	true;

																												return	{	value:	i,	done:	false	};

																								}

																								else	{

																												return	{	done:	true	};

																								}

																				}

																};

												}

								}

				);

}

Now,	what	tricks	does	this	creativity	afford	us?
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for	(var	i	of	3)	{

				console.log(	i	);

}

//	0	1	2	3

[...-3];																//	[0,-1,-2,-3]

Those	are	some	fun	tricks,	though	the	practical	utility	is	somewhat	debatable.	But	then
again,	one	might	wonder	why	ES6	didn't	just	ship	with	such	a	minor	but	delightful	feature
easter	egg!?

I'd	be	remiss	if	I	didn't	at	least	remind	you	that	extending	native	prototypes	as	I'm	doing	in
the	previous	snippet	is	something	you	should	only	do	with	caution	and	awareness	of
potential	hazards.

In	this	case,	the	chances	that	you'll	have	a	collision	with	other	code	or	even	a	future	JS
feature	is	probably	exceedingly	low.	But	just	beware	of	the	slight	possibility.	And	document
what	you're	doing	verbosely	for	posterity's	sake.

Note:	I've	expounded	on	this	particular	technique	in	this	blog	post
(http://blog.getify.com/iterating-es6-numbers/)	if	you	want	more	details.	And	this	comment
(http://blog.getify.com/iterating-es6-numbers/comment-page-1/#comment-535294)	even
suggests	a	similar	trick	but	for	making	string	character	ranges.

Iterator	Consumption

We've	already	shown	consuming	an	iterator	item	by	item	with	the		for..of		loop.	But	there
are	other	ES6	structures	that	can	consume	iterators.

Let's	consider	the	iterator	attached	to	this	array	(though	any	iterator	we	choose	would	have
the	following	behaviors):

var	a	=	[1,2,3,4,5];

The		...		spread	operator	fully	exhausts	an	iterator.	Consider:

function	foo(x,y,z,w,p)	{

				console.log(	x	+	y	+	z	+	w	+	p	);

}

foo(	...a	);												//	15

	...		can	also	spread	an	iterator	inside	an	array:
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var	b	=	[	0,	...a,	6	];

b;																								//	[0,1,2,3,4,5,6]

Array	destructuring	(see	"Destructuring"	in	Chapter	2)	can	partially	or	completely	(if	paired
with	a		...		rest/gather	operator)	consume	an	iterator:

var	it	=	a[Symbol.iterator]();

var	[x,y]	=	it;												//	take	just	the	first	two	elements	from	`it`

var	[z,	...w]	=	it;								//	take	the	third,	then	the	rest	all	at	once

//	is	`it`	fully	exhausted?	Yep.

it.next();																//	{	value:	undefined,	done:	true	}

x;																								//	1

y;																								//	2

z;																								//	3

w;																								//	[4,5]

Generators
All	functions	run	to	completion,	right?	In	other	words,	once	a	function	starts	running,	it
finishes	before	anything	else	can	interrupt.

At	least	that's	how	it's	been	for	the	whole	history	of	JavaScript	up	to	this	point.	As	of	ES6,	a
new	somewhat	exotic	form	of	function	is	being	introduced,	called	a	generator.	A	generator
can	pause	itself	in	mid-execution,	and	can	be	resumed	either	right	away	or	at	a	later	time.
So	it	clearly	does	not	hold	the	run-to-completion	guarantee	that	normal	functions	do.

Moreover,	each	pause/resume	cycle	in	mid-execution	is	an	opportunity	for	two-way	message
passing,	where	the	generator	can	return	a	value,	and	the	controlling	code	that	resumes	it
can	send	a	value	back	in.

As	with	iterators	in	the	previous	section,	there	are	multiple	ways	to	think	about	what	a
generator	is,	or	rather	what	it's	most	useful	for.	There's	no	one	right	answer,	but	we'll	try	to
consider	several	angles.

Note:	See	the	Async	&	Performance	title	of	this	series	for	more	information	about
generators,	and	also	see	Chapter	4	of	this	current	title.

Syntax

The	generator	function	is	declared	with	this	new	syntax:
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function	*foo()	{

				//	..

}

The	position	of	the		*		is	not	functionally	relevant.	The	same	declaration	could	be	written	as
any	of	the	following:

function	*foo()		{	..	}

function*	foo()		{	..	}

function	*	foo()	{	..	}

function*foo()			{	..	}

..

The	only	difference	here	is	stylistic	preference.	Most	other	literature	seems	to	prefer
	function*	foo(..)	{	..	}	.	I	prefer		function	*foo(..)	{	..	}	,	so	that's	how	I'll	present
them	for	the	rest	of	this	title.

My	reason	is	purely	didactic	in	nature.	In	this	text,	when	referring	to	a	generator	function,	I
will	use		*foo(..)	,	as	opposed	to		foo(..)		for	a	normal	function.	I	observe	that		*foo(..)	
more	closely	matches	the		*		positioning	of		function	*foo(..)	{	..	}	.

Moreover,	as	we	saw	in	Chapter	2	with	concise	methods,	there's	a	concise	generator	form	in
object	literals:

var	a	=	{

				*foo()	{	..	}

};

I	would	say	that	with	concise	generators,		*foo()	{	..	}		is	rather	more	natural	than		*	foo()
{	..	}	.	So	that	further	argues	for	matching	the	consistency	with		*foo()	.

Consistency	eases	understanding	and	learning.

Executing	a	Generator

Though	a	generator	is	declared	with		*	,	you	still	execute	it	like	a	normal	function:

foo();

You	can	still	pass	it	arguments,	as	in:
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function	*foo(x,y)	{

				//	..

}

foo(	5,	10	);

The	major	difference	is	that	executing	a	generator,	like		foo(5,10)		doesn't	actually	run	the
code	in	the	generator.	Instead,	it	produces	an	iterator	that	will	control	the	generator	to
execute	its	code.

We'll	come	back	to	this	later	in	"Iterator	Control,"	but	briefly:

function	*foo()	{

				//	..

}

var	it	=	foo();

//	to	start/advanced	`*foo()`,	call

//	`it.next(..)`

	yield	

Generators	also	have	a	new	keyword	you	can	use	inside	them,	to	signal	the	pause	point:
	yield	.	Consider:

function	*foo()	{

				var	x	=	10;

				var	y	=	20;

				yield;

				var	z	=	x	+	y;

}

In	this		*foo()		generator,	the	operations	on	the	first	two	lines	would	run	at	the	beginning,
then		yield		would	pause	the	generator.	If	and	when	resumed,	the	last	line	of		*foo()		would
run.		yield		can	appear	any	number	of	times	(or	not	at	all,	technically!)	in	a	generator.

You	can	even	put		yield		inside	a	loop,	and	it	can	represent	a	repeated	pause	point.	In	fact,
a	loop	that	never	completes	just	means	a	generator	that	never	completes,	which	is
completely	valid,	and	sometimes	entirely	what	you	need.
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	yield		is	not	just	a	pause	point.	It's	an	expression	that	sends	out	a	value	when	pausing	the
generator.	Here's	a		while..true		loop	in	a	generator	that	for	each	iteration		yield	s	a	new
random	number:

function	*foo()	{

				while	(true)	{

								yield	Math.random();

				}

}

The		yield	..		expression	not	only	sends	a	value	--		yield		without	a	value	is	the	same	as
	yield	undefined		--	but	also	receives	(e.g.,	is	replaced	by)	the	eventual	resumption	value.
Consider:

function	*foo()	{

				var	x	=	yield	10;

				console.log(	x	);

}

This	generator	will	first		yield		out	the	value		10		when	pausing	itself.	When	you	resume	the
generator	--	using	the		it.next(..)		we	referred	to	earlier	--	whatever	value	(if	any)	you
resume	with	will	replace/complete	the	whole		yield	10		expression,	meaning	that	value	will
be	assigned	to	the		x		variable.

A		yield	..		expression	can	appear	anywhere	a	normal	expression	can.	For	example:

function	*foo()	{

				var	arr	=	[	yield	1,	yield	2,	yield	3	];

				console.log(	arr,	yield	4	);

}

	*foo()		here	has	four		yield	..		expressions.	Each		yield		results	in	the	generator	pausing
to	wait	for	a	resumption	value	that's	then	used	in	the	various	expression	contexts.

	yield		is	not	technically	an	operator,	though	when	used	like		yield	1		it	sure	looks	like	it.
Because		yield		can	be	used	all	by	itself	as	in		var	x	=	yield;	,	thinking	of	it	as	an	operator
can	sometimes	be	confusing.

Technically,		yield	..		is	of	the	same	"expression	precedence"	--	similar	conceptually	to
operator	precedence	--	as	an	assignment	expression	like		a	=	3	.	That	means		yield	..	
can	basically	appear	anywhere		a	=	3		can	validly	appear.

Let's	illustrate	the	symmetry:
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var	a,	b;

a	=	3;																				//	valid

b	=	2	+	a	=	3;												//	invalid

b	=	2	+	(a	=	3);								//	valid

yield	3;																//	valid

a	=	2	+	yield	3;								//	invalid

a	=	2	+	(yield	3);								//	valid

Note:	If	you	think	about	it,	it	makes	a	sort	of	conceptual	sense	that	a		yield	..		expression
would	behave	similar	to	an	assignment	expression.	When	a	paused		yield		expression	is
resumed,	it's	completed/replaced	by	the	resumption	value	in	a	way	that's	not	terribly
dissimilar	from	being	"assigned"	that	value.

The	takeaway:	if	you	need		yield	..		to	appear	in	a	position	where	an	assignment	like		a	=
3		would	not	itself	be	allowed,	it	needs	to	be	wrapped	in	a		(	)	.

Because	of	the	low	precedence	of	the		yield		keyword,	almost	any	expression	after	a		yield
..		will	be	computed	first	before	being	sent	with		yield	.	Only	the		...		spread	operator	and
the		,		comma	operator	have	lower	precedence,	meaning	they'd	bind	after	the		yield		has
been	evaluated.

So	just	like	with	multiple	operators	in	normal	statements,	another	case	where		(	)		might	be
needed	is	to	override	(elevate)	the	low	precedence	of		yield	,	such	as	the	difference
between	these	expressions:

yield	2	+	3;												//	same	as	`yield	(2	+	3)`

(yield	2)	+	3;												//	`yield	2`	first,	then	`+	3`

Just	like		=		assignment,		yield		is	also	"right-associative,"	which	means	that	multiple
	yield		expressions	in	succession	are	treated	as	having	been		(	..	)		grouped	from	right	to
left.	So,		yield	yield	yield	3		is	treated	as		yield	(yield	(yield	3))	.	A	"left-associative"
interpretation	like		((yield)	yield)	yield	3		would	make	no	sense.

Just	like	with	operators,	it's	a	good	idea	to	use		(	..	)		grouping,	even	if	not	strictly	required,
to	disambiguate	your	intent	if		yield		is	combined	with	other	operators	or		yield	s.

Note:	See	the	Types	&	Grammar	title	of	this	series	for	more	information	about	operator
precedence	and	associativity.

	yield	*	
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In	the	same	way	that	the		*		makes	a		function		declaration	into		function	*		generator
declaration,	a		*		makes		yield		into		yield	*	,	which	is	a	very	different	mechanism,	called
yield	delegation.	Grammatically,		yield	*..		will	behave	the	same	as	a		yield	..	,	as
discussed	in	the	previous	section.

	yield	*	..		requires	an	iterable;	it	then	invokes	that	iterable's	iterator,	and	delegates	its	own
host	generator's	control	to	that	iterator	until	it's	exhausted.	Consider:

function	*foo()	{

				yield	*[1,2,3];

}

Note:	As	with	the		*		position	in	a	generator's	declaration	(discussed	earlier),	the		*	
positioning	in		yield	*		expressions	is	stylistically	up	to	you.	Most	other	literature	prefers
	yield*	..	,	but	I	prefer		yield	*..	,	for	very	symmetrical	reasons	as	already	discussed.

The		[1,2,3]		value	produces	an	iterator	that	will	step	through	its	values,	so	the		*foo()	
generator	will	yield	those	values	out	as	it's	consumed.	Another	way	to	illustrate	the	behavior
is	in	yield	delegating	to	another	generator:

function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

function	*bar()	{

				yield	*foo();

}

The	iterator	produced	when		*bar()		calls		*foo()		is	delegated	to	via		yield	*	,	meaning
whatever	value(s)		*foo()		produces	will	be	produced	by		*bar()	.

Whereas	with		yield	..		the	completion	value	of	the	expression	comes	from	resuming	the
generator	with		it.next(..)	,	the	completion	value	of	the		yield	*..		expression	comes	from
the	return	value	(if	any)	from	the	delegated-to	iterator.

Built-in	iterators	generally	don't	have	return	values,	as	we	covered	at	the	end	of	the	"Iterator
Loop"	section	earlier	in	this	chapter.	But	if	you	define	your	own	custom	iterator	(or
generator),	you	can	design	it	to		return		a	value,	which		yield	*..		would	capture:
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function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

				return	4;

}

function	*bar()	{

				var	x	=	yield	*foo();

				console.log(	"x:",	x	);

}

for	(var	v	of	bar())	{

				console.log(	v	);

}

//	1	2	3

//	x:	4

While	the		1	,		2	,	and		3		values	are		yield	ed	out	of		*foo()		and	then	out	of		*bar()	,	the
	4		value	returned	from		*foo()		is	the	completion	value	of	the		yield	*foo()		expression,
which	then	gets	assigned	to		x	.

Because		yield	*		can	call	another	generator	(by	way	of	delegating	to	its	iterator),	it	can
also	perform	a	sort	of	generator	recursion	by	calling	itself:

function	*foo(x)	{

				if	(x	<	3)	{

								x	=	yield	*foo(	x	+	1	);

				}

				return	x	*	2;

}

foo(	1	);

The	result	from		foo(1)		and	then	calling	the	iterator's		next()		to	run	it	through	its	recursive
steps	will	be		24	.	The	first		*foo(..)		run	has		x		at	value		1	,	which	is		x	<	3	.		x	+	1		is
passed	recursively	to		*foo(..)	,	so		x		is	then		2	.	One	more	recursive	call	results	in		x		of
	3	.

Now,	because		x	<	3		fails,	the	recursion	stops,	and		return	3	*	2		gives		6		back	to	the
previous	call's		yield	*..		expression,	which	is	then	assigned	to		x	.	Another		return	6	*	2	
returns		12		back	to	the	previous	call's		x	.	Finally		12	*	2	,	or		24	,	is	returned	from	the
completed	run	of	the		*foo(..)		generator.

Iterator	Control
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Earlier,	we	briefly	introduced	the	concept	that	generators	are	controlled	by	iterators.	Let's
fully	dig	into	that	now.

Recall	the	recursive		*foo(..)		from	the	previous	section.	Here's	how	we'd	run	it:

function	*foo(x)	{

				if	(x	<	3)	{

								x	=	yield	*foo(	x	+	1	);

				}

				return	x	*	2;

}

var	it	=	foo(	1	);

it.next();																//	{	value:	24,	done:	true	}

In	this	case,	the	generator	doesn't	really	ever	pause,	as	there's	no		yield	..		expression.
Instead,		yield	*		just	keeps	the	current	iteration	step	going	via	the	recursive	call.	So,	just
one	call	to	the	iterator's		next()		function	fully	runs	the	generator.

Now	let's	consider	a	generator	that	will	have	multiple	steps	and	thus	multiple	produced
values:

function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

We	already	know	we	can	consume	an	iterator,	even	one	attached	to	a	generator	like
	*foo()	,	with	a		for..of		loop:

for	(var	v	of	foo())	{

				console.log(	v	);

}

//	1	2	3

Note:	The		for..of		loop	requires	an	iterable.	A	generator	function	reference	(like		foo	)	by
itself	is	not	an	iterable;	you	must	execute	it	with		foo()		to	get	the	iterator	(which	is	also	an
iterable,	as	we	explained	earlier	in	this	chapter).	You	could	theoretically	extend	the
	GeneratorPrototype		(the	prototype	of	all	generator	functions)	with	a		Symbol.iterator	
function	that	essentially	just	does		return	this()	.	That	would	make	the		foo		reference	itself
an	iterable,	which	means		for	(var	v	of	foo)	{	..	}		(notice	no		()		on		foo	)	will	work.

Let's	instead	iterate	the	generator	manually:
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function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}

it.next();																//	{	value:	2,	done:	false	}

it.next();																//	{	value:	3,	done:	false	}

it.next();																//	{	value:	undefined,	done:	true	}

If	you	look	closely,	there	are	three		yield		statements	and	four		next()		calls.	That	may
seem	like	a	strange	mismatch.	In	fact,	there	will	always	be	one	more		next()		call	than
	yield		expression,	assuming	all	are	evaluated	and	the	generator	is	fully	run	to	completion.

But	if	you	look	at	it	from	the	opposite	perspective	(inside-out	instead	of	outside-in),	the
matching	between		yield		and		next()		makes	more	sense.

Recall	that	the		yield	..		expression	will	be	completed	by	the	value	you	resume	the
generator	with.	That	means	the	argument	you	pass	to		next(..)		completes	whatever		yield
..		expression	is	currently	paused	waiting	for	a	completion.

Let's	illustrate	this	perspective	this	way:

function	*foo()	{

				var	x	=	yield	1;

				var	y	=	yield	2;

				var	z	=	yield	3;

				console.log(	x,	y,	z	);

}

In	this	snippet,	each		yield	..		is	sending	a	value	out	(	1	,		2	,		3	),	but	more	directly,	it's
pausing	the	generator	to	wait	for	a	value.	In	other	words,	it's	almost	like	asking	the	question,
"What	value	should	I	use	here?	I'll	wait	to	hear	back."

Now,	here's	how	we	control		*foo()		to	start	it	up:

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}
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That	first		next()		call	is	starting	up	the	generator	from	its	initial	paused	state,	and	running	it
to	the	first		yield	.	At	the	moment	you	call	that	first		next()	,	there's	no		yield	..	
expression	waiting	for	a	completion.	If	you	passed	a	value	to	that	first		next()		call,	it	would
currently	just	be	thrown	away,	because	no		yield		is	waiting	to	receive	such	a	value.

Note:	An	early	proposal	for	the	"beyond	ES6"	timeframe	would	let	you	access	a	value
passed	to	an	initial		next(..)		call	via	a	separate	meta	property	(see	Chapter	7)	inside	the
generator.

Now,	let's	answer	the	currently	pending	question,	"What	value	should	I	assign	to		x	?"	We'll
answer	it	by	sending	a	value	to	the	next		next(..)		call:

it.next(	"foo"	);								//	{	value:	2,	done:	false	}

Now,	the		x		will	have	the	value		"foo"	,	but	we've	also	asked	a	new	question,	"What	value
should	I	assign	to		y	?"	And	we	answer:

it.next(	"bar"	);								//	{	value:	3,	done:	false	}

Answer	given,	another	question	asked.	Final	answer:

it.next(	"baz"	);								//	"foo"	"bar"	"baz"

																								//	{	value:	undefined,	done:	true	}

Now	it	should	be	clearer	how	each		yield	..		"question"	is	answered	by	the	next		next(..)	
call,	and	so	the	"extra"		next()		call	we	observed	is	always	just	the	initial	one	that	starts
everything	going.

Let's	put	all	those	steps	together:

var	it	=	foo();

//	start	up	the	generator

it.next();																//	{	value:	1,	done:	false	}

//	answer	first	question

it.next(	"foo"	);								//	{	value:	2,	done:	false	}

//	answer	second	question

it.next(	"bar"	);								//	{	value:	3,	done:	false	}

//	answer	third	question

it.next(	"baz"	);								//	"foo"	"bar"	"baz"

																								//	{	value:	undefined,	done:	true	}
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You	can	think	of	a	generator	as	a	producer	of	values,	in	which	case	each	iteration	is	simply
producing	a	value	to	be	consumed.

But	in	a	more	general	sense,	perhaps	it's	appropriate	to	think	of	generators	as	controlled,
progressive	code	execution,	much	like	the		tasks		queue	example	from	the	earlier	"Custom
Iterators"	section.

Note:	That	perspective	is	exactly	the	motivation	for	how	we'll	revisit	generators	in	Chapter	4.
Specifically,	there's	no	reason	that		next(..)		has	to	be	called	right	away	after	the	previous
	next(..)		finishes.	While	the	generator's	inner	execution	context	is	paused,	the	rest	of	the
program	continues	unblocked,	including	the	ability	for	asynchronous	actions	to	control	when
the	generator	is	resumed.

Early	Completion

As	we	covered	earlier	in	this	chapter,	the	iterator	attached	to	a	generator	supports	the
optional		return(..)		and		throw(..)		methods.	Both	of	them	have	the	effect	of	aborting	a
paused	generator	immediately.

Consider:

function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}

it.return(	42	);								//	{	value:	42,	done:	true	}

it.next();																//	{	value:	undefined,	done:	true	}

	return(x)		is	kind	of	like	forcing	a		return	x		to	be	processed	at	exactly	that	moment,	such
that	you	get	the	specified	value	right	back.	Once	a	generator	is	completed,	either	normally	or
early	as	shown,	it	no	longer	processes	any	code	or	returns	any	values.

In	addition	to		return(..)		being	callable	manually,	it's	also	called	automatically	at	the	end	of
iteration	by	any	of	the	ES6	constructs	that	consume	iterators,	such	as	the		for..of		loop	and
the		...		spread	operator.
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The	purpose	for	this	capability	is	so	the	generator	can	be	notified	if	the	controlling	code	is	no
longer	going	to	iterate	over	it	anymore,	so	that	it	can	perhaps	do	any	cleanup	tasks	(freeing
up	resources,	resetting	status,	etc.).	Identical	to	a	normal	function	cleanup	pattern,	the	main
way	to	accomplish	this	is	to	use	a		finally		clause:

function	*foo()	{

				try	{

								yield	1;

								yield	2;

								yield	3;

				}

				finally	{

								console.log(	"cleanup!"	);

				}

}

for	(var	v	of	foo())	{

				console.log(	v	);

}

//	1	2	3

//	cleanup!

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}

it.return(	42	);								//	cleanup!

																								//	{	value:	42,	done:	true	}

Warning:	Do	not	put	a		yield		statement	inside	the		finally		clause!	It's	valid	and	legal,	but
it's	a	really	terrible	idea.	It	acts	in	a	sense	as	deferring	the	completion	of	the		return(..)		call
you	made,	as	any		yield	..		expressions	in	the		finally		clause	are	respected	to	pause	and
send	messages;	you	don't	immediately	get	a	completed	generator	as	expected.	There's
basically	no	good	reason	to	opt	in	to	that	crazy	bad	part,	so	avoid	doing	so!

In	addition	to	the	previous	snippet	showing	how		return(..)		aborts	the	generator	while	still
triggering	the		finally		clause,	it	also	demonstrates	that	a	generator	produces	a	whole	new
iterator	each	time	it's	called.	In	fact,	you	can	use	multiple	iterators	attached	to	the	same
generator	concurrently:
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function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

var	it1	=	foo();

it1.next();																//	{	value:	1,	done:	false	}

it1.next();																//	{	value:	2,	done:	false	}

var	it2	=	foo();

it2.next();																//	{	value:	1,	done:	false	}

it1.next();																//	{	value:	3,	done:	false	}

it2.next();																//	{	value:	2,	done:	false	}

it2.next();																//	{	value:	3,	done:	false	}

it2.next();																//	{	value:	undefined,	done:	true	}

it1.next();																//	{	value:	undefined,	done:	true	}

Early	Abort

Instead	of	calling		return(..)	,	you	can	call		throw(..)	.	Just	like		return(x)		is	essentially
injecting	a		return	x		into	the	generator	at	its	current	pause	point,	calling		throw(x)		is
essentially	like	injecting	a		throw	x		at	the	pause	point.

Other	than	the	exception	behavior	(we	cover	what	that	means	to		try		clauses	in	the	next
section),		throw(..)		produces	the	same	sort	of	early	completion	that	aborts	the	generator's
run	at	its	current	pause	point.	For	example:
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function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

}

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}

try	{

				it.throw(	"Oops!"	);

}

catch	(err)	{

				console.log(	err	);				//	Exception:	Oops!

}

it.next();																//	{	value:	undefined,	done:	true	}

Because		throw(..)		basically	injects	a		throw	..		in	replacement	of	the		yield	1		line	of	the
generator,	and	nothing	handles	this	exception,	it	immediately	propagates	back	out	to	the
calling	code,	which	handles	it	with	a		try..catch	.

Unlike		return(..)	,	the	iterator's		throw(..)		method	is	never	called	automatically.

Of	course,	though	not	shown	in	the	previous	snippet,	if	a		try..finally		clause	was	waiting
inside	the	generator	when	you	call		throw(..)	,	the		finally		clause	would	be	given	a
chance	to	complete	before	the	exception	is	propagated	back	to	the	calling	code.

Error	Handling

As	we've	already	hinted,	error	handling	with	generators	can	be	expressed	with		try..catch	,
which	works	in	both	inbound	and	outbound	directions:
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function	*foo()	{

				try	{

								yield	1;

				}

				catch	(err)	{

								console.log(	err	);

				}

				yield	2;

				throw	"Hello!";

}

var	it	=	foo();

it.next();																//	{	value:	1,	done:	false	}

try	{

				it.throw(	"Hi!"	);				//	Hi!

																								//	{	value:	2,	done:	false	}

				it.next();

				console.log(	"never	gets	here"	);

}

catch	(err)	{

				console.log(	err	);				//	Hello!

}

Errors	can	also	propagate	in	both	directions	through		yield	*		delegation:
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function	*foo()	{

				try	{

								yield	1;

				}

				catch	(err)	{

								console.log(	err	);

				}

				yield	2;

				throw	"foo:	e2";

}

function	*bar()	{

				try	{

								yield	*foo();

								console.log(	"never	gets	here"	);

				}

				catch	(err)	{

								console.log(	err	);

				}

}

var	it	=	bar();

try	{

				it.next();												//	{	value:	1,	done:	false	}

				it.throw(	"e1"	);				//	e1

																								//	{	value:	2,	done:	false	}

				it.next();												//	foo:	e2

																								//	{	value:	undefined,	done:	true	}

}

catch	(err)	{

				console.log(	"never	gets	here"	);

}

it.next();																//	{	value:	undefined,	done:	true	}

When		*foo()		calls		yield	1	,	the		1		value	passes	through		*bar()		untouched,	as	we've
already	seen.

But	what's	most	interesting	about	this	snippet	is	that	when		*foo()		calls		throw	"foo:	e2"	,
this	error	propagates	to		*bar()		and	is	immediately	caught	by		*bar()	's		try..catch		block.
The	error	doesn't	pass	through		*bar()		like	the		1		value	did.
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	*bar()	's		catch		then	does	a	normal	output	of		err		(	"foo:	e2"	)	and	then		*bar()		finishes
normally,	which	is	why	the		{	value:	undefined,	done:	true	}		iterator	result	comes	back
from		it.next()	.

If		*bar()		didn't	have	a		try..catch		around	the		yield	*..		expression,	the	error	would	of
course	propagate	all	the	way	out,	and	on	the	way	through	it	still	would	complete	(abort)
	*bar()	.

Transpiling	a	Generator

Is	it	possible	to	represent	a	generator's	capabilities	prior	to	ES6?	It	turns	out	it	is,	and	there
are	several	great	tools	that	do	so,	including	most	notably	Facebook's	Regenerator	tool
(https://facebook.github.io/regenerator/).

But	just	to	better	understand	generators,	let's	try	our	hand	at	manually	converting.	Basically,
we're	going	to	create	a	simple	closure-based	state	machine.

We'll	keep	our	source	generator	really	simple:

function	*foo()	{

				var	x	=	yield	42;

				console.log(	x	);

}

To	start,	we'll	need	a	function	called		foo()		that	we	can	execute,	which	needs	to	return	an
iterator:

function	foo()	{

				//	..

				return	{

								next:	function(v)	{

												//	..

								}

								//	we'll	skip	`return(..)`	and	`throw(..)`

				};

}

Now,	we	need	some	inner	variable	to	keep	track	of	where	we	are	in	the	steps	of	our
"generator"'s	logic.	We'll	call	it		state	.	There	will	be	three	states:		0		initially,		1		while
waiting	to	fulfill	the		yield		expression,	and		2		once	the	generator	is	complete.
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Each	time		next(..)		is	called,	we	need	to	process	the	next	step,	and	then	increment
	state	.	For	convenience,	we'll	put	each	step	into	a		case		clause	of	a		switch		statement,
and	we'll	hold	that	in	an	inner	function	called		nextState(..)		that		next(..)		can	call.	Also,
because		x		is	a	variable	across	the	overall	scope	of	the	"generator,"	it	needs	to	live	outside
the		nextState(..)		function.

Here	it	is	all	together	(obviously	somewhat	simplified,	to	keep	the	conceptual	illustration
clearer):

function	foo()	{

				function	nextState(v)	{

								switch	(state)	{

												case	0:

																state++;

																//	the	`yield`	expression

																return	42;

												case	1:

																state++;

																//	`yield`	expression	fulfilled

																x	=	v;

																console.log(	x	);

																//	the	implicit	`return`

																return	undefined;

												//	no	need	to	handle	state	`2`

								}

				}

				var	state	=	0,	x;

				return	{

								next:	function(v)	{

												var	ret	=	nextState(	v	);

												return	{	value:	ret,	done:	(state	==	2)	};

								}

								//	we'll	skip	`return(..)`	and	`throw(..)`

				};

}

And	finally,	let's	test	our	pre-ES6	"generator":
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var	it	=	foo();

it.next();																//	{	value:	42,	done:	false	}

it.next(	10	);												//	10

																								//	{	value:	undefined,	done:	true	}

Not	bad,	huh?	Hopefully	this	exercise	solidifies	in	your	mind	that	generators	are	actually	just
simple	syntax	for	state	machine	logic.	That	makes	them	widely	applicable.

Generator	Uses

So,	now	that	we	much	more	deeply	understand	how	generators	work,	what	are	they	useful
for?

We've	seen	two	major	patterns:

Producing	a	series	of	values:	This	usage	can	be	simple	(e.g.,	random	strings	or
incremented	numbers),	or	it	can	represent	more	structured	data	access	(e.g.,	iterating
over	rows	returned	from	a	database	query).

Either	way,	we	use	the	iterator	to	control	a	generator	so	that	some	logic	can	be	invoked
for	each	call	to		next(..)	.	Normal	iterators	on	data	structures	merely	pull	values	without
any	controlling	logic.

Queue	of	tasks	to	perform	serially:	This	usage	often	represents	flow	control	for	the
steps	in	an	algorithm,	where	each	step	requires	retrieval	of	data	from	some	external
source.	The	fulfillment	of	each	piece	of	data	may	be	immediate,	or	may	be
asynchronously	delayed.

From	the	perspective	of	the	code	inside	the	generator,	the	details	of	sync	or	async	at	a
	yield		point	are	entirely	opaque.	Moreover,	these	details	are	intentionally	abstracted
away,	such	as	not	to	obscure	the	natural	sequential	expression	of	steps	with	such
implementation	complications.	Abstraction	also	means	the	implementations	can	be
swapped/refactored	often	without	touching	the	code	in	the	generator	at	all.

When	generators	are	viewed	in	light	of	these	uses,	they	become	a	lot	more	than	just	a
different	or	nicer	syntax	for	a	manual	state	machine.	They	are	a	powerful	abstraction	tool	for
organizing	and	controlling	orderly	production	and	consumption	of	data.

Modules
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I	don't	think	it's	an	exaggeration	to	suggest	that	the	single	most	important	code	organization
pattern	in	all	of	JavaScript	is,	and	always	has	been,	the	module.	For	myself,	and	I	think	for	a
large	cross-section	of	the	community,	the	module	pattern	drives	the	vast	majority	of	code.

The	Old	Way

The	traditional	module	pattern	is	based	on	an	outer	function	with	inner	variables	and
functions,	and	a	returned	"public	API"	with	methods	that	have	closure	over	the	inner	data
and	capabilities.	It's	often	expressed	like	this:

function	Hello(name)	{

				function	greeting()	{

								console.log(	"Hello	"	+	name	+	"!"	);

				}

				//	public	API

				return	{

								greeting:	greeting

				};

}

var	me	=	Hello(	"Kyle"	);

me.greeting();												//	Hello	Kyle!

This		Hello(..)		module	can	produce	multiple	instances	by	being	called	subsequent	times.
Sometimes,	a	module	is	only	called	for	as	a	singleton	(i.e.,	it	just	needs	one	instance),	in
which	case	a	slight	variation	on	the	previous	snippet,	using	an	IIFE,	is	common:

var	me	=	(function	Hello(name){

				function	greeting()	{

								console.log(	"Hello	"	+	name	+	"!"	);

				}

				//	public	API

				return	{

								greeting:	greeting

				};

})(	"Kyle"	);

me.greeting();												//	Hello	Kyle!

This	pattern	is	tried	and	tested.	It's	also	flexible	enough	to	have	a	wide	assortment	of
variations	for	a	number	of	different	scenarios.
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One	of	the	most	common	is	the	Asynchronous	Module	Definition	(AMD),	and	another	is	the
Universal	Module	Definition	(UMD).	We	won't	cover	the	particulars	of	these	patterns	and
techniques	here,	but	they're	explained	extensively	in	many	places	online.

Moving	Forward

As	of	ES6,	we	no	longer	need	to	rely	on	the	enclosing	function	and	closure	to	provide	us
with	module	support.	ES6	modules	have	first	class	syntactic	and	functional	support.

Before	we	get	into	the	specific	syntax,	it's	important	to	understand	some	fairly	significant
conceptual	differences	with	ES6	modules	compared	to	how	you	may	have	dealt	with
modules	in	the	past:

ES6	uses	file-based	modules,	meaning	one	module	per	file.	At	this	time,	there	is	no
standardized	way	of	combining	multiple	modules	into	a	single	file.

That	means	that	if	you	are	going	to	load	ES6	modules	directly	into	a	browser	web
application,	you	will	be	loading	them	individually,	not	as	a	large	bundle	in	a	single	file	as
has	been	common	in	performance	optimization	efforts.

It's	expected	that	the	contemporaneous	advent	of	HTTP/2	will	significantly	mitigate	any
such	performance	concerns,	as	it	operates	on	a	persistent	socket	connection	and	thus
can	very	efficiently	load	many	smaller	files	in	parallel	and	interleaved	with	one	another.

The	API	of	an	ES6	module	is	static.	That	is,	you	define	statically	what	all	the	top-level
exports	are	on	your	module's	public	API,	and	those	cannot	be	amended	later.

Some	uses	are	accustomed	to	being	able	to	provide	dynamic	API	definitions,	where
methods	can	be	added/removed/replaced	in	response	to	runtime	conditions.	Either
these	uses	will	have	to	change	to	fit	with	ES6	static	APIs,	or	they	will	have	to	restrain
the	dynamic	changes	to	properties/methods	of	a	second-level	object.

ES6	modules	are	singletons.	That	is,	there's	only	one	instance	of	the	module,	which
maintains	its	state.	Every	time	you	import	that	module	into	another	module,	you	get	a
reference	to	the	one	centralized	instance.	If	you	want	to	be	able	to	produce	multiple
module	instances,	your	module	will	need	to	provide	some	sort	of	factory	to	do	it.
The	properties	and	methods	you	expose	on	a	module's	public	API	are	not	just	normal
assignments	of	values	or	references.	They	are	actual	bindings	(almost	like	pointers)	to
the	identifiers	in	your	inner	module	definition.

In	pre-ES6	modules,	if	you	put	a	property	on	your	public	API	that	holds	a	primitive	value
like	a	number	or	string,	that	property	assignment	was	by	value-copy,	and	any	internal
update	of	a	corresponding	variable	would	be	separate	and	not	affect	the	public	copy	on
the	API	object.

Organization

829



With	ES6,	exporting	a	local	private	variable,	even	if	it	currently	holds	a	primitive
string/number/etc,	exports	a	binding	to	the	variable.	If	the	module	changes	the
variable's	value,	the	external	import	binding	now	resolves	to	that	new	value.

Importing	a	module	is	the	same	thing	as	statically	requesting	it	to	load	(if	it	hasn't
already).	If	you're	in	a	browser,	that	implies	a	blocking	load	over	the	network.	If	you're
on	a	server	(i.e.,	Node.js),	it's	a	blocking	load	from	the	filesystem.

However,	don't	panic	about	the	performance	implications.	Because	ES6	modules	have
static	definitions,	the	import	requirements	can	be	statically	scanned,	and	loads	will
happen	preemptively,	even	before	you've	used	the	module.

ES6	doesn't	actually	specify	or	handle	the	mechanics	of	how	these	load	requests	work.
There's	a	separate	notion	of	a	Module	Loader,	where	each	hosting	environment
(browser,	Node.js,	etc.)	provides	a	default	Loader	appropriate	to	the	environment.	The
importing	of	a	module	uses	a	string	value	to	represent	where	to	get	the	module	(URL,
file	path,	etc.),	but	this	value	is	opaque	in	your	program	and	only	meaningful	to	the
Loader	itself.

You	can	define	your	own	custom	Loader	if	you	want	more	fine-grained	control	than	the
default	Loader	affords	--	which	is	basically	none,	as	it's	totally	hidden	from	your
program's	code.

As	you	can	see,	ES6	modules	will	serve	the	overall	use	case	of	organizing	code	with
encapsulation,	controlling	public	APIs,	and	referencing	dependency	imports.	But	they	have	a
very	particular	way	of	doing	so,	and	that	may	or	may	not	fit	very	closely	with	how	you've
already	been	doing	modules	for	years.

CommonJS

There's	a	similar,	but	not	fully	compatible,	module	syntax	called	CommonJS,	which	is
familiar	to	those	in	the	Node.js	ecosystem.

For	lack	of	a	more	tactful	way	to	say	this,	in	the	long	run,	ES6	modules	essentially	are	bound
to	supersede	all	previous	formats	and	standards	for	modules,	even	CommonJS,	as	they	are
built	on	syntactic	support	in	the	language.	This	will,	in	time,	inevitably	win	out	as	the	superior
approach,	if	for	no	other	reason	than	ubiquity.

We	face	a	fairly	long	road	to	get	to	that	point,	though.	There	are	literally	hundreds	of
thousands	of	CommonJS	style	modules	in	the	server-side	JavaScript	world,	and	10	times
that	many	modules	of	varying	format	standards	(UMD,	AMD,	ad	hoc)	in	the	browser	world.	It
will	take	many	years	for	the	transitions	to	make	any	significant	progress.
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In	the	interim,	module	transpilers/converters	will	be	an	absolute	necessity.	You	might	as	well
just	get	used	to	that	new	reality.	Whether	you	author	in	regular	modules,	AMD,	UMD,
CommonJS,	or	ES6,	these	tools	will	have	to	parse	and	convert	to	a	format	that	is	suitable	for
whatever	environment	your	code	will	run	in.

For	Node.js,	that	probably	means	(for	now)	that	the	target	is	CommonJS.	For	the	browser,
it's	probably	UMD	or	AMD.	Expect	lots	of	flux	on	this	over	the	next	few	years	as	these	tools
mature	and	best	practices	emerge.

From	here	on	out,	my	best	advice	on	modules	is	this:	whatever	format	you've	been
religiously	attached	to	with	strong	affinity,	also	develop	an	appreciation	for	and
understanding	of	ES6	modules,	such	as	they	are,	and	let	your	other	module	tendencies
fade.	They	are	the	future	of	modules	in	JS,	even	if	that	reality	is	a	bit	of	a	ways	off.

The	New	Way

The	two	main	new	keywords	that	enable	ES6	modules	are		import		and		export	.	There's
lots	of	nuance	to	the	syntax,	so	let's	take	a	deeper	look.

Warning:	An	important	detail	that's	easy	to	overlook:	both		import		and		export		must
always	appear	in	the	top-level	scope	of	their	respective	usage.	For	example,	you	cannot	put
either	an		import		or		export		inside	an		if		conditional;	they	must	appear	outside	of	all
blocks	and	functions.

	export	ing	API	Members

The		export		keyword	is	either	put	in	front	of	a	declaration,	or	used	as	an	operator	(of	sorts)
with	a	special	list	of	bindings	to	export.	Consider:

export	function	foo()	{

				//	..

}

export	var	awesome	=	42;

var	bar	=	[1,2,3];

export	{	bar	};

Another	way	of	expressing	the	same	exports:
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function	foo()	{

				//	..

}

var	awesome	=	42;

var	bar	=	[1,2,3];

export	{	foo,	awesome,	bar	};

These	are	all	called	named	exports,	as	you	are	in	effect	exporting	the	name	bindings	of	the
variables/functions/etc.

Anything	you	don't	label	with		export		stays	private	inside	the	scope	of	the	module.	That	is,
although	something	like		var	bar	=	..		looks	like	it's	declaring	at	the	top-level	global	scope,
the	top-level	scope	is	actually	the	module	itself;	there	is	no	global	scope	in	modules.

Note:	Modules	do	still	have	access	to		window		and	all	the	"globals"	that	hang	off	it,	just	not
as	lexical	top-level	scope.	However,	you	really	should	stay	away	from	the	globals	in	your
modules	if	at	all	possible.

You	can	also	"rename"	(aka	alias)	a	module	member	during	named	export:

function	foo()	{	..	}

export	{	foo	as	bar	};

When	this	module	is	imported,	only	the		bar		member	name	is	available	to	import;		foo	
stays	hidden	inside	the	module.

Module	exports	are	not	just	normal	assignments	of	values	or	references,	as	you're
accustomed	to	with	the		=		assignment	operator.	Actually,	when	you	export	something,
you're	exporting	a	binding	(kinda	like	a	pointer)	to	that	thing	(variable,	etc.).

Within	your	module,	if	you	change	the	value	of	a	variable	you	already	exported	a	binding	to,
even	if	it's	already	been	imported	(see	the	next	section),	the	imported	binding	will	resolve	to
the	current	(updated)	value.

Consider:

var	awesome	=	42;

export	{	awesome	};

//	later

awesome	=	100;
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When	this	module	is	imported,	regardless	of	whether	that's	before	or	after	the		awesome	=
100		setting,	once	that	assignment	has	happened,	the	imported	binding	resolves	to	the		100	
value,	not		42	.

That's	because	the	binding	is,	in	essence,	a	reference	to,	or	a	pointer	to,	the		awesome	
variable	itself,	rather	than	a	copy	of	its	value.	This	is	a	mostly	unprecedented	concept	for	JS
introduced	with	ES6	module	bindings.

Though	you	can	clearly	use		export		multiple	times	inside	a	module's	definition,	ES6
definitely	prefers	the	approach	that	a	module	has	a	single	export,	which	is	known	as	a
default	export.	In	the	words	of	some	members	of	the	TC39	committee,	you're	"rewarded	with
simpler		import		syntax"	if	you	follow	that	pattern,	and	conversely	"penalized"	with	more
verbose	syntax	if	you	don't.

A	default	export	sets	a	particular	exported	binding	to	be	the	default	when	importing	the
module.	The	name	of	the	binding	is	literally		default	.	As	you'll	see	later,	when	importing
module	bindings	you	can	also	rename	them,	as	you	commonly	will	with	a	default	export.

There	can	only	be	one		default		per	module	definition.	We'll	cover		import		in	the	next
section,	and	you'll	see	how	the		import		syntax	is	more	concise	if	the	module	has	a	default
export.

There's	a	subtle	nuance	to	default	export	syntax	that	you	should	pay	close	attention	to.
Compare	these	two	snippets:

function	foo(..)	{

				//	..

}

export	default	foo;

And	this	one:

function	foo(..)	{

				//	..

}

export	{	foo	as	default	};

In	the	first	snippet,	you	are	exporting	a	binding	to	the	function	expression	value	at	that
moment,	not	to	the	identifier		foo	.	In	other	words,		export	default	..		takes	an	expression.
If	you	later	assign		foo		to	a	different	value	inside	your	module,	the	module	import	still
reveals	the	function	originally	exported,	not	the	new	value.

By	the	way,	the	first	snippet	could	also	have	been	written	as:
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export	default	function	foo(..)	{

				//	..

}

Warning:	Although	the		function	foo..		part	here	is	technically	a	function	expression,	for
the	purposes	of	the	internal	scope	of	the	module,	it's	treated	like	a	function	declaration,	in
that	the		foo		name	is	bound	in	the	module's	top-level	scope	(often	called	"hoisting").	The
same	is	true	for		export	default	class	Foo..	.	However,	while	you	can	do		export	var	foo	=
..	,	you	currently	cannot	do		export	default	var	foo	=	..		(or		let		or		const	),	in	a
frustrating	case	of	inconsistency.	At	the	time	of	this	writing,	there's	already	discussion	of
adding	that	capability	in	soon,	post-ES6,	for	consistency	sake.

Recall	the	second	snippet	again:

function	foo(..)	{

				//	..

}

export	{	foo	as	default	};

In	this	version	of	the	module	export,	the	default	export	binding	is	actually	to	the		foo	
identifier	rather	than	its	value,	so	you	get	the	previously	described	binding	behavior	(i.e.,	if
you	later	change		foo	's	value,	the	value	seen	on	the	import	side	will	also	be	updated).

Be	very	careful	of	this	subtle	gotcha	in	default	export	syntax,	especially	if	your	logic	calls	for
export	values	to	be	updated.	If	you	never	plan	to	update	a	default	export's	value,		export
default	..		is	fine.	If	you	do	plan	to	update	the	value,	you	must	use		export	{	..	as	default
}	.	Either	way,	make	sure	to	comment	your	code	to	explain	your	intent!

Because	there	can	only	be	one		default		per	module,	you	may	be	tempted	to	design	your
module	with	one	default	export	of	an	object	with	all	your	API	methods	on	it,	such	as:

export	default	{

				foo()	{	..	},

				bar()	{	..	},

				..

};

That	pattern	seems	to	map	closely	to	how	a	lot	of	developers	have	already	structured	their
pre-ES6	modules,	so	it	seems	like	a	natural	approach.	Unfortunately,	it	has	some	downsides
and	is	officially	discouraged.
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In	particular,	the	JS	engine	cannot	statically	analyze	the	contents	of	a	plain	object,	which
means	it	cannot	do	some	optimizations	for	static		import		performance.	The	advantage	of
having	each	member	individually	and	explicitly	exported	is	that	the	engine	can	do	the	static
analysis	and	optimization.

If	your	API	has	more	than	one	member	already,	it	seems	like	these	principles	--	one	default
export	per	module,	and	all	API	members	as	named	exports	--	are	in	conflict,	doesn't	it?	But
you	can	have	a	single	default	export	as	well	as	other	named	exports;	they	are	not	mutually
exclusive.

So,	instead	of	this	(discouraged)	pattern:

export	default	function	foo()	{	..	}

foo.bar	=	function()	{	..	};

foo.baz	=	function()	{	..	};

You	can	do:

export	default	function	foo()	{	..	}

export	function	bar()	{	..	}

export	function	baz()	{	..	}

Note:	In	this	previous	snippet,	I	used	the	name		foo		for	the	function	that		default		labels.
That		foo		name,	however,	is	ignored	for	the	purposes	of	export	--		default		is	actually	the
exported	name.	When	you	import	this	default	binding,	you	can	give	it	whatever	name	you
want,	as	you'll	see	in	the	next	section.

Alternatively,	some	will	prefer:

function	foo()	{	..	}

function	bar()	{	..	}

function	baz()	{	..	}

export	{	foo	as	default,	bar,	baz,	..	};

The	effects	of	mixing	default	and	named	exports	will	be	more	clear	when	we	cover		import	
shortly.	But	essentially	it	means	that	the	most	concise	default	import	form	would	only	retrieve
the		foo()		function.	The	user	could	additionally	manually	list		bar		and		baz		as	named
imports,	if	they	want	them.
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You	can	probably	imagine	how	tedious	that's	going	to	be	for	consumers	of	your	module	if
you	have	lots	of	named	export	bindings.	There	is	a	wildcard	import	form	where	you	import	all
of	a	module's	exports	within	a	single	namespace	object,	but	there's	no	way	to	wildcard
import	to	top-level	bindings.

Again,	the	ES6	module	mechanism	is	intentionally	designed	to	discourage	modules	with	lots
of	exports;	relatively	speaking,	it's	desired	that	such	approaches	be	a	little	more	difficult,	as	a
sort	of	social	engineering	to	encourage	simple	module	design	in	favor	of	large/complex
module	design.

I	would	probably	recommend	you	not	mix	default	export	with	named	exports,	especially	if
you	have	a	large	API	and	refactoring	to	separate	modules	isn't	practical	or	desired.	In	that
case,	just	use	all	named	exports,	and	document	that	consumers	of	your	module	should
probably	use	the		import	*	as	..		(namespace	import,	discussed	in	the	next	section)
approach	to	bring	the	whole	API	in	at	once	on	a	single	namespace.

We	mentioned	this	earlier,	but	let's	come	back	to	it	in	more	detail.	Other	than	the		export
default	...		form	that	exports	an	expression	value	binding,	all	other	export	forms	are
exporting	bindings	to	local	identifiers.	For	those	bindings,	if	you	change	the	value	of	a
variable	inside	a	module	after	exporting,	the	external	imported	binding	will	access	the
updated	value:

var	foo	=	42;

export	{	foo	as	default	};

export	var	bar	=	"hello	world";

foo	=	10;

bar	=	"cool";

When	you	import	this	module,	the		default		and		bar		exports	will	be	bound	to	the	local
variables		foo		and		bar	,	meaning	they	will	reveal	the	updated		10		and		"cool"		values.
The	values	at	time	of	export	are	irrelevant.	The	values	at	time	of	import	are	irrelevant.	The
bindings	are	live	links,	so	all	that	matters	is	what	the	current	value	is	when	you	access	the
binding.

Warning:	Two-way	bindings	are	not	allowed.	If	you	import	a		foo		from	a	module,	and	try	to
change	the	value	of	your	imported		foo		variable,	an	error	will	be	thrown!	We'll	revisit	that	in
the	next	section.

You	can	also	re-export	another	module's	exports,	such	as:
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export	{	foo,	bar	}	from	"baz";

export	{	foo	as	FOO,	bar	as	BAR	}	from	"baz";

export	*	from	"baz";

Those	forms	are	similar	to	just	first	importing	from	the		"baz"		module	then	listing	its
members	explicitly	for	export	from	your	module.	However,	in	these	forms,	the	members	of
the		"baz"		module	are	never	imported	to	your	module's	local	scope;	they	sort	of	pass
through	untouched.

	import	ing	API	Members

To	import	a	module,	unsurprisingly	you	use	the		import		statement.	Just	as		export		has
several	nuanced	variations,	so	does		import	,	so	spend	plenty	of	time	considering	the
following	issues	and	experimenting	with	your	options.

If	you	want	to	import	certain	specific	named	members	of	a	module's	API	into	your	top-level
scope,	you	use	this	syntax:

import	{	foo,	bar,	baz	}	from	"foo";

Warning:	The		{	..	}		syntax	here	may	look	like	an	object	literal,	or	even	an	object
destructuring	syntax.	However,	its	form	is	special	just	for	modules,	so	be	careful	not	to
confuse	it	with	other		{	..	}		patterns	elsewhere.

The		"foo"		string	is	called	a	module	specifier.	Because	the	whole	goal	is	statically
analyzable	syntax,	the	module	specifier	must	be	a	string	literal;	it	cannot	be	a	variable
holding	the	string	value.

From	the	perspective	of	your	ES6	code	and	the	JS	engine	itself,	the	contents	of	this	string
literal	are	completely	opaque	and	meaningless.	The	module	loader	will	interpret	this	string
as	an	instruction	of	where	to	find	the	desired	module,	either	as	a	URL	path	or	a	local
filesystem	path.

The		foo	,		bar	,	and		baz		identifiers	listed	must	match	named	exports	on	the	module's	API
(static	analysis	and	error	assertion	apply).	They	are	bound	as	top-level	identifiers	in	your
current	scope:

import	{	foo	}	from	"foo";

foo();

You	can	rename	the	bound	identifiers	imported,	as:
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import	{	foo	as	theFooFunc	}	from	"foo";

theFooFunc();

If	the	module	has	just	a	default	export	that	you	want	to	import	and	bind	to	an	identifier,	you
can	opt	to	skip	the		{	..	}		surrounding	syntax	for	that	binding.	The		import		in	this
preferred	case	gets	the	nicest	and	most	concise	of	the		import		syntax	forms:

import	foo	from	"foo";

//	or:

import	{	default	as	foo	}	from	"foo";

Note:	As	explained	in	the	previous	section,	the		default		keyword	in	a	module's		export	
specifies	a	named	export	where	the	name	is	actually		default	,	as	is	illustrated	by	the
second	more	verbose	syntax	option.	The	renaming	from		default		to,	in	this	case,		foo	,	is
explicit	in	the	latter	syntax	and	is	identical	yet	implicit	in	the	former	syntax.

You	can	also	import	a	default	export	along	with	other	named	exports,	if	the	module	has	such
a	definition.	Recall	this	module	definition	from	earlier:

export	default	function	foo()	{	..	}

export	function	bar()	{	..	}

export	function	baz()	{	..	}

To	import	that	module's	default	export	and	its	two	named	exports:

import	FOOFN,	{	bar,	baz	as	BAZ	}	from	"foo";

FOOFN();

bar();

BAZ();

The	strongly	suggested	approach	from	ES6's	module	philosophy	is	that	you	only	import	the
specific	bindings	from	a	module	that	you	need.	If	a	module	provides	10	API	methods,	but
you	only	need	two	of	them,	some	believe	it	wasteful	to	bring	in	the	entire	set	of	API	bindings.

One	benefit,	besides	code	being	more	explicit,	is	that	narrow	imports	make	static	analysis
and	error	detection	(accidentally	using	the	wrong	binding	name,	for	instance)	more	robust.

Of	course,	that's	just	the	standard	position	influenced	by	ES6	design	philosophy;	there's
nothing	that	requires	adherence	to	that	approach.
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Many	developers	would	be	quick	to	point	out	that	such	approaches	can	be	more	tedious,
requiring	you	to	regularly	revisit	and	update	your		import		statement(s)	each	time	you	realize
you	need	something	else	from	a	module.	The	trade-off	is	in	exchange	for	convenience.

In	that	light,	the	preference	might	be	to	import	everything	from	the	module	into	a	single
namespace,	rather	than	importing	individual	members,	each	directly	into	the	scope.
Fortunately,	the		import		statement	has	a	syntax	variation	that	can	support	this	style	of
module	consumption,	called	namespace	import.

Consider	a		"foo"		module	exported	as:

export	function	bar()	{	..	}

export	var	x	=	42;

export	function	baz()	{	..	}

You	can	import	that	entire	API	to	a	single	module	namespace	binding:

import	*	as	foo	from	"foo";

foo.bar();

foo.x;												//	42

foo.baz();

Note:	The		*	as	..		clause	requires	the		*		wildcard.	In	other	words,	you	cannot	do
something	like		import	{	bar,	x	}	as	foo	from	"foo"		to	bring	in	only	part	of	the	API	but	still
bind	to	the		foo		namespace.	I	would	have	liked	something	like	that,	but	for	ES6	it's	all	or
nothing	with	the	namespace	import.

If	the	module	you're	importing	with		*	as	..		has	a	default	export,	it	is	named		default		in
the	namespace	specified.	You	can	additionally	name	the	default	import	outside	of	the
namespace	binding,	as	a	top-level	identifier.	Consider	a		"world"		module	exported	as:

export	default	function	foo()	{	..	}

export	function	bar()	{	..	}

export	function	baz()	{	..	}

And	this		import	:

import	foofn,	*	as	hello	from	"world";

foofn();

hello.default();

hello.bar();

hello.baz();
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While	this	syntax	is	valid,	it	can	be	rather	confusing	that	one	method	of	the	module	(the
default	export)	is	bound	at	the	top-level	of	your	scope,	whereas	the	rest	of	the	named
exports	(and	one	called		default	)	are	bound	as	properties	on	a	differently	named	(	hello	)
identifier	namespace.

As	I	mentioned	earlier,	my	suggestion	would	be	to	avoid	designing	your	module	exports	in
this	way,	to	reduce	the	chances	that	your	module's	users	will	suffer	these	strange	quirks.

All	imported	bindings	are	immutable	and/or	read-only.	Consider	the	previous	import;	all	of
these	subsequent	assignment	attempts	will	throw		TypeError	s:

import	foofn,	*	as	hello	from	"world";

foofn	=	42;												//	(runtime)	TypeError!

hello.default	=	42;				//	(runtime)	TypeError!

hello.bar	=	42;								//	(runtime)	TypeError!

hello.baz	=	42;								//	(runtime)	TypeError!

Recall	earlier	in	the	"	export	ing	API	Members"	section	that	we	talked	about	how	the		bar	
and		baz		bindings	are	bound	to	the	actual	identifiers	inside	the		"world"		module.	That
means	if	the	module	changes	those	values,		hello.bar		and		hello.baz		now	reference	the
updated	values.

But	the	immutable/read-only	nature	of	your	local	imported	bindings	enforces	that	you	cannot
change	them	from	the	imported	bindings,	hence	the		TypeError	s.	That's	pretty	important,
because	without	those	protections,	your	changes	would	end	up	affecting	all	other	consumers
of	the	module	(remember:	singleton),	which	could	create	some	very	surprising	side	effects!

Moreover,	though	a	module	can	change	its	API	members	from	the	inside,	you	should	be
very	cautious	of	intentionally	designing	your	modules	in	that	fashion.	ES6	modules	are
intended	to	be	static,	so	deviations	from	that	principle	should	be	rare	and	should	be	carefully
and	verbosely	documented.

Warning:	There	are	module	design	philosophies	where	you	actually	intend	to	let	a
consumer	change	the	value	of	a	property	on	your	API,	or	module	APIs	are	designed	to	be
"extended"	by	having	other	"plug-ins"	add	to	the	API	namespace.	As	we	just	asserted,	ES6
module	APIs	should	be	thought	of	and	designed	as	static	and	unchangeable,	which	strongly
restricts	and	discourages	these	alternative	module	design	patterns.	You	can	get	around
these	limitations	by	exporting	a	plain	object,	which	of	course	can	then	be	changed	at	will.
But	be	careful	and	think	twice	before	going	down	that	road.

Declarations	that	occur	as	a	result	of	an		import		are	"hoisted"	(see	the	Scope	&	Closures
title	of	this	series).	Consider:

Organization

840



foo();

import	{	foo	}	from	"foo";

	foo()		can	run	because	not	only	did	the	static	resolution	of	the		import	..		statement	figure
out	what		foo		is	during	compilation,	but	it	also	"hoisted"	the	declaration	to	the	top	of	the
module's	scope,	thus	making	it	available	throughout	the	module.

Finally,	the	most	basic	form	of	the		import		looks	like	this:

import	"foo";

This	form	does	not	actually	import	any	of	the	module's	bindings	into	your	scope.	It	loads	(if
not	already	loaded),	compiles	(if	not	already	compiled),	and	evaluates	(if	not	already	run)	the
	"foo"		module.

In	general,	that	sort	of	import	is	probably	not	going	to	be	terribly	useful.	There	may	be	niche
cases	where	a	module's	definition	has	side	effects	(such	as	assigning	things	to	the
	window	/global	object).	You	could	also	envision	using		import	"foo"		as	a	sort	of	preload	for
a	module	that	may	be	needed	later.

Circular	Module	Dependency

A	imports	B.	B	imports	A.	How	does	this	actually	work?

I'll	state	off	the	bat	that	designing	systems	with	intentional	circular	dependency	is	generally
something	I	try	to	avoid.	That	having	been	said,	I	recognize	there	are	reasons	people	do	this
and	it	can	solve	some	sticky	design	situations.

Let's	consider	how	ES6	handles	this.	First,	module		"A"	:

import	bar	from	"B";

export	default	function	foo(x)	{

				if	(x	>	10)	return	bar(	x	-	1	);

				return	x	*	2;

}

Now,	module		"B"	:
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import	foo	from	"A";

export	default	function	bar(y)	{

				if	(y	>	5)	return	foo(	y	/	2	);

				return	y	*	3;

}

These	two	functions,		foo(..)		and		bar(..)	,	would	work	as	standard	function	declarations
if	they	were	in	the	same	scope,	because	the	declarations	are	"hoisted"	to	the	whole	scope
and	thus	available	to	each	other	regardless	of	authoring	order.

With	modules,	you	have	declarations	in	entirely	different	scopes,	so	ES6	has	to	do	extra
work	to	help	make	these	circular	references	work.

In	a	rough	conceptual	sense,	this	is	how	circular		import		dependencies	are	validated	and
resolved:

If	the		"A"		module	is	loaded	first,	the	first	step	is	to	scan	the	file	and	analyze	all	the
exports,	so	it	can	register	all	those	bindings	available	for	import.	Then	it	processes	the
	import	..	from	"B"	,	which	signals	that	it	needs	to	go	fetch		"B"	.
Once	the	engine	loads		"B"	,	it	does	the	same	analysis	of	its	export	bindings.	When	it
sees	the		import	..	from	"A"	,	it	knows	the	API	of		"A"		already,	so	it	can	verify	the
	import		is	valid.	Now	that	it	knows	the		"B"		API,	it	can	also	validate	the		import	..	from
"B"		in	the	waiting		"A"		module.

In	essence,	the	mutual	imports,	along	with	the	static	verification	that's	done	to	validate	both
	import		statements,	virtually	composes	the	two	separate	module	scopes	(via	the	bindings),
such	that		foo(..)		can	call		bar(..)		and	vice	versa.	This	is	symmetric	to	if	they	had
originally	been	declared	in	the	same	scope.

Now	let's	try	using	the	two	modules	together.	First,	we'll	try		foo(..)	:

import	foo	from	"foo";

foo(	25	);																//	11

Or	we	can	try		bar(..)	:

import	bar	from	"bar";

bar(	25	);																//	11.5

By	the	time	either	the		foo(25)		or		bar(25)		calls	are	executed,	all	the	analysis/compilation
of	all	modules	has	completed.	That	means		foo(..)		internally	knows	directly	about
	bar(..)		and		bar(..)		internally	knows	directly	about		foo(..)	.
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If	all	we	need	is	to	interact	with		foo(..)	,	then	we	only	need	to	import	the		"foo"		module.
Likewise	with		bar(..)		and	the		"bar"		module.

Of	course,	we	can	import	and	use	both	of	them	if	we	want	to:

import	foo	from	"foo";

import	bar	from	"bar";

foo(	25	);																//	11

bar(	25	);																//	11.5

The	static	loading	semantics	of	the		import		statement	mean	that	a		"foo"		and		"bar"		that
mutually	depend	on	each	other	via		import		will	ensure	that	both	are	loaded,	parsed,	and
compiled	before	either	of	them	runs.	So	their	circular	dependency	is	statically	resolved	and
this	works	as	you'd	expect.

Module	Loading

We	asserted	at	the	beginning	of	this	"Modules"	section	that	the		import		statement	uses	a
separate	mechanism,	provided	by	the	hosting	environment	(browser,	Node.js,	etc.),	to
actually	resolve	the	module	specifier	string	into	some	useful	instruction	for	finding	and
loading	the	desired	module.	That	mechanism	is	the	system	Module	Loader.

The	default	module	loader	provided	by	the	environment	will	interpret	a	module	specifier	as	a
URL	if	in	the	browser,	and	(generally)	as	a	local	filesystem	path	if	on	a	server	such	as
Node.js.	The	default	behavior	is	to	assume	the	loaded	file	is	authored	in	the	ES6	standard
module	format.

Moreover,	you	will	be	able	to	load	a	module	into	the	browser	via	an	HTML	tag,	similar	to	how
current	script	programs	are	loaded.	At	the	time	of	this	writing,	it's	not	fully	clear	if	this	tag	will
be		<script	type="module">		or		<module>	.	ES6	doesn't	control	that	decision,	but	discussions
in	the	appropriate	standards	bodies	are	already	well	along	in	parallel	of	ES6.

Whatever	the	tag	looks	like,	you	can	be	sure	that	under	the	covers	it	will	use	the	default
loader	(or	a	customized	one	you've	pre-specified,	as	we'll	discuss	in	the	next	section).

Just	like	the	tag	you'll	use	in	markup,	the	module	loader	itself	is	not	specified	by	ES6.	It	is	a
separate,	parallel	standard	(http://whatwg.github.io/loader/)	controlled	currently	by	the
WHATWG	browser	standards	group.

At	the	time	of	this	writing,	the	following	discussions	reflect	an	early	pass	at	the	API	design,
and	things	are	likely	to	change.

Loading	Modules	Outside	of	Modules
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One	use	for	interacting	directly	with	the	module	loader	is	if	a	non-module	needs	to	load	a
module.	Consider:

//	normal	script	loaded	in	browser	via	`<script>`,

//	`import`	is	illegal	here

Reflect.Loader.import(	"foo"	)	//	returns	a	promise	for	`"foo"`

.then(	function(foo){

				foo.bar();

}	);

The		Reflect.Loader.import(..)		utility	imports	the	entire	module	onto	the	named	parameter
(as	a	namespace),	just	like	the		import	*	as	foo	..		namespace	import	we	discussed	earlier.

Note:	The		Reflect.Loader.import(..)		utility	returns	a	promise	that	is	fulfilled	once	the
module	is	ready.	To	import	multiple	modules,	you	can	compose	promises	from	multiple
	Reflect.Loader.import(..)		calls	using		Promise.all([	..	])	.	For	more	information	about
Promises,	see	"Promises"	in	Chapter	4.

You	can	also	use		Reflect.Loader.import(..)		in	a	real	module	to	dynamically/conditionally
load	a	module,	where		import		itself	would	not	work.	You	might,	for	instance,	choose	to	load
a	module	containing	a	polyfill	for	some	ES7+	feature	if	a	feature	test	reveals	it's	not	defined
by	the	current	engine.

For	performance	reasons,	you'll	want	to	avoid	dynamic	loading	whenever	possible,	as	it
hampers	the	ability	of	the	JS	engine	to	fire	off	early	fetches	from	its	static	analysis.

Customized	Loading

Another	use	for	directly	interacting	with	the	module	loader	is	if	you	want	to	customize	its
behavior	through	configuration	or	even	redefinition.

At	the	time	of	this	writing,	there's	a	polyfill	for	the	module	loader	API	being	developed
(https://github.com/ModuleLoader/es6-module-loader).	While	details	are	scarce	and	highly
subject	to	change,	we	can	explore	what	possibilities	may	eventually	land.

The		Reflect.Loader.import(..)		call	may	support	a	second	argument	for	specifying	various
options	to	customize	the	import/load	task.	For	example:

Reflect.Loader.import(	"foo",	{	address:	"/path/to/foo.js"	}	)

.then(	function(foo){

				//	..

}	)
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It's	also	expected	that	a	customization	will	be	provided	(through	some	means)	for	hooking
into	the	process	of	loading	a	module,	where	a	translation/transpilation	could	occur	after	load
but	before	the	engine	compiles	the	module.

For	example,	you	could	load	something	that's	not	already	an	ES6-compliant	module	format
(e.g.,	CoffeeScript,	TypeScript,	CommonJS,	AMD).	Your	translation	step	could	then	convert
it	to	an	ES6-compliant	module	for	the	engine	to	then	process.

Classes
From	nearly	the	beginning	of	JavaScript,	syntax	and	development	patterns	have	all	strived
(read:	struggled)	to	put	on	a	facade	of	supporting	class-oriented	development.	With	things
like		new		and		instanceof		and	a		.constructor		property,	who	couldn't	help	but	be	teased
that	JS	had	classes	hidden	somewhere	inside	its	prototype	system?

Of	course,	JS	"classes"	aren't	nearly	the	same	as	classical	classes.	The	differences	are	well
documented,	so	I	won't	belabor	that	point	any	further	here.

Note:	To	learn	more	about	the	patterns	used	in	JS	to	fake	"classes,"	and	an	alternative	view
of	prototypes	called	"delegation,"	see	the	second	half	of	the	this	&	Object	Prototypes	title	of
this	series.

	class	

Although	JS's	prototype	mechanism	doesn't	work	like	traditional	classes,	that	doesn't	stop
the	strong	tide	of	demand	on	the	language	to	extend	the	syntactic	sugar	so	that	expressing
"classes"	looks	more	like	real	classes.	Enter	the	ES6		class		keyword	and	its	associated
mechanism.

This	feature	is	the	result	of	a	highly	contentious	and	drawn-out	debate,	and	represents	a
smaller	subset	compromise	from	several	strongly	opposed	views	on	how	to	approach	JS
classes.	Most	developers	who	want	full	classes	in	JS	will	find	parts	of	the	new	syntax	quite
inviting,	but	will	find	important	bits	still	missing.	Don't	worry,	though.	TC39	is	already	working
on	additional	features	to	augment	classes	in	the	post-ES6	timeframe.

At	the	heart	of	the	new	ES6	class	mechanism	is	the		class		keyword,	which	identifies	a
block	where	the	contents	define	the	members	of	a	function's	prototype.	Consider:
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class	Foo	{

				constructor(a,b)	{

								this.x	=	a;

								this.y	=	b;

				}

				gimmeXY()	{

								return	this.x	*	this.y;

				}

}

Some	things	to	note:

	class	Foo		implies	creating	a	(special)	function	of	the	name		Foo	,	much	like	you	did
pre-ES6.
	constructor(..)		identifies	the	signature	of	that		Foo(..)		function,	as	well	as	its	body
contents.
Class	methods	use	the	same	"concise	method"	syntax	available	to	object	literals,	as
discussed	in	Chapter	2.	This	also	includes	the	concise	generator	form	as	discussed
earlier	in	this	chapter,	as	well	as	the	ES5	getter/setter	syntax.	However,	class	methods
are	non-enumerable	whereas	object	methods	are	by	default	enumerable.
Unlike	object	literals,	there	are	no	commas	separating	members	in	a		class		body!	In
fact,	they're	not	even	allowed.

The		class		syntax	definition	in	the	previous	snippet	can	be	roughly	thought	of	as	this	pre-
ES6	equivalent,	which	probably	will	look	fairly	familiar	to	those	who've	done	prototype-style
coding	before:

function	Foo(a,b)	{

				this.x	=	a;

				this.y	=	b;

}

Foo.prototype.gimmeXY	=	function()	{

				return	this.x	*	this.y;

}

In	either	the	pre-ES6	form	or	the	new	ES6		class		form,	this	"class"	can	now	be	instantiated
and	used	just	as	you'd	expect:

var	f	=	new	Foo(	5,	15	);

f.x;																								//	5

f.y;																								//	15

f.gimmeXY();																//	75
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Caution!	Though		class	Foo		seems	much	like		function	Foo()	,	there	are	important
differences:

A		Foo(..)		call	of		class	Foo		must	be	made	with		new	,	as	the	pre-ES6	option	of
	Foo.call(	obj	)		will	not	work.
While		function	Foo		is	"hoisted"	(see	the	Scope	&	Closures	title	of	this	series),		class
Foo		is	not;	the		extends	..		clause	specifies	an	expression	that	cannot	be	"hoisted."	So,
you	must	declare	a		class		before	you	can	instantiate	it.
	class	Foo		in	the	top	global	scope	creates	a	lexical		Foo		identifier	in	that	scope,	but
unlike		function	Foo		does	not	create	a	global	object	property	of	that	name.

The	established		instanceof		operator	still	works	with	ES6	classes,	because		class		just
creates	a	constructor	function	of	the	same	name.	However,	ES6	introduces	a	way	to
customize	how		instanceof		works,	using		Symbol.hasInstance		(see	"Well-Known	Symbols"
in	Chapter	7).

Another	way	of	thinking	about		class	,	which	I	find	more	convenient,	is	as	a	macro	that	is
used	to	automatically	populate	a		prototype		object.	Optionally,	it	also	wires	up	the
	[[Prototype]]		relationship	if	using		extends		(see	the	next	section).

An	ES6		class		isn't	really	an	entity	itself,	but	a	meta	concept	that	wraps	around	other
concrete	entities,	such	as	functions	and	properties,	and	ties	them	together.

Tip:	In	addition	to	the	declaration	form,	a		class		can	also	be	an	expression,	as	in:		var	x	=
class	Y	{	..	}	.	This	is	primarily	useful	for	passing	a	class	definition	(technically,	the
constructor	itself)	as	a	function	argument	or	assigning	it	to	an	object	property.

	extends		and		super	

ES6	classes	also	have	syntactic	sugar	for	establishing	the		[[Prototype]]		delegation	link
between	two	function	prototypes	--	commonly	mislabeled	"inheritance"	or	confusingly
labeled	"prototype	inheritance"	--	using	the	class-oriented	familiar	terminology		extends	:
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class	Bar	extends	Foo	{

				constructor(a,b,c)	{

								super(	a,	b	);

								this.z	=	c;

				}

				gimmeXYZ()	{

								return	super.gimmeXY()	*	this.z;

				}

}

var	b	=	new	Bar(	5,	15,	25	);

b.x;																								//	5

b.y;																								//	15

b.z;																								//	25

b.gimmeXYZ();																//	1875

A	significant	new	addition	is		super	,	which	is	actually	something	not	directly	possible	pre-
ES6	(without	some	unfortunate	hack	trade-offs).	In	the	constructor,		super		automatically
refers	to	the	"parent	constructor,"	which	in	the	previous	example	is		Foo(..)	.	In	a	method,	it
refers	to	the	"parent	object,"	such	that	you	can	then	make	a	property/method	access	off	it,
such	as		super.gimmeXY()	.

	Bar	extends	Foo		of	course	means	to	link	the		[[Prototype]]		of		Bar.prototype		to
	Foo.prototype	.	So,		super		in	a	method	like		gimmeXYZ()		specifically	means		Foo.prototype	,
whereas		super		means		Foo		when	used	in	the		Bar		constructor.

Note:		super		is	not	limited	to		class		declarations.	It	also	works	in	object	literals,	in	much
the	same	way	we're	discussing	here.	See	"Object		super	"	in	Chapter	2	for	more	information.

There	Be		super		Dragons

It	is	not	insignificant	to	note	that		super		behaves	differently	depending	on	where	it	appears.
In	fairness,	most	of	the	time,	that	won't	be	a	problem.	But	surprises	await	if	you	deviate	from
a	narrow	norm.

There	may	be	cases	where	in	the	constructor	you	would	want	to	reference	the
	Foo.prototype	,	such	as	to	directly	access	one	of	its	properties/methods.	However,		super	
in	the	constructor	cannot	be	used	in	that	way;		super.prototype		will	not	work.		super(..)	
means	roughly	to	call		new	Foo(..)	,	but	isn't	actually	a	usable	reference	to		Foo		itself.

Symmetrically,	you	may	want	to	reference	the		Foo(..)		function	from	inside	a	non-
constructor	method.		super.constructor		will	point	at		Foo(..)		the	function,	but	beware	that
this	function	can	only	be	invoked	with		new	.		new	super.constructor(..)		would	be	valid,	but
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it	wouldn't	be	terribly	useful	in	most	cases,	because	you	can't	make	that	call	use	or
reference	the	current		this		object	context,	which	is	likely	what	you'd	want.

Also,		super		looks	like	it	might	be	driven	by	a	function's	context	just	like		this		--	that	is,	that
they'd	both	be	dynamically	bound.	However,		super		is	not	dynamic	like		this		is.	When	a
constructor	or	method	makes	a		super		reference	inside	it	at	declaration	time	(in	the		class	
body),	that		super		is	statically	bound	to	that	specific	class	hierarchy,	and	cannot	be
overridden	(at	least	in	ES6).

What	does	that	mean?	It	means	that	if	you're	in	the	habit	of	taking	a	method	from	one
"class"	and	"borrowing"	it	for	another	class	by	overriding	its		this	,	say	with		call(..)		or
	apply(..)	,	that	may	very	well	create	surprises	if	the	method	you're	borrowing	has	a		super	
in	it.	Consider	this	class	hierarchy:

class	ParentA	{

				constructor()	{	this.id	=	"a";	}

				foo()	{	console.log(	"ParentA:",	this.id	);	}

}

class	ParentB	{

				constructor()	{	this.id	=	"b";	}

				foo()	{	console.log(	"ParentB:",	this.id	);	}

}

class	ChildA	extends	ParentA	{

				foo()	{

								super.foo();

								console.log(	"ChildA:",	this.id	);

				}

}

class	ChildB	extends	ParentB	{

				foo()	{

								super.foo();

								console.log(	"ChildB:",	this.id	);

				}

}

var	a	=	new	ChildA();

a.foo();																				//	ParentA:	a

																												//	ChildA:	a

var	b	=	new	ChildB();								//	ParentB:	b

b.foo();																				//	ChildB:	b

All	seems	fairly	natural	and	expected	in	this	previous	snippet.	However,	if	you	try	to	borrow
	b.foo()		and	use	it	in	the	context	of		a		--	by	virtue	of	dynamic		this		binding,	such
borrowing	is	quite	common	and	used	in	many	different	ways,	including	mixins	most	notably	-
-	you	may	find	this	result	an	ugly	surprise:
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//	borrow	`b.foo()`	to	use	in	`a`	context

b.foo.call(	a	);												//	ParentB:	a

																												//	ChildB:	a

As	you	can	see,	the		this.id		reference	was	dynamically	rebound	so	that		:	a		is	reported
in	both	cases	instead	of		:	b	.	But		b.foo()	's		super.foo()		reference	wasn't	dynamically
rebound,	so	it	still	reported		ParentB		instead	of	the	expected		ParentA	.

Because		b.foo()		references		super	,	it	is	statically	bound	to	the		ChildB	/	ParentB	
hierarchy	and	cannot	be	used	against	the		ChildA	/	ParentA		hierarchy.	There	is	no	ES6
solution	to	this	limitation.

	super		seems	to	work	intuitively	if	you	have	a	static	class	hierarchy	with	no	cross-
pollination.	But	in	all	fairness,	one	of	the	main	benefits	of	doing		this	-aware	coding	is
exactly	that	sort	of	flexibility.	Simply,		class		+		super		requires	you	to	avoid	such	techniques.

The	choice	boils	down	to	narrowing	your	object	design	to	these	static	hierarchies	--		class	,
	extends	,	and		super		will	be	quite	nice	--	or	dropping	all	attempts	to	"fake"	classes	and
instead	embrace	dynamic	and	flexible,	classless	objects	and		[[Prototype]]		delegation	(see
the	this	&	Object	Prototypes	title	of	this	series).

Subclass	Constructor

Constructors	are	not	required	for	classes	or	subclasses;	a	default	constructor	is	substituted
in	both	cases	if	omitted.	However,	the	default	substituted	constructor	is	different	for	a	direct
class	versus	an	extended	class.

Specifically,	the	default	subclass	constructor	automatically	calls	the	parent	constructor,	and
passes	along	any	arguments.	In	other	words,	you	could	think	of	the	default	subclass
constructor	sort	of	like	this:

constructor(...args)	{

				super(...args);

}

This	is	an	important	detail	to	note.	Not	all	class	languages	have	the	subclass	constructor
automatically	call	the	parent	constructor.	C++	does,	but	Java	does	not.	But	more	importantly,
in	pre-ES6	classes,	such	automatic	"parent	constructor"	calling	does	not	happen.	Be	careful
when	converting	to	ES6		class		if	you've	been	relying	on	such	calls	not	happening.

Another	perhaps	surprising	deviation/limitation	of	ES6	subclass	constructors:	in	a
constructor	of	a	subclass,	you	cannot	access		this		until		super(..)		has	been	called.	The
reason	is	nuanced	and	complicated,	but	it	boils	down	to	the	fact	that	the	parent	constructor
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is	actually	the	one	creating/initializing	your	instance's		this	.	Pre-ES6,	it	works	oppositely;
the		this		object	is	created	by	the	"subclass	constructor,"	and	then	you	call	a	"parent
constructor"	with	the	context	of	the	"subclass"		this	.

Let's	illustrate.	This	works	pre-ES6:

function	Foo()	{

				this.a	=	1;

}

function	Bar()	{

				this.b	=	2;

				Foo.call(	this	);

}

//	`Bar`	"extends"	`Foo`

Bar.prototype	=	Object.create(	Foo.prototype	);

But	this	ES6	equivalent	is	not	allowed:

class	Foo	{

				constructor()	{	this.a	=	1;	}

}

class	Bar	extends	Foo	{

				constructor()	{

								this.b	=	2;												//	not	allowed	before	`super()`

								super();												//	to	fix	swap	these	two	statements

				}

}

In	this	case,	the	fix	is	simple.	Just	swap	the	two	statements	in	the	subclass		Bar	
constructor.	However,	if	you've	been	relying	pre-ES6	on	being	able	to	skip	calling	the	"parent
constructor,"	beware	because	that	won't	be	allowed	anymore.

	extend	ing	Natives

One	of	the	most	heralded	benefits	to	the	new		class		and		extend		design	is	the	ability	to
(finally!)	subclass	the	built-in	natives,	like		Array	.	Consider:
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class	MyCoolArray	extends	Array	{

				first()	{	return	this[0];	}

				last()	{	return	this[this.length	-	1];	}

}

var	a	=	new	MyCoolArray(	1,	2,	3	);

a.length;																				//	3

a;																												//	[1,2,3]

a.first();																				//	1

a.last();																				//	3

Prior	to	ES6,	a	fake	"subclass"	of		Array		using	manual	object	creation	and	linking	to
	Array.prototype		only	partially	worked.	It	missed	out	on	the	special	behaviors	of	a	real	array,
such	as	the	automatically	updating		length		property.	ES6	subclasses	should	fully	work	with
"inherited"	and	augmented	behaviors	as	expected!

Another	common	pre-ES6	"subclass"	limitation	is	with	the		Error		object,	in	creating	custom
error	"subclasses."	When	genuine		Error		objects	are	created,	they	automatically	capture
special		stack		information,	including	the	line	number	and	file	where	the	error	is	created.
Pre-ES6	custom	error	"subclasses"	have	no	such	special	behavior,	which	severely	limits
their	usefulness.

ES6	to	the	rescue:

class	Oops	extends	Error	{

				constructor(reason)	{

								super(reason);

								this.oops	=	reason;

				}

}

//	later:

var	ouch	=	new	Oops(	"I	messed	up!"	);

throw	ouch;

The		ouch		custom	error	object	in	this	previous	snippet	will	behave	like	any	other	genuine
error	object,	including	capturing		stack	.	That's	a	big	improvement!

	new.target	

ES6	introduces	a	new	concept	called	a	meta	property	(see	Chapter	7),	in	the	form	of
	new.target	.
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If	that	looks	strange,	it	is;	pairing	a	keyword	with	a		.		and	a	property	name	is	definitely	an
out-of-the-ordinary	pattern	for	JS.

	new.target		is	a	new	"magical"	value	available	in	all	functions,	though	in	normal	functions	it
will	always	be		undefined	.	In	any	constructor,		new.target		always	points	at	the	constructor
that		new		actually	directly	invoked,	even	if	the	constructor	is	in	a	parent	class	and	was
delegated	to	by	a		super(..)		call	from	a	child	constructor.	Consider:

class	Foo	{

				constructor()	{

								console.log(	"Foo:	",	new.target.name	);

				}

}

class	Bar	extends	Foo	{

				constructor()	{

								super();

								console.log(	"Bar:	",	new.target.name	);

				}

				baz()	{

								console.log(	"baz:	",	new.target	);

				}

}

var	a	=	new	Foo();

//	Foo:	Foo

var	b	=	new	Bar();

//	Foo:	Bar			<--	respects	the	`new`	call-site

//	Bar:	Bar

b.baz();

//	baz:	undefined

The		new.target		meta	property	doesn't	have	much	purpose	in	class	constructors,	except
accessing	a	static	property/method	(see	the	next	section).

If		new.target		is		undefined	,	you	know	the	function	was	not	called	with		new	.	You	can	then
force	a		new		invocation	if	that's	necessary.

	static	

When	a	subclass		Bar		extends	a	parent	class		Foo	,	we	already	observed	that
	Bar.prototype		is		[[Prototype]]	-linked	to		Foo.prototype	.	But	additionally,		Bar()		is
	[[Prototype]]	-linked	to		Foo()	.	That	part	may	not	have	such	an	obvious	reasoning.
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However,	it's	quite	useful	in	the	case	where	you	declare		static		methods	(not	just
properties)	for	a	class,	as	these	are	added	directly	to	that	class's	function	object,	not	to	the
function	object's		prototype		object.	Consider:

class	Foo	{

				static	cool()	{	console.log(	"cool"	);	}

				wow()	{	console.log(	"wow"	);	}

}

class	Bar	extends	Foo	{

				static	awesome()	{

								super.cool();

								console.log(	"awesome"	);

				}

				neat()	{

								super.wow();

								console.log(	"neat"	);

				}

}

Foo.cool();																				//	"cool"

Bar.cool();																				//	"cool"

Bar.awesome();																//	"cool"

																												//	"awesome"

var	b	=	new	Bar();

b.neat();																				//	"wow"

																												//	"neat"

b.awesome;																				//	undefined

b.cool;																								//	undefined

Be	careful	not	to	get	confused	that		static		members	are	on	the	class's	prototype	chain.
They're	actually	on	the	dual/parallel	chain	between	the	function	constructors.

	Symbol.species		Constructor	Getter

One	place	where		static		can	be	useful	is	in	setting	the		Symbol.species		getter	(known
internally	in	the	specification	as		@@species	)	for	a	derived	(child)	class.	This	capability	allows
a	child	class	to	signal	to	a	parent	class	what	constructor	should	be	used	--	when	not
intending	the	child	class's	constructor	itself	--	if	any	parent	class	method	needs	to	vend	a
new	instance.

For	example,	many	methods	on		Array		create	and	return	a	new		Array		instance.	If	you
define	a	derived	class	from		Array	,	but	you	want	those	methods	to	continue	to	vend	actual
	Array		instances	instead	of	from	your	derived	class,	this	works:
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class	MyCoolArray	extends	Array	{

				//	force	`species`	to	be	parent	constructor

				static	get	[Symbol.species]()	{	return	Array;	}

}

var	a	=	new	MyCoolArray(	1,	2,	3	),

				b	=	a.map(	function(v){	return	v	*	2;	}	);

b	instanceof	MyCoolArray;				//	false

b	instanceof	Array;												//	true

To	illustrate	how	a	parent	class	method	can	use	a	child's	species	declaration	somewhat	like
	Array#map(..)		is	doing,	consider:

class	Foo	{

				//	defer	`species`	to	derived	constructor

				static	get	[Symbol.species]()	{	return	this;	}

				spawn()	{

								return	new	this.constructor[Symbol.species]();

				}

}

class	Bar	extends	Foo	{

				//	force	`species`	to	be	parent	constructor

				static	get	[Symbol.species]()	{	return	Foo;	}

}

var	a	=	new	Foo();

var	b	=	a.spawn();

b	instanceof	Foo;																				//	true

var	x	=	new	Bar();

var	y	=	x.spawn();

y	instanceof	Bar;																				//	false

y	instanceof	Foo;																				//	true

The	parent	class		Symbol.species		does		return	this		to	defer	to	any	derived	class,	as	you'd
normally	expect.		Bar		then	overrides	to	manually	declare		Foo		to	be	used	for	such	instance
creation.	Of	course,	a	derived	class	can	still	vend	instances	of	itself	using		new
this.constructor(..)	.

Review
ES6	introduces	several	new	features	that	aid	in	code	organization:

Iterators	provide	sequential	access	to	data	or	operations.	They	can	be	consumed	by
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new	language	features	like		for..of		and		...	.
Generators	are	locally	pause/resume	capable	functions	controlled	by	an	iterator.	They
can	be	used	to	programmatically	(and	interactively,	through		yield	/	next(..)		message
passing)	generate	values	to	be	consumed	via	iteration.
Modules	allow	private	encapsulation	of	implementation	details	with	a	publicly	exported
API.	Module	definitions	are	file-based,	singleton	instances,	and	statically	resolved	at
compile	time.
Classes	provide	cleaner	syntax	around	prototype-based	coding.	The	addition	of		super	
also	solves	tricky	issues	with	relative	references	in	the		[[Prototype]]		chain.

These	new	tools	should	be	your	first	stop	when	trying	to	improve	the	architecture	of	your	JS
projects	by	embracing	ES6.
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Chapter	4:	Async	Flow	Control
It's	no	secret	if	you've	written	any	significant	amount	of	JavaScript	that	asynchronous
programming	is	a	required	skill.	The	primary	mechanism	for	managing	asynchrony	has	been
the	function	callback.

However,	ES6	adds	a	new	feature	that	helps	address	significant	shortcomings	in	the
callbacks-only	approach	to	async:	Promises.	In	addition,	we	can	revisit	generators	(from	the
previous	chapter)	and	see	a	pattern	for	combining	the	two	that's	a	major	step	forward	in
async	flow	control	programming	in	JavaScript.

Promises
Let's	clear	up	some	misconceptions:	Promises	are	not	about	replacing	callbacks.	Promises
provide	a	trustable	intermediary	--	that	is,	between	your	calling	code	and	the	async	code	that
will	perform	the	task	--	to	manage	callbacks.

Another	way	of	thinking	about	a	Promise	is	as	an	event	listener,	on	which	you	can	register	to
listen	for	an	event	that	lets	you	know	when	a	task	has	completed.	It's	an	event	that	will	only
ever	fire	once,	but	it	can	be	thought	of	as	an	event	nonetheless.

Promises	can	be	chained	together,	which	can	sequence	a	series	of	asychronously
completing	steps.	Together	with	higher-level	abstractions	like	the		all(..)		method	(in
classic	terms,	a	"gate")	and	the		race(..)		method	(in	classic	terms,	a	"latch"),	promise
chains	provide	a	mechanism	for	async	flow	control.

Yet	another	way	of	conceptualizing	a	Promise	is	that	it's	a	future	value,	a	time-independent
container	wrapped	around	a	value.	This	container	can	be	reasoned	about	identically	whether
the	underlying	value	is	final	or	not.	Observing	the	resolution	of	a	Promise	extracts	this	value
once	available.	In	other	words,	a	Promise	is	said	to	be	the	async	version	of	a	sync	function's
return	value.

A	Promise	can	only	have	one	of	two	possible	resolution	outcomes:	fulfilled	or	rejected,	with
an	optional	single	value.	If	a	Promise	is	fulfilled,	the	final	value	is	called	a	fulfillment.	If	it's
rejected,	the	final	value	is	called	a	reason	(as	in,	a	"reason	for	rejection").	Promises	can	only
be	resolved	(fulfillment	or	rejection)	once.	Any	further	attempts	to	fulfill	or	reject	are	simply
ignored.	Thus,	once	a	Promise	is	resolved,	it's	an	immutable	value	that	cannot	be	changed.
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Clearly,	there	are	several	different	ways	to	think	about	what	a	Promise	is.	No	single
perspective	is	fully	sufficient,	but	each	provides	a	separate	aspect	of	the	whole.	The	big
takeaway	is	that	they	offer	a	significant	improvement	over	callbacks-only	async,	namely	that
they	provide	order,	predictability,	and	trustability.

Making	and	Using	Promises

To	construct	a	promise	instance,	use	the		Promise(..)		constructor:

var	p	=	new	Promise(	function	pr(resolve,reject){

				//	..

}	);

The		Promise(..)		constructor	takes	a	single	function	(	pr(..)	),	which	is	called	immediately
and	receives	two	control	functions	as	arguments,	usually	named		resolve(..)		and
	reject(..)	.	They	are	used	as:

If	you	call		reject(..)	,	the	promise	is	rejected,	and	if	any	value	is	passed	to
	reject(..)	,	it	is	set	as	the	reason	for	rejection.
If	you	call		resolve(..)		with	no	value,	or	any	non-promise	value,	the	promise	is	fulfilled.
If	you	call		resolve(..)		and	pass	another	promise,	this	promise	simply	adopts	the	state
--	whether	immediate	or	eventual	--	of	the	passed	promise	(either	fulfillment	or
rejection).

Here's	how	you'd	typically	use	a	promise	to	refactor	a	callback-reliant	function	call.	If	you
start	out	with	an		ajax(..)		utility	that	expects	to	be	able	to	call	an	error-first	style	callback:

function	ajax(url,cb)	{

				//	make	request,	eventually	call	`cb(..)`

}

//	..

ajax(	"http://some.url.1",	function	handler(err,contents){

				if	(err)	{

								//	handle	ajax	error

				}

				else	{

								//	handle	`contents`	success

				}

}	);

You	can	convert	it	to:
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function	ajax(url)	{

				return	new	Promise(	function	pr(resolve,reject){

								//	make	request,	eventually	call

								//	either	`resolve(..)`	or	`reject(..)`

				}	);

}

//	..

ajax(	"http://some.url.1"	)

.then(

				function	fulfilled(contents){

								//	handle	`contents`	success

				},

				function	rejected(reason){

								//	handle	ajax	error	reason

				}

);

Promises	have	a		then(..)		method	that	accepts	one	or	two	callback	functions.	The	first
function	(if	present)	is	treated	as	the	handler	to	call	if	the	promise	is	fulfilled	successfully.
The	second	function	(if	present)	is	treated	as	the	handler	to	call	if	the	promise	is	rejected
explicitly,	or	if	any	error/exception	is	caught	during	resolution.

If	one	of	the	arguments	is	omitted	or	otherwise	not	a	valid	function	--	typically	you'll	use
	null		instead	--	a	default	placeholder	equivalent	is	used.	The	default	success	callback
passes	its	fulfillment	value	along	and	the	default	error	callback	propagates	its	rejection
reason	along.

The	shorthand	for	calling		then(null,handleRejection)		is		catch(handleRejection)	.

Both		then(..)		and		catch(..)		automatically	construct	and	return	another	promise
instance,	which	is	wired	to	receive	the	resolution	from	whatever	the	return	value	is	from	the
original	promise's	fulfillment	or	rejection	handler	(whichever	is	actually	called).	Consider:

ajax(	"http://some.url.1"	)

.then(

				function	fulfilled(contents){

								return	contents.toUpperCase();

				},

				function	rejected(reason){

								return	"DEFAULT	VALUE";

				}

)

.then(	function	fulfilled(data){

				//	handle	data	from	original	promise's

				//	handlers

}	);
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In	this	snippet,	we're	returning	an	immediate	value	from	either		fulfilled(..)		or
	rejected(..)	,	which	then	is	received	on	the	next	event	turn	in	the	second		then(..)	's
	fulfilled(..)	.	If	we	instead	return	a	new	promise,	that	new	promise	is	subsumed	and
adopted	as	the	resolution:

ajax(	"http://some.url.1"	)

.then(

				function	fulfilled(contents){

								return	ajax(

												"http://some.url.2?v="	+	contents

								);

				},

				function	rejected(reason){

								return	ajax(

												"http://backup.url.3?err="	+	reason

								);

				}

)

.then(	function	fulfilled(contents){

				//	`contents`	comes	from	the	subsequent

				//	`ajax(..)`	call,	whichever	it	was

}	);

It's	important	to	note	that	an	exception	(or	rejected	promise)	in	the	first		fulfilled(..)		will
not	result	in	the	first		rejected(..)		being	called,	as	that	handler	only	responds	to	the
resolution	of	the	first	original	promise.	Instead,	the	second	promise,	which	the	second
	then(..)		is	called	against,	receives	that	rejection.

In	this	previous	snippet,	we	are	not	listening	for	that	rejection,	which	means	it	will	be	silently
held	onto	for	future	observation.	If	you	never	observe	it	by	calling	a		then(..)		or		catch(..)	,
then	it	will	go	unhandled.	Some	browser	developer	consoles	may	detect	these	unhandled
rejections	and	report	them,	but	this	is	not	reliably	guaranteed;	you	should	always	observe
promise	rejections.

Note:	This	was	just	a	brief	overview	of	Promise	theory	and	behavior.	For	a	much	more	in-
depth	exploration,	see	Chapter	3	of	the	Async	&	Performance	title	of	this	series.

Thenables

Promises	are	genuine	instances	of	the		Promise(..)		constructor.	However,	there	are
promise-like	objects	called	thenables	that	generally	can	interoperate	with	the	Promise
mechanisms.
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Any	object	(or	function)	with	a		then(..)		function	on	it	is	assumed	to	be	a	thenable.	Any
place	where	the	Promise	mechanisms	can	accept	and	adopt	the	state	of	a	genuine	promise,
they	can	also	handle	a	thenable.

Thenables	are	basically	a	general	label	for	any	promise-like	value	that	may	have	been
created	by	some	other	system	than	the	actual		Promise(..)		constructor.	In	that	perspective,
a	thenable	is	generally	less	trustable	than	a	genuine	Promise.	Consider	this	misbehaving
thenable,	for	example:

var	th	=	{

				then:	function	thener(	fulfilled	)	{

								//	call	`fulfilled(..)`	once	every	100ms	forever

								setInterval(	fulfilled,	100	);

				}

};

If	you	received	that	thenable	and	chained	it	with		th.then(..)	,	you'd	likely	be	surprised	that
your	fulfillment	handler	is	called	repeatedly,	when	normal	Promises	are	supposed	to	only
ever	be	resolved	once.

Generally,	if	you're	receiving	what	purports	to	be	a	promise	or	thenable	back	from	some
other	system,	you	shouldn't	just	trust	it	blindly.	In	the	next	section,	we'll	see	a	utility	included
with	ES6	Promises	that	helps	address	this	trust	concern.

But	to	further	understand	the	perils	of	this	issue,	consider	that	any	object	in	any	piece	of
code	that's	ever	been	defined	to	have	a	method	on	it	called		then(..)		can	be	potentially
confused	as	a	thenable	--	if	used	with	Promises,	of	course	--	regardless	of	if	that	thing	was
ever	intended	to	even	remotely	be	related	to	Promise-style	async	coding.

Prior	to	ES6,	there	was	never	any	special	reservation	made	on	methods	called		then(..)	,
and	as	you	can	imagine	there's	been	at	least	a	few	cases	where	that	method	name	has
been	chosen	prior	to	Promises	ever	showing	up	on	the	radar	screen.	The	most	likely	case	of
mistaken	thenable	will	be	async	libraries	that	use		then(..)		but	which	are	not	strictly
Promises-compliant	--	there	are	several	out	in	the	wild.

The	onus	will	be	on	you	to	guard	against	directly	using	values	with	the	Promise	mechanism
that	would	be	incorrectly	assumed	to	be	a	thenable.

	Promise		API

The		Promise		API	also	provides	some	static	methods	for	working	with	Promises.

	Promise.resolve(..)		creates	a	promise	resolved	to	the	value	passed	in.	Let's	compare	how
it	works	to	the	more	manual	approach:
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var	p1	=	Promise.resolve(	42	);

var	p2	=	new	Promise(	function	pr(resolve){

				resolve(	42	);

}	);

	p1		and		p2		will	have	essentially	identical	behavior.	The	same	goes	for	resolving	with	a
promise:

var	theP	=	ajax(	..	);

var	p1	=	Promise.resolve(	theP	);

var	p2	=	new	Promise(	function	pr(resolve){

				resolve(	theP	);

}	);

Tip:		Promise.resolve(..)		is	the	solution	to	the	thenable	trust	issue	raised	in	the	previous
section.	Any	value	that	you	are	not	already	certain	is	a	trustable	promise	--	even	if	it	could	be
an	immediate	value	--	can	be	normalized	by	passing	it	to		Promise.resolve(..)	.	If	the	value
is	already	a	recognizable	promise	or	thenable,	its	state/resolution	will	simply	be	adopted,
insulating	you	from	misbehavior.	If	it's	instead	an	immediate	value,	it	will	be	"wrapped"	in	a
genuine	promise,	thereby	normalizing	its	behavior	to	be	async.

	Promise.reject(..)		creates	an	immediately	rejected	promise,	the	same	as	its		Promise(..)	
constructor	counterpart:

var	p1	=	Promise.reject(	"Oops"	);

var	p2	=	new	Promise(	function	pr(resolve,reject){

				reject(	"Oops"	);

}	);

While		resolve(..)		and		Promise.resolve(..)		can	accept	a	promise	and	adopt	its
state/resolution,		reject(..)		and		Promise.reject(..)		do	not	differentiate	what	value	they
receive.	So,	if	you	reject	with	a	promise	or	thenable,	the	promise/thenable	itself	will	be	set	as
the	rejection	reason,	not	its	underlying	value.

	Promise.all([	..	])		accepts	an	array	of	one	or	more	values	(e.g.,	immediate	values,
promises,	thenables).	It	returns	a	promise	back	that	will	be	fulfilled	if	all	the	values	fulfill,	or
reject	immediately	once	the	first	of	any	of	them	rejects.

Starting	with	these	values/promises:
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var	p1	=	Promise.resolve(	42	);

var	p2	=	new	Promise(	function	pr(resolve){

				setTimeout(	function(){

								resolve(	43	);

				},	100	);

}	);

var	v3	=	44;

var	p4	=	new	Promise(	function	pr(resolve,reject){

				setTimeout(	function(){

								reject(	"Oops"	);

				},	10	);

}	);

Let's	consider	how		Promise.all([	..	])		works	with	combinations	of	those	values:

Promise.all(	[p1,p2,v3]	)

.then(	function	fulfilled(vals){

				console.log(	vals	);												//	[42,43,44]

}	);

Promise.all(	[p1,p2,v3,p4]	)

.then(

				function	fulfilled(vals){

								//	never	gets	here

				},

				function	rejected(reason){

								console.log(	reason	);								//	Oops

				}

);

While		Promise.all([	..	])		waits	for	all	fulfillments	(or	the	first	rejection),		Promise.race([	..
])		waits	only	for	either	the	first	fulfillment	or	rejection.	Consider:
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//	NOTE:	re-setup	all	test	values	to

//	avoid	timing	issues	misleading	you!

Promise.race(	[p2,p1,v3]	)

.then(	function	fulfilled(val){

				console.log(	val	);																//	42

}	);

Promise.race(	[p2,p4]	)

.then(

				function	fulfilled(val){

								//	never	gets	here

				},

				function	rejected(reason){

								console.log(	reason	);								//	Oops

				}

);

Warning:	While		Promise.all([])		will	fulfill	right	away	(with	no	values),		Promise.race([])	
will	hang	forever.	This	is	a	strange	inconsistency,	and	speaks	to	the	suggestion	that	you
should	never	use	these	methods	with	empty	arrays.

Generators	+	Promises
It	is	possible	to	express	a	series	of	promises	in	a	chain	to	represent	the	async	flow	control	of
your	program.	Consider:

step1()

.then(

				step2,

				step1Failed

)

.then(

				function	step3(msg)	{

								return	Promise.all(	[

												step3a(	msg	),

												step3b(	msg	),

												step3c(	msg	)

								]	)

				}

)

.then(step4);

However,	there's	a	much	better	option	for	expressing	async	flow	control,	and	it	will	probably
be	much	more	preferable	in	terms	of	coding	style	than	long	promise	chains.	We	can	use
what	we	learned	in	Chapter	3	about	generators	to	express	our	async	flow	control.
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The	important	pattern	to	recognize:	a	generator	can	yield	a	promise,	and	that	promise	can
then	be	wired	to	resume	the	generator	with	its	fulfillment	value.

Consider	the	previous	snippet's	async	flow	control	expressed	with	a	generator:

function	*main()	{

				try	{

								var	ret	=	yield	step1();

				}

				catch	(err)	{

								ret	=	yield	step1Failed(	err	);

				}

				ret	=	yield	step2(	ret	);

				//	step	3

				ret	=	yield	Promise.all(	[

								step3a(	ret	),

								step3b(	ret	),

								step3c(	ret	)

				]	);

				yield	step4(	ret	);

}

On	the	surface,	this	snippet	may	seem	more	verbose	than	the	promise	chain	equivalent	in
the	earlier	snippet.	However,	it	offers	a	much	more	attractive	--	and	more	importantly,	a	more
understandable	and	reason-able	--	synchronous-looking	coding	style	(with		=		assignment	of
"return"	values,	etc.)	That's	especially	true	in	that		try..catch		error	handling	can	be	used
across	those	hidden	async	boundaries.

Why	are	we	using	Promises	with	the	generator?	It's	certainly	possible	to	do	async	generator
coding	without	Promises.

Promises	are	a	trustable	system	that	uninverts	the	inversion	of	control	of	normal	callbacks	or
thunks	(see	the	Async	&	Performance	title	of	this	series).	So,	combining	the	trustability	of
Promises	and	the	synchronicity	of	code	in	generators	effectively	addresses	all	the	major
deficiencies	of	callbacks.	Also,	utilities	like		Promise.all([	..	])		are	a	nice,	clean	way	to
express	concurrency	at	a	generator's	single		yield		step.

So	how	does	this	magic	work?	We're	going	to	need	a	runner	that	can	run	our	generator,
receive	a		yield	ed	promise,	and	wire	it	up	to	resume	the	generator	with	either	the	fulfillment
success	value,	or	throw	an	error	into	the	generator	with	the	rejection	reason.
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Many	async-capable	utilities/libraries	have	such	a	"runner";	for	example,		Q.spawn(..)		and
my	asynquence's		runner(..)		plug-in.	But	here's	a	stand-alone	runner	to	illustrate	how	the
process	works:

function	run(gen)	{

				var	args	=	[].slice.call(	arguments,	1),	it;

				it	=	gen.apply(	this,	args	);

				return	Promise.resolve()

								.then(	function	handleNext(value){

												var	next	=	it.next(	value	);

												return	(function	handleResult(next){

																if	(next.done)	{

																				return	next.value;

																}

																else	{

																				return	Promise.resolve(	next.value	)

																								.then(

																												handleNext,

																												function	handleErr(err)	{

																																return	Promise.resolve(

																																				it.throw(	err	)

																																)

																																.then(	handleResult	);

																												}

																								);

																}

												})(	next	);

								}	);

}

Note:	For	a	more	prolifically	commented	version	of	this	utility,	see	the	Async	&	Performance
title	of	this	series.	Also,	the	run	utilities	provided	with	various	async	libraries	are	often	more
powerful/capable	than	what	we've	shown	here.	For	example,	asynquence's		runner(..)		can
handle		yield	ed	promises,	sequences,	thunks,	and	immediate	(non-promise)	values,	giving
you	ultimate	flexibility.

So	now	running		*main()		as	listed	in	the	earlier	snippet	is	as	easy	as:
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run(	main	)

.then(

				function	fulfilled(){

								//	`*main()`	completed	successfully

				},

				function	rejected(reason){

								//	Oops,	something	went	wrong

				}

);

Essentially,	anywhere	that	you	have	more	than	two	asynchronous	steps	of	flow	control	logic
in	your	program,	you	can	and	should	use	a	promise-yielding	generator	driven	by	a	run	utility
to	express	the	flow	control	in	a	synchronous	fashion.	This	will	make	for	much	easier	to
understand	and	maintain	code.

This	yield-a-promise-resume-the-generator	pattern	is	going	to	be	so	common	and	so
powerful,	the	next	version	of	JavaScript	after	ES6	is	almost	certainly	going	to	introduce	a
new	function	type	that	will	do	it	automatically	without	needing	the	run	utility.	We'll	cover
	async	function	s	(as	they're	expected	to	be	called)	in	Chapter	8.

Review
As	JavaScript	continues	to	mature	and	grow	in	its	widespread	adoption,	asynchronous
programming	is	more	and	more	of	a	central	concern.	Callbacks	are	not	fully	sufficient	for
these	tasks,	and	totally	fall	down	the	more	sophisticated	the	need.

Thankfully,	ES6	adds	Promises	to	address	one	of	the	major	shortcomings	of	callbacks:	lack
of	trust	in	predictable	behavior.	Promises	represent	the	future	completion	value	from	a
potentially	async	task,	normalizing	behavior	across	sync	and	async	boundaries.

But	it's	the	combination	of	Promises	with	generators	that	fully	realizes	the	benefits	of
rearranging	our	async	flow	control	code	to	de-emphasize	and	abstract	away	that	ugly
callback	soup	(aka	"hell").

Right	now,	we	can	manage	these	interactions	with	the	aide	of	various	async	libraries'
runners,	but	JavaScript	is	eventually	going	to	support	this	interaction	pattern	with	dedicated
syntax	alone!
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Chapter	5:	Collections
Structured	collection	and	access	to	data	is	a	critical	component	of	just	about	any	JS
program.	From	the	beginning	of	the	language	up	to	this	point,	the	array	and	the	object	have
been	our	primary	mechanism	for	creating	data	structures.	Of	course,	many	higher-level	data
structures	have	been	built	on	top	of	these,	as	user-land	libraries.

As	of	ES6,	some	of	the	most	useful	(and	performance-optimizing!)	data	structure
abstractions	have	been	added	as	native	components	of	the	language.

We'll	start	this	chapter	first	by	looking	at	TypedArrays,	technically	contemporary	to	ES5
efforts	several	years	ago,	but	only	standardized	as	companions	to	WebGL	and	not
JavaScript	itself.	As	of	ES6,	these	have	been	adopted	directly	by	the	language	specification,
which	gives	them	first-class	status.

Maps	are	like	objects	(key/value	pairs),	but	instead	of	just	a	string	for	the	key,	you	can	use
any	value	--	even	another	object	or	map!	Sets	are	similar	to	arrays	(lists	of	values),	but	the
values	are	unique;	if	you	add	a	duplicate,	it's	ignored.	There	are	also	weak	(in	relation	to
memory/garbage	collection)	counterparts:	WeakMap	and	WeakSet.

TypedArrays
As	we	cover	in	the	Types	&	Grammar	title	of	this	series,	JS	does	have	a	set	of	built-in	types,
like		number		and		string	.	It'd	be	tempting	to	look	at	a	feature	named	"typed	array"	and
assume	it	means	an	array	of	a	specific	type	of	values,	like	an	array	of	only	strings.

However,	typed	arrays	are	really	more	about	providing	structured	access	to	binary	data
using	array-like	semantics	(indexed	access,	etc.).	The	"type"	in	the	name	refers	to	a	"view"
layered	on	type	of	the	bucket	of	bits,	which	is	essentially	a	mapping	of	whether	the	bits
should	be	viewed	as	an	array	of	8-bit	signed	integers,	16-bit	signed	integers,	and	so	on.

How	do	you	construct	such	a	bit-bucket?	It's	called	a	"buffer,"	and	you	construct	it	most
directly	with	the		ArrayBuffer(..)		constructor:

var	buf	=	new	ArrayBuffer(	32	);

buf.byteLength;																												//	32

	buf		is	now	a	binary	buffer	that	is	32-bytes	long	(256-bits),	that's	pre-initialized	to	all		0	s.	A
buffer	by	itself	doesn't	really	allow	you	any	interaction	except	for	checking	its		byteLength	
property.

Collections

868



Tip:	Several	web	platform	features	use	or	return	array	buffers,	such	as
	FileReader#readAsArrayBuffer(..)	,		XMLHttpRequest#send(..)	,	and		ImageData		(canvas
data).

But	on	top	of	this	array	buffer,	you	can	then	layer	a	"view,"	which	comes	in	the	form	of	a
typed	array.	Consider:

var	arr	=	new	Uint16Array(	buf	);

arr.length;																												//	16

	arr		is	a	typed	array	of	16-bit	unsigned	integers	mapped	over	the	256-bit		buf		buffer,
meaning	you	get	16	elements.

Endianness

It's	very	important	to	understand	that	the		arr		is	mapped	using	the	endian-setting	(big-
endian	or	little-endian)	of	the	platform	the	JS	is	running	on.	This	can	be	an	issue	if	the	binary
data	is	created	with	one	endianness	but	interpreted	on	a	platform	with	the	opposite
endianness.

Endian	means	if	the	low-order	byte	(collection	of	8-bits)	of	a	multi-byte	number	--	such	as	the
16-bit	unsigned	ints	we	created	in	the	earlier	snippet	--	is	on	the	right	or	the	left	of	the
number's	bytes.

For	example,	let's	imagine	the	base-10	number		3085	,	which	takes	16-bits	to	represent.	If
you	have	just	one	16-bit	number	container,	it'd	be	represented	in	binary	as
	0000110000001101		(hexadecimal		0c0d	)	regardless	of	endianness.

But	if		3085		was	represented	with	two	8-bit	numbers,	the	endianness	would	significantly
affect	its	storage	in	memory:

	0000110000001101		/		0c0d		(big	endian)
	0000110100001100		/		0d0c		(little	endian)

If	you	received	the	bits	of		3085		as		0000110100001100		from	a	little-endian	system,	but	you
layered	a	view	on	top	of	it	in	a	big-endian	system,	you'd	instead	see	value		3340		(base-10)
and		0d0c		(base-16).

Little	endian	is	the	most	common	representation	on	the	web	these	days,	but	there	are
definitely	browsers	where	that's	not	true.	It's	important	that	you	understand	the	endianness
of	both	the	producer	and	consumer	of	a	chunk	of	binary	data.

From	MDN,	here's	a	quick	way	to	test	the	endianness	of	your	JavaScript:
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var	littleEndian	=	(function()	{

				var	buffer	=	new	ArrayBuffer(	2	);

				new	DataView(	buffer	).setInt16(	0,	256,	true	);

				return	new	Int16Array(	buffer	)[0]	===	256;

})();

	littleEndian		will	be		true		or		false	;	for	most	browsers,	it	should	return		true	.	This	test
uses		DataView(..)	,	which	allows	more	low-level,	fine-grained	control	over	accessing
(setting/getting)	the	bits	from	the	view	you	layer	over	the	buffer.	The	third	parameter	of	the
	setInt16(..)		method	in	the	previous	snippet	is	for	telling	the		DataView		what	endianness
you're	wanting	it	to	use	for	that	operation.

Warning:	Do	not	confuse	endianness	of	underlying	binary	storage	in	array	buffers	with	how
a	given	number	is	represented	when	exposed	in	a	JS	program.	For	example,
	(3085).toString(2)		returns		"110000001101"	,	which	with	an	assumed	leading	four		"0"	s
appears	to	be	the	big-endian	representation.	In	fact,	this	representation	is	based	on	a	single
16-bit	view,	not	a	view	of	two	8-bit	bytes.	The		DataView		test	above	is	the	best	way	to
determine	endianness	for	your	JS	environment.

Multiple	Views

A	single	buffer	can	have	multiple	views	attached	to	it,	such	as:

var	buf	=	new	ArrayBuffer(	2	);

var	view8	=	new	Uint8Array(	buf	);

var	view16	=	new	Uint16Array(	buf	);

view16[0]	=	3085;

view8[0];																								//	13

view8[1];																								//	12

view8[0].toString(	16	);								//	"d"

view8[1].toString(	16	);								//	"c"

//	swap	(as	if	endian!)

var	tmp	=	view8[0];

view8[0]	=	view8[1];

view8[1]	=	tmp;

view16[0];																								//	3340

The	typed	array	constructors	have	multiple	signature	variations.	We've	shown	so	far	only
passing	them	an	existing	buffer.	However,	that	form	also	takes	two	extra	parameters:
	byteOffset		and		length	.	In	other	words,	you	can	start	the	typed	array	view	at	a	location
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other	than		0		and	you	can	make	it	span	less	than	the	full	length	of	the	buffer.

If	the	buffer	of	binary	data	includes	data	in	non-uniform	size/location,	this	technique	can	be
quite	useful.

For	example,	consider	a	binary	buffer	that	has	a	2-byte	number	(aka	"word")	at	the
beginning,	followed	by	two	1-byte	numbers,	followed	by	a	32-bit	floating	point	number.
Here's	how	you	can	access	that	data	with	multiple	views	on	the	same	buffer,	offsets,	and
lengths:

var	first	=	new	Uint16Array(	buf,	0,	2	)[0],

				second	=	new	Uint8Array(	buf,	2,	1	)[0],

				third	=	new	Uint8Array(	buf,	3,	1	)[0],

				fourth	=	new	Float32Array(	buf,	4,	4	)[0];

TypedArray	Constructors

In	addition	to	the		(buffer,[offset,	[length]])		form	examined	in	the	previous	section,	typed
array	constructors	also	support	these	forms:

[constructor]	(length)	:	Creates	a	new	view	over	a	new	buffer	of		length		bytes
[constructor]	(typedArr)	:	Creates	a	new	view	and	buffer,	and	copies	the	contents	from
the		typedArr		view
[constructor]	(obj)	:	Creates	a	new	view	and	buffer,	and	iterates	over	the	array-like	or
object		obj		to	copy	its	contents

The	following	typed	array	constructors	are	available	as	of	ES6:

	Int8Array		(8-bit	signed	integers),		Uint8Array		(8-bit	unsigned	integers)
	Uint8ClampedArray		(8-bit	unsigned	integers,	each	value	clamped	on	setting	to	the
	0	-	255		range)

	Int16Array		(16-bit	signed	integers),		Uint16Array		(16-bit	unsigned	integers)
	Int32Array		(32-bit	signed	integers),		Uint32Array		(32-bit	unsigned	integers)
	Float32Array		(32-bit	floating	point,	IEEE-754)
	Float64Array		(64-bit	floating	point,	IEEE-754)

Instances	of	typed	array	constructors	are	almost	the	same	as	regular	native	arrays.	Some
differences	include	having	a	fixed	length	and	the	values	all	being	of	the	same	"type."

However,	they	share	most	of	the	same		prototype		methods.	As	such,	you	likely	will	be	able
to	use	them	as	regular	arrays	without	needing	to	convert.

For	example:
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var	a	=	new	Int32Array(	3	);

a[0]	=	10;

a[1]	=	20;

a[2]	=	30;

a.map(	function(v){

				console.log(	v	);

}	);

//	10	20	30

a.join(	"-"	);

//	"10-20-30"

Warning:	You	can't	use	certain		Array.prototype		methods	with	TypedArrays	that	don't	make
sense,	such	as	the	mutators	(	splice(..)	,		push(..)	,	etc.)	and		concat(..)	.

Be	aware	that	the	elements	in	TypedArrays	really	are	constrained	to	the	declared	bit	sizes.	If
you	have	a		Uint8Array		and	try	to	assign	something	larger	than	an	8-bit	value	into	one	of	its
elements,	the	value	wraps	around	so	as	to	stay	within	the	bit	length.

This	could	cause	problems	if	you	were	trying	to,	for	instance,	square	all	the	values	in	a
TypedArray.	Consider:

var	a	=	new	Uint8Array(	3	);

a[0]	=	10;

a[1]	=	20;

a[2]	=	30;

var	b	=	a.map(	function(v){

				return	v	*	v;

}	);

b;																//	[100,	144,	132]

The		20		and		30		values,	when	squared,	resulted	in	bit	overflow.	To	get	around	such	a
limitation,	you	can	use	the		TypedArray#from(..)		function:

var	a	=	new	Uint8Array(	3	);

a[0]	=	10;

a[1]	=	20;

a[2]	=	30;

var	b	=	Uint16Array.from(	a,	function(v){

				return	v	*	v;

}	);

b;																//	[100,	400,	900]
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See	the	"	Array.from(..)		Static	Function"	section	in	Chapter	6	for	more	information	about
the		Array.from(..)		that	is	shared	with	TypedArrays.	Specifically,	the	"Mapping"	section
explains	the	mapping	function	accepted	as	its	second	argument.

One	interesting	behavior	to	consider	is	that	TypedArrays	have	a		sort(..)		method	much
like	regular	arrays,	but	this	one	defaults	to	numeric	sort	comparisons	instead	of	coercing
values	to	strings	for	lexicographic	comparison.	For	example:

var	a	=	[	10,	1,	2,	];

a.sort();																																//	[1,10,2]

var	b	=	new	Uint8Array(	[	10,	1,	2	]	);

b.sort();																																//	[1,2,10]

The		TypedArray#sort(..)		takes	an	optional	compare	function	argument	just	like
	Array#sort(..)	,	which	works	in	exactly	the	same	way.

Maps
If	you	have	a	lot	of	JS	experience,	you	know	that	objects	are	the	primary	mechanism	for
creating	unordered	key/value-pair	data	structures,	otherwise	known	as	maps.	However,	the
major	drawback	with	objects-as-maps	is	the	inability	to	use	a	non-string	value	as	the	key.

For	example,	consider:

var	m	=	{};

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m[x]	=	"foo";

m[y]	=	"bar";

m[x];																												//	"bar"

m[y];																												//	"bar"

What's	going	on	here?	The	two	objects		x		and		y		both	stringify	to		"[object	Object]"	,	so
only	that	one	key	is	being	set	in		m	.

Some	have	implemented	fake	maps	by	maintaining	a	parallel	array	of	non-string	keys
alongside	an	array	of	the	values,	such	as:
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var	keys	=	[],	vals	=	[];

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

keys.push(	x	);

vals.push(	"foo"	);

keys.push(	y	);

vals.push(	"bar"	);

keys[0]	===	x;																				//	true

vals[0];																								//	"foo"

keys[1]	===	y;																				//	true

vals[1];																								//	"bar"

Of	course,	you	wouldn't	want	to	manage	those	parallel	arrays	yourself,	so	you	could	define	a
data	structure	with	methods	that	automatically	do	the	management	under	the	covers.
Besides	having	to	do	that	work	yourself,	the	main	drawback	is	that	access	is	no	longer	O(1)
time-complexity,	but	instead	is	O(n).

But	as	of	ES6,	there's	no	longer	any	need	to	do	this!	Just	use		Map(..)	:

var	m	=	new	Map();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

m.get(	x	);																								//	"foo"

m.get(	y	);																								//	"bar"

The	only	drawback	is	that	you	can't	use	the		[	]		bracket	access	syntax	for	setting	and
retrieving	values.	But		get(..)		and		set(..)		work	perfectly	suitably	instead.

To	delete	an	element	from	a	map,	don't	use	the		delete		operator,	but	instead	use	the
	delete(..)		method:

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

m.delete(	y	);
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You	can	clear	the	entire	map's	contents	with		clear()	.	To	get	the	length	of	a	map	(i.e.,	the
number	of	keys),	use	the		size		property	(not		length	):

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

m.size;																												//	2

m.clear();

m.size;																												//	0

The		Map(..)		constructor	can	also	receive	an	iterable	(see	"Iterators"	in	Chapter	3),	which
must	produce	a	list	of	arrays,	where	the	first	item	in	each	array	is	the	key	and	the	second
item	is	the	value.	This	format	for	iteration	is	identical	to	that	produced	by	the		entries()	
method,	explained	in	the	next	section.	That	makes	it	easy	to	make	a	copy	of	a	map:

var	m2	=	new	Map(	m.entries()	);

//	same	as:

var	m2	=	new	Map(	m	);

Because	a	map	instance	is	an	iterable,	and	its	default	iterator	is	the	same	as		entries()	,	the
second	shorter	form	is	more	preferable.

Of	course,	you	can	just	manually	specify	an	entries	list	(array	of	key/value	arrays)	in	the
	Map(..)		constructor	form:

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

var	m	=	new	Map(	[

				[	x,	"foo"	],

				[	y,	"bar"	]

]	);

m.get(	x	);																								//	"foo"

m.get(	y	);																								//	"bar"

Map	Values

To	get	the	list	of	values	from	a	map,	use		values(..)	,	which	returns	an	iterator.	In	Chapters
2	and	3,	we	covered	various	ways	to	process	an	iterator	sequentially	(like	an	array),	such	as
the		...		spread	operator	and	the		for..of		loop.	Also,	"Arrays"	in	Chapter	6	covers	the
	Array.from(..)		method	in	detail.	Consider:
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var	m	=	new	Map();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

var	vals	=	[	...m.values()	];

vals;																												//	["foo","bar"]

Array.from(	m.values()	);								//	["foo","bar"]

As	discussed	in	the	previous	section,	you	can	iterate	over	a	map's	entries	using		entries()	
(or	the	default	map	iterator).	Consider:

var	m	=	new	Map();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

var	vals	=	[	...m.entries()	];

vals[0][0]	===	x;																//	true

vals[0][1];																								//	"foo"

vals[1][0]	===	y;																//	true

vals[1][1];																								//	"bar"

Map	Keys

To	get	the	list	of	keys,	use		keys()	,	which	returns	an	iterator	over	the	keys	in	the	map:

var	m	=	new	Map();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.set(	y,	"bar"	);

var	keys	=	[	...m.keys()	];

keys[0]	===	x;																				//	true

keys[1]	===	y;																				//	true
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To	determine	if	a	map	has	a	given	key,	use		has(..)	:

var	m	=	new	Map();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.has(	x	);																								//	true

m.has(	y	);																								//	false

Maps	essentially	let	you	associate	some	extra	piece	of	information	(the	value)	with	an	object
(the	key)	without	actually	putting	that	information	on	the	object	itself.

While	you	can	use	any	kind	of	value	as	a	key	for	a	map,	you	typically	will	use	objects,	as
strings	and	other	primitives	are	already	eligible	as	keys	of	normal	objects.	In	other	words,
you'll	probably	want	to	continue	to	use	normal	objects	for	maps	unless	some	or	all	of	the
keys	need	to	be	objects,	in	which	case	map	is	more	appropriate.

Warning:	If	you	use	an	object	as	a	map	key	and	that	object	is	later	discarded	(all	references
unset)	in	attempt	to	have	garbage	collection	(GC)	reclaim	its	memory,	the	map	itself	will	still
retain	its	entry.	You	will	need	to	remove	the	entry	from	the	map	for	it	to	be	GC-eligible.	In	the
next	section,	we'll	see	WeakMaps	as	a	better	option	for	object	keys	and	GC.

WeakMaps
WeakMaps	are	a	variation	on	maps,	which	has	most	of	the	same	external	behavior	but
differs	underneath	in	how	the	memory	allocation	(specifically	its	GC)	works.

WeakMaps	take	(only)	objects	as	keys.	Those	objects	are	held	weakly,	which	means	if	the
object	itself	is	GC'd,	the	entry	in	the	WeakMap	is	also	removed.	This	isn't	observable
behavior,	though,	as	the	only	way	an	object	can	be	GC'd	is	if	there's	no	more	references	to	it
--	once	there	are	no	more	references	to	it,	you	have	no	object	reference	to	check	if	it	exists
in	the	WeakMap.

Otherwise,	the	API	for	WeakMap	is	similar,	though	more	limited:
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var	m	=	new	WeakMap();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

m.set(	x,	"foo"	);

m.has(	x	);																								//	true

m.has(	y	);																								//	false

WeakMaps	do	not	have	a		size		property	or		clear()		method,	nor	do	they	expose	any
iterators	over	their	keys,	values,	or	entries.	So	even	if	you	unset	the		x		reference,	which	will
remove	its	entry	from		m		upon	GC,	there	is	no	way	to	tell.	You'll	just	have	to	take
JavaScript's	word	for	it!

Just	like	Maps,	WeakMaps	let	you	soft-associate	information	with	an	object.	But	they	are
particularly	useful	if	the	object	is	not	one	you	completely	control,	such	as	a	DOM	element.	If
the	object	you're	using	as	a	map	key	can	be	deleted	and	should	be	GC-eligible	when	it	is,
then	a	WeakMap	is	a	more	appropriate	option.

It's	important	to	note	that	a	WeakMap	only	holds	its	keys	weakly,	not	its	values.	Consider:

var	m	=	new	WeakMap();

var	x	=	{	id:	1	},

				y	=	{	id:	2	},

				z	=	{	id:	3	},

				w	=	{	id:	4	};

m.set(	x,	y	);

x	=	null;																								//	{	id:	1	}	is	GC-eligible

y	=	null;																								//	{	id:	2	}	is	GC-eligible

																																//	only	because	{	id:	1	}	is

m.set(	z,	w	);

w	=	null;																								//	{	id:	4	}	is	not	GC-eligible

For	this	reason,	WeakMaps	are	in	my	opinion	better	named	"WeakKeyMaps."

Sets
A	set	is	a	collection	of	unique	values	(duplicates	are	ignored).

Collections

878



The	API	for	a	set	is	similar	to	map.	The		add(..)		method	takes	the	place	of	the		set(..)	
method	(somewhat	ironically),	and	there	is	no		get(..)		method.

Consider:

var	s	=	new	Set();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

s.add(	x	);

s.add(	y	);

s.add(	x	);

s.size;																												//	2

s.delete(	y	);

s.size;																												//	1

s.clear();

s.size;																												//	0

The		Set(..)		constructor	form	is	similar	to		Map(..)	,	in	that	it	can	receive	an	iterable,	like
another	set	or	simply	an	array	of	values.	However,	unlike	how		Map(..)		expects	entries	list
(array	of	key/value	arrays),		Set(..)		expects	a	values	list	(array	of	values):

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

var	s	=	new	Set(	[x,y]	);

A	set	doesn't	need	a		get(..)		because	you	don't	retrieve	a	value	from	a	set,	but	rather	test
if	it	is	present	or	not,	using		has(..)	:

var	s	=	new	Set();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

s.add(	x	);

s.has(	x	);																								//	true

s.has(	y	);																								//	false

Note:	The	comparison	algorithm	in		has(..)		is	almost	identical	to		Object.is(..)		(see
Chapter	6),	except	that		-0		and		0		are	treated	as	the	same	rather	than	distinct.
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Set	Iterators

Sets	have	the	same	iterator	methods	as	maps.	Their	behavior	is	different	for	sets,	but
symmetric	with	the	behavior	of	map	iterators.	Consider:

var	s	=	new	Set();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

s.add(	x	).add(	y	);

var	keys	=	[	...s.keys()	],

				vals	=	[	...s.values()	],

				entries	=	[	...s.entries()	];

keys[0]	===	x;

keys[1]	===	y;

vals[0]	===	x;

vals[1]	===	y;

entries[0][0]	===	x;

entries[0][1]	===	x;

entries[1][0]	===	y;

entries[1][1]	===	y;

The		keys()		and		values()		iterators	both	yield	a	list	of	the	unique	values	in	the	set.	The
	entries()		iterator	yields	a	list	of	entry	arrays,	where	both	items	of	the	array	are	the	unique
set	value.	The	default	iterator	for	a	set	is	its		values()		iterator.

The	inherent	uniqueness	of	a	set	is	its	most	useful	trait.	For	example:

var	s	=	new	Set(	[1,2,3,4,"1",2,4,"5"]	),

				uniques	=	[	...s	];

uniques;																								//	[1,2,3,4,"1","5"]

Set	uniqueness	does	not	allow	coercion,	so		1		and		"1"		are	considered	distinct	values.

WeakSets
Whereas	a	WeakMap	holds	its	keys	weakly	(but	its	values	strongly),	a	WeakSet	holds	its
values	weakly	(there	aren't	really	keys).
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var	s	=	new	WeakSet();

var	x	=	{	id:	1	},

				y	=	{	id:	2	};

s.add(	x	);

s.add(	y	);

x	=	null;																								//	`x`	is	GC-eligible

y	=	null;																								//	`y`	is	GC-eligible

Warning:	WeakSet	values	must	be	objects,	not	primitive	values	as	is	allowed	with	sets.

Review
ES6	defines	a	number	of	useful	collections	that	make	working	with	data	in	structured	ways
more	efficient	and	effective.

TypedArrays	provide	"view"s	of	binary	data	buffers	that	align	with	various	integer	types,	like
8-bit	unsigned	integers	and	32-bit	floats.	The	array	access	to	binary	data	makes	operations
much	easier	to	express	and	maintain,	which	enables	you	to	more	easily	work	with	complex
data	like	video,	audio,	canvas	data,	and	so	on.

Maps	are	key-value	pairs	where	the	key	can	be	an	object	instead	of	just	a	string/primitive.
Sets	are	unique	lists	of	values	(of	any	type).

WeakMaps	are	maps	where	the	key	(object)	is	weakly	held,	so	that	GC	is	free	to	collect	the
entry	if	it's	the	last	reference	to	an	object.	WeakSets	are	sets	where	the	value	is	weakly	held,
again	so	that	GC	can	remove	the	entry	if	it's	the	last	reference	to	that	object.
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Chapter	6:	API	Additions
From	conversions	of	values	to	mathematic	calculations,	ES6	adds	many	static	properties
and	methods	to	various	built-in	natives	and	objects	to	help	with	common	tasks.	In	addition,
instances	of	some	of	the	natives	have	new	capabilities	via	various	new	prototype	methods.

Note:	Most	of	these	features	can	be	faithfully	polyfilled.	We	will	not	dive	into	such	details
here,	but	check	out	"ES6	Shim"	(https://github.com/paulmillr/es6-shim/)	for	standards-
compliant	shims/polyfills.

	Array	

One	of	the	most	commonly	extended	features	in	JS	by	various	user	libraries	is	the	Array
type.	It	should	be	no	surprise	that	ES6	adds	a	number	of	helpers	to	Array,	both	static	and
prototype	(instance).

	Array.of(..)		Static	Function

There's	a	well	known	gotcha	with	the		Array(..)		constructor,	which	is	that	if	there's	only	one
argument	passed,	and	that	argument	is	a	number,	instead	of	making	an	array	of	one
element	with	that	number	value	in	it,	it	constructs	an	empty	array	with	a		length		property
equal	to	the	number.	This	action	produces	the	unfortunate	and	quirky	"empty	slots"	behavior
that's	reviled	about	JS	arrays.

	Array.of(..)		replaces		Array(..)		as	the	preferred	function-form	constructor	for	arrays,
because		Array.of(..)		does	not	have	that	special	single-number-argument	case.	Consider:

var	a	=	Array(	3	);

a.length;																								//	3

a[0];																												//	undefined

var	b	=	Array.of(	3	);

b.length;																								//	1

b[0];																												//	3

var	c	=	Array.of(	1,	2,	3	);

c.length;																								//	3

c;																																//	[1,2,3]

Under	what	circumstances	would	you	want	to	use		Array.of(..)		instead	of	just	creating	an
array	with	literal	syntax,	like		c	=	[1,2,3]	?	There's	two	possible	cases.
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If	you	have	a	callback	that's	supposed	to	wrap	argument(s)	passed	to	it	in	an	array,
	Array.of(..)		fits	the	bill	perfectly.	That's	probably	not	terribly	common,	but	it	may	scratch
an	itch	for	you.

The	other	scenario	is	if	you	subclass		Array		(see	"Classes"	in	Chapter	3)	and	want	to	be
able	to	create	and	initialize	elements	in	an	instance	of	your	subclass,	such	as:

class	MyCoolArray	extends	Array	{

				sum()	{

								return	this.reduce(	function	reducer(acc,curr){

												return	acc	+	curr;

								},	0	);

				}

}

var	x	=	new	MyCoolArray(	3	);

x.length;																								//	3	--	oops!

x.sum();																								//	0	--	oops!

var	y	=	[3];																				//	Array,	not	MyCoolArray

y.length;																								//	1

y.sum();																								//	`sum`	is	not	a	function

var	z	=	MyCoolArray.of(	3	);

z.length;																								//	1

z.sum();																								//	3

You	can't	just	(easily)	create	a	constructor	for		MyCoolArray		that	overrides	the	behavior	of	the
	Array		parent	constructor,	because	that	constructor	is	necessary	to	actually	create	a	well-
behaving	array	value	(initializing	the		this	).	The	"inherited"	static		of(..)		method	on	the
	MyCoolArray		subclass	provides	a	nice	solution.

	Array.from(..)		Static	Function

An	"array-like	object"	in	JavaScript	is	an	object	that	has	a		length		property	on	it,	specifically
with	an	integer	value	of	zero	or	higher.

These	values	have	been	notoriously	frustrating	to	work	with	in	JS;	it's	been	quite	common	to
need	to	transform	them	into	an	actual	array,	so	that	the	various		Array.prototype		methods
(	map(..)	,		indexOf(..)		etc.)	are	available	to	use	with	it.	That	process	usually	looks	like:
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//	array-like	object

var	arrLike	=	{

				length:	3,

				0:	"foo",

				1:	"bar"

};

var	arr	=	Array.prototype.slice.call(	arrLike	);

Another	common	task	where		slice(..)		is	often	used	is	in	duplicating	a	real	array:

var	arr2	=	arr.slice();

In	both	cases,	the	new	ES6		Array.from(..)		method	can	be	a	more	understandable	and
graceful	--	if	also	less	verbose	--	approach:

var	arr	=	Array.from(	arrLike	);

var	arrCopy	=	Array.from(	arr	);

	Array.from(..)		looks	to	see	if	the	first	argument	is	an	iterable	(see	"Iterators"	in	Chapter	3),
and	if	so,	it	uses	the	iterator	to	produce	values	to	"copy"	into	the	returned	array.	Because
real	arrays	have	an	iterator	for	those	values,	that	iterator	is	automatically	used.

But	if	you	pass	an	array-like	object	as	the	first	argument	to		Array.from(..)	,	it	behaves
basically	the	same	as		slice()		(no	arguments!)	or		apply(..)		does,	which	is	that	it	simply
loops	over	the	value,	accessing	numerically	named	properties	from		0		up	to	whatever	the
value	of		length		is.

Consider:

var	arrLike	=	{

				length:	4,

				2:	"foo"

};

Array.from(	arrLike	);

//	[	undefined,	undefined,	"foo",	undefined	]

Because	positions		0	,		1	,	and		3		didn't	exist	on		arrLike	,	the	result	was	the		undefined	
value	for	each	of	those	slots.

You	could	produce	a	similar	outcome	like	this:
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var	emptySlotsArr	=	[];

emptySlotsArr.length	=	4;

emptySlotsArr[2]	=	"foo";

Array.from(	emptySlotsArr	);

//	[	undefined,	undefined,	"foo",	undefined	]

Avoiding	Empty	Slots

There's	a	subtle	but	important	difference	in	the	previous	snippet	between	the		emptySlotsArr	
and	the	result	of	the		Array.from(..)		call.		Array.from(..)		never	produces	empty	slots.

Prior	to	ES6,	if	you	wanted	to	produce	an	array	initialized	to	a	certain	length	with	actual
	undefined		values	in	each	slot	(no	empty	slots!),	you	had	to	do	extra	work:

var	a	=	Array(	4	);																																//	four	empty	slots!

var	b	=	Array.apply(	null,	{	length:	4	}	);								//	four	`undefined`	values

But		Array.from(..)		now	makes	this	easier:

var	c	=	Array.from(	{	length:	4	}	);												//	four	`undefined`	values

Warning:	Using	an	empty	slot	array	like		a		in	the	previous	snippets	would	work	with	some
array	functions,	but	others	ignore	empty	slots	(like		map(..)	,	etc.).	You	should	never
intentionally	work	with	empty	slots,	as	it	will	almost	certainly	lead	to	strange/unpredictable
behavior	in	your	programs.

Mapping

The		Array.from(..)		utility	has	another	helpful	trick	up	its	sleeve.	The	second	argument,	if
provided,	is	a	mapping	callback	(almost	the	same	as	the	regular		Array#map(..)		expects)
which	is	called	to	map/transform	each	value	from	the	source	to	the	returned	target.
Consider:
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var	arrLike	=	{

				length:	4,

				2:	"foo"

};

Array.from(	arrLike,	function	mapper(val,idx){

				if	(typeof	val	==	"string")	{

								return	val.toUpperCase();

				}

				else	{

								return	idx;

				}

}	);

//	[	0,	1,	"FOO",	3	]

Note:	As	with	other	array	methods	that	take	callbacks,		Array.from(..)		takes	an	optional
third	argument	that	if	set	will	specify	the		this		binding	for	the	callback	passed	as	the
second	argument.	Otherwise,		this		will	be		undefined	.

See	"TypedArrays"	in	Chapter	5	for	an	example	of	using		Array.from(..)		in	translating
values	from	an	array	of	8-bit	values	to	an	array	of	16-bit	values.

Creating	Arrays	and	Subtypes

In	the	last	couple	of	sections,	we've	discussed		Array.of(..)		and		Array.from(..)	,	both	of
which	create	a	new	array	in	a	similar	way	to	a	constructor.	But	what	do	they	do	in
subclasses?	Do	they	create	instances	of	the	base		Array		or	the	derived	subclass?

class	MyCoolArray	extends	Array	{

				..

}

MyCoolArray.from(	[1,	2]	)	instanceof	MyCoolArray;				//	true

Array.from(

				MyCoolArray.from(	[1,	2]	)

)	instanceof	MyCoolArray;																												//	false

Both		of(..)		and		from(..)		use	the	constructor	that	they're	accessed	from	to	construct	the
array.	So	if	you	use	the	base		Array.of(..)		you'll	get	an		Array		instance,	but	if	you	use
	MyCoolArray.of(..)	,	you'll	get	a		MyCoolArray		instance.

In	"Classes"	in	Chapter	3,	we	covered	the		@@species		setting	which	all	the	built-in	classes
(like		Array	)	have	defined,	which	is	used	by	any	prototype	methods	if	they	create	a	new
instance.		slice(..)		is	a	great	example:
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var	x	=	new	MyCoolArray(	1,	2,	3	);

x.slice(	1	)	instanceof	MyCoolArray;																//	true

Generally,	that	default	behavior	will	probably	be	desired,	but	as	we	discussed	in	Chapter	3,
you	can	override	if	you	want:

class	MyCoolArray	extends	Array	{

				//	force	`species`	to	be	parent	constructor

				static	get	[Symbol.species]()	{	return	Array;	}

}

var	x	=	new	MyCoolArray(	1,	2,	3	);

x.slice(	1	)	instanceof	MyCoolArray;																//	false

x.slice(	1	)	instanceof	Array;																								//	true

It's	important	to	note	that	the		@@species		setting	is	only	used	for	the	prototype	methods,	like
	slice(..)	.	It's	not	used	by		of(..)		and		from(..)	;	they	both	just	use	the		this		binding
(whatever	constructor	is	used	to	make	the	reference).	Consider:

class	MyCoolArray	extends	Array	{

				//	force	`species`	to	be	parent	constructor

				static	get	[Symbol.species]()	{	return	Array;	}

}

var	x	=	new	MyCoolArray(	1,	2,	3	);

MyCoolArray.from(	x	)	instanceof	MyCoolArray;								//	true

MyCoolArray.of(	[2,	3]	)	instanceof	MyCoolArray;				//	true

	copyWithin(..)		Prototype	Method

	Array#copyWithin(..)		is	a	new	mutator	method	available	to	all	arrays	(including	Typed
Arrays;	see	Chapter	5).		copyWithin(..)		copies	a	portion	of	an	array	to	another	location	in
the	same	array,	overwriting	whatever	was	there	before.

The	arguments	are	target	(the	index	to	copy	to),	start	(the	inclusive	index	to	start	the	copying
from),	and	optionally	end	(the	exclusive	index	to	stop	copying).	If	any	of	the	arguments	are
negative,	they're	taken	to	be	relative	from	the	end	of	the	array.

Consider:
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[1,2,3,4,5].copyWithin(	3,	0	);												//	[1,2,3,1,2]

[1,2,3,4,5].copyWithin(	3,	0,	1	);								//	[1,2,3,1,5]

[1,2,3,4,5].copyWithin(	0,	-2	);								//	[4,5,3,4,5]

[1,2,3,4,5].copyWithin(	0,	-2,	-1	);				//	[4,2,3,4,5]

The		copyWithin(..)		method	does	not	extend	the	array's	length,	as	the	first	example	in	the
previous	snippet	shows.	Copying	simply	stops	when	the	end	of	the	array	is	reached.

Contrary	to	what	you	might	think,	the	copying	doesn't	always	go	in	left-to-right	(ascending
index)	order.	It's	possible	this	would	result	in	repeatedly	copying	an	already	copied	value	if
the	from	and	target	ranges	overlap,	which	is	presumably	not	desired	behavior.

So	internally,	the	algorithm	avoids	this	case	by	copying	in	reverse	order	to	avoid	that	gotcha.
Consider:

[1,2,3,4,5].copyWithin(	2,	1	);								//	???

If	the	algorithm	was	strictly	moving	left	to	right,	then	the		2		should	be	copied	to	overwrite
the		3	,	then	that	copied		2		should	be	copied	to	overwrite		4	,	then	that	copied		2		should
be	copied	to	overwrite		5	,	and	you'd	end	up	with		[1,2,2,2,2]	.

Instead,	the	copying	algorithm	reverses	direction	and	copies		4		to	overwrite		5	,	then
copies		3		to	overwrite		4	,	then	copies		2		to	overwrite		3	,	and	the	final	result	is
	[1,2,2,3,4]	.	That's	probably	more	"correct"	in	terms	of	expectation,	but	it	can	be	confusing
if	you're	only	thinking	about	the	copying	algorithm	in	a	naive	left-to-right	fashion.

	fill(..)		Prototype	Method

Filling	an	existing	array	entirely	(or	partially)	with	a	specified	value	is	natively	supported	as	of
ES6	with	the		Array#fill(..)		method:

var	a	=	Array(	4	).fill(	undefined	);

a;

//	[undefined,undefined,undefined,undefined]

	fill(..)		optionally	takes	start	and	end	parameters,	which	indicate	a	subset	portion	of	the
array	to	fill,	such	as:
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var	a	=	[	null,	null,	null,	null	].fill(	42,	1,	3	);

a;																																				//	[null,42,42,null]

	find(..)		Prototype	Method

The	most	common	way	to	search	for	a	value	in	an	array	has	generally	been	the
	indexOf(..)		method,	which	returns	the	index	the	value	is	found	at	or		-1		if	not	found:

var	a	=	[1,2,3,4,5];

(a.indexOf(	3	)	!=	-1);																//	true

(a.indexOf(	7	)	!=	-1);																//	false

(a.indexOf(	"2"	)	!=	-1);												//	false

The		indexOf(..)		comparison	requires	a	strict		===		match,	so	a	search	for		"2"		fails	to	find
a	value	of		2	,	and	vice	versa.	There's	no	way	to	override	the	matching	algorithm	for
	indexOf(..)	.	It's	also	unfortunate/ungraceful	to	have	to	make	the	manual	comparison	to	the
	-1		value.

Tip:	See	the	Types	&	Grammar	title	of	this	series	for	an	interesting	(and	controversially
confusing)	technique	to	work	around	the		-1		ugliness	with	the		~		operator.

Since	ES5,	the	most	common	workaround	to	have	control	over	the	matching	logic	has	been
the		some(..)		method.	It	works	by	calling	a	function	callback	for	each	element,	until	one	of
those	calls	returns	a		true	/truthy	value,	and	then	it	stops.	Because	you	get	to	define	the
callback	function,	you	have	full	control	over	how	a	match	is	made:

var	a	=	[1,2,3,4,5];

a.some(	function	matcher(v){

				return	v	==	"2";

}	);																																//	true

a.some(	function	matcher(v){

				return	v	==	7;

}	);																																//	false

But	the	downside	to	this	approach	is	that	you	only	get	the		true	/	false		indicating	if	a
suitably	matched	value	was	found,	but	not	what	the	actual	matched	value	was.

ES6's		find(..)		addresses	this.	It	works	basically	the	same	as		some(..)	,	except	that	once
the	callback	returns	a		true	/truthy	value,	the	actual	array	value	is	returned:
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var	a	=	[1,2,3,4,5];

a.find(	function	matcher(v){

				return	v	==	"2";

}	);																																//	2

a.find(	function	matcher(v){

				return	v	==	7;																				//	undefined

});

Using	a	custom		matcher(..)		function	also	lets	you	match	against	complex	values	like
objects:

var	points	=	[

				{	x:	10,	y:	20	},

				{	x:	20,	y:	30	},

				{	x:	30,	y:	40	},

				{	x:	40,	y:	50	},

				{	x:	50,	y:	60	}

];

points.find(	function	matcher(point)	{

				return	(

								point.x	%	3	==	0	&&

								point.y	%	4	==	0

				);

}	);																																//	{	x:	30,	y:	40	}

Note:	As	with	other	array	methods	that	take	callbacks,		find(..)		takes	an	optional	second
argument	that	if	set	will	specify	the		this		binding	for	the	callback	passed	as	the	first
argument.	Otherwise,		this		will	be		undefined	.

	findIndex(..)		Prototype	Method

While	the	previous	section	illustrates	how		some(..)		yields	a	boolean	result	for	a	search	of
an	array,	and		find(..)		yields	the	matched	value	itself	from	the	array	search,	there's	also	a
need	for	finding	the	positional	index	of	the	matched	value.

	indexOf(..)		does	that,	but	there's	no	control	over	its	matching	logic;	it	always	uses		===	
strict	equality.	So	ES6's		findIndex(..)		is	the	answer:

API	Additions

890



var	points	=	[

				{	x:	10,	y:	20	},

				{	x:	20,	y:	30	},

				{	x:	30,	y:	40	},

				{	x:	40,	y:	50	},

				{	x:	50,	y:	60	}

];

points.findIndex(	function	matcher(point)	{

				return	(

								point.x	%	3	==	0	&&

								point.y	%	4	==	0

				);

}	);																																//	2

points.findIndex(	function	matcher(point)	{

				return	(

								point.x	%	6	==	0	&&

								point.y	%	7	==	0

				);

}	);																																//	-1

Don't	use		findIndex(..)	!=	-1		(the	way	it's	always	been	done	with		indexOf(..)	)	to	get	a
boolean	from	the	search,	because		some(..)		already	yields	the		true	/	false		you	want.	And
don't	do		a[	a.findIndex(..)	]		to	get	the	matched	value,	because	that's	what		find(..)	
accomplishes.	And	finally,	use		indexOf(..)		if	you	need	the	index	of	a	strict	match,	or
	findIndex(..)		if	you	need	the	index	of	a	more	customized	match.

Note:	As	with	other	array	methods	that	take	callbacks,		findIndex(..)		takes	an	optional
second	argument	that	if	set	will	specify	the		this		binding	for	the	callback	passed	as	the	first
argument.	Otherwise,		this		will	be		undefined	.

	entries()	,		values()	,		keys()		Prototype	Methods

In	Chapter	3,	we	illustrated	how	data	structures	can	provide	a	patterned	item-by-item
enumeration	of	their	values,	via	an	iterator.	We	then	expounded	on	this	approach	in	Chapter
5,	as	we	explored	how	the	new	ES6	collections	(Map,	Set,	etc.)	provide	several	methods	for
producing	different	kinds	of	iterations.

Because	it's	not	new	to	ES6,		Array		might	not	be	thought	of	traditionally	as	a	"collection,"
but	it	is	one	in	the	sense	that	it	provides	these	same	iterator	methods:		entries()	,
	values()	,	and		keys()	.	Consider:

API	Additions

891



var	a	=	[1,2,3];

[...a.values()];																				//	[1,2,3]

[...a.keys()];																								//	[0,1,2]

[...a.entries()];																				//	[	[0,1],	[1,2],	[2,3]	]

[...a[Symbol.iterator]()];												//	[1,2,3]

Just	like	with		Set	,	the	default		Array		iterator	is	the	same	as	what		values()		returns.

In	"Avoiding	Empty	Slots"	earlier	in	this	chapter,	we	illustrated	how		Array.from(..)		treats
empty	slots	in	an	array	as	just	being	present	slots	with		undefined		in	them.	That's	actually
because	under	the	covers,	the	array	iterators	behave	that	way:

var	a	=	[];

a.length	=	3;

a[1]	=	2;

[...a.values()];								//	[undefined,2,undefined]

[...a.keys()];												//	[0,1,2]

[...a.entries()];								//	[	[0,undefined],	[1,2],	[2,undefined]	]

	Object	

A	few	additional	static	helpers	have	been	added	to		Object	.	Traditionally,	functions	of	this
sort	have	been	seen	as	focused	on	the	behaviors/capabilities	of	object	values.

However,	starting	with	ES6,		Object		static	functions	will	also	be	for	general-purpose	global
APIs	of	any	sort	that	don't	already	belong	more	naturally	in	some	other	location	(i.e.,
	Array.from(..)	).

	Object.is(..)		Static	Function

The		Object.is(..)		static	function	makes	value	comparisons	in	an	even	more	strict	fashion
than	the		===		comparison.

	Object.is(..)		invokes	the	underlying		SameValue		algorithm	(ES6	spec,	section	7.2.9).	The
	SameValue		algorithm	is	basically	the	same	as	the		===		Strict	Equality	Comparison	Algorithm
(ES6	spec,	section	7.2.13),	with	two	important	exceptions.

Consider:
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var	x	=	NaN,	y	=	0,	z	=	-0;

x	===	x;																												//	false

y	===	z;																												//	true

Object.is(	x,	x	);																				//	true

Object.is(	y,	z	);																				//	false

You	should	continue	to	use		===		for	strict	equality	comparisons;		Object.is(..)		shouldn't	be
thought	of	as	a	replacement	for	the	operator.	However,	in	cases	where	you're	trying	to
strictly	identify	a		NaN		or		-0		value,		Object.is(..)		is	now	the	preferred	option.

Note:	ES6	also	adds	a		Number.isNaN(..)		utility	(discussed	later	in	this	chapter)	which	may
be	a	slightly	more	convenient	test;	you	may	prefer		Number.isNaN(x)		over		Object.is(x,NaN)	.
You	can	accurately	test	for		-0		with	a	clumsy		x	==	0	&&	1	/	x	===	-Infinity	,	but	in	this
case		Object.is(x,-0)		is	much	better.

	Object.getOwnPropertySymbols(..)		Static	Function

The	"Symbols"	section	in	Chapter	2	discusses	the	new	Symbol	primitive	value	type	in	ES6.

Symbols	are	likely	going	to	be	mostly	used	as	special	(meta)	properties	on	objects.	So	the
	Object.getOwnPropertySymbols(..)		utility	was	introduced,	which	retrieves	only	the	symbol
properties	directly	on	an	object:

var	o	=	{

				foo:	42,

				[	Symbol(	"bar"	)	]:	"hello	world",

				baz:	true

};

Object.getOwnPropertySymbols(	o	);				//	[	Symbol(bar)	]

	Object.setPrototypeOf(..)		Static	Function

Also	in	Chapter	2,	we	mentioned	the		Object.setPrototypeOf(..)		utility,	which
(unsurprisingly)	sets	the		[[Prototype]]		of	an	object	for	the	purposes	of	behavior	delegation
(see	the	this	&	Object	Prototypes	title	of	this	series).	Consider:
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var	o1	=	{

				foo()	{	console.log(	"foo"	);	}

};

var	o2	=	{

				//	..	o2's	definition	..

};

Object.setPrototypeOf(	o2,	o1	);

//	delegates	to	`o1.foo()`

o2.foo();																												//	foo

Alternatively:

var	o1	=	{

				foo()	{	console.log(	"foo"	);	}

};

var	o2	=	Object.setPrototypeOf(	{

				//	..	o2's	definition	..

},	o1	);

//	delegates	to	`o1.foo()`

o2.foo();																												//	foo

In	both	previous	snippets,	the	relationship	between		o2		and		o1		appears	at	the	end	of	the
	o2		definition.	More	commonly,	the	relationship	between	an		o2		and		o1		is	specified	at	the
top	of	the		o2		definition,	as	it	is	with	classes,	and	also	with		__proto__		in	object	literals	(see
"Setting		[[Prototype]]	"	in	Chapter	2).

Warning:	Setting	a		[[Prototype]]		right	after	object	creation	is	reasonable,	as	shown.	But
changing	it	much	later	is	generally	not	a	good	idea	and	will	usually	lead	to	more	confusion
than	clarity.

	Object.assign(..)		Static	Function

Many	JavaScript	libraries/frameworks	provide	utilities	for	copying/mixing	one	object's
properties	into	another	(e.g.,	jQuery's		extend(..)	).	There	are	various	nuanced	differences
between	these	different	utilities,	such	as	whether	a	property	with	value		undefined		is	ignored
or	not.

ES6	adds		Object.assign(..)	,	which	is	a	simplified	version	of	these	algorithms.	The	first
argument	is	the	target,	and	any	other	arguments	passed	are	the	sources,	which	will	be
processed	in	listed	order.	For	each	source,	its	enumerable	and	own	(e.g.,	not	"inherited")
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keys,	including	symbols,	are	copied	as	if	by	plain		=		assignment.		Object.assign(..)	
returns	the	target	object.

Consider	this	object	setup:

var	target	=	{},

				o1	=	{	a:	1	},	o2	=	{	b:	2	},

				o3	=	{	c:	3	},	o4	=	{	d:	4	};

//	setup	read-only	property

Object.defineProperty(	o3,	"e",	{

				value:	5,

				enumerable:	true,

				writable:	false,

				configurable:	false

}	);

//	setup	non-enumerable	property

Object.defineProperty(	o3,	"f",	{

				value:	6,

				enumerable:	false

}	);

o3[	Symbol(	"g"	)	]	=	7;

//	setup	non-enumerable	symbol

Object.defineProperty(	o3,	Symbol(	"h"	),	{

				value:	8,

				enumerable:	false

}	);

Object.setPrototypeOf(	o3,	o4	);

Only	the	properties		a	,		b	,		c	,		e	,	and		Symbol("g")		will	be	copied	to		target	:

Object.assign(	target,	o1,	o2,	o3	);

target.a;																												//	1

target.b;																												//	2

target.c;																												//	3

Object.getOwnPropertyDescriptor(	target,	"e"	);

//	{	value:	5,	writable:	true,	enumerable:	true,

//			configurable:	true	}

Object.getOwnPropertySymbols(	target	);

//	[Symbol("g")]
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The		d	,		f	,	and		Symbol("h")		properties	are	omitted	from	copying;	non-enumerable
properties	and	non-owned	properties	are	all	excluded	from	the	assignment.	Also,		e		is
copied	as	a	normal	property	assignment,	not	duplicated	as	a	read-only	property.

In	an	earlier	section,	we	showed	using		setPrototypeOf(..)		to	set	up	a		[[Prototype]]	
relationship	between	an		o2		and		o1		object.	There's	another	form	that	leverages
	Object.assign(..)	:

var	o1	=	{

				foo()	{	console.log(	"foo"	);	}

};

var	o2	=	Object.assign(

				Object.create(	o1	),

				{

								//	..	o2's	definition	..

				}

);

//	delegates	to	`o1.foo()`

o2.foo();																												//	foo

Note:		Object.create(..)		is	the	ES5	standard	utility	that	creates	an	empty	object	that	is
	[[Prototype]]	-linked.	See	the	this	&	Object	Prototypes	title	of	this	series	for	more
information.

	Math	

ES6	adds	several	new	mathematic	utilities	that	fill	in	holes	or	aid	with	common	operations.
All	of	these	can	be	manually	calculated,	but	most	of	them	are	now	defined	natively	so	that	in
some	cases	the	JS	engine	can	either	more	optimally	perform	the	calculations,	or	perform
them	with	better	decimal	precision	than	their	manual	counterparts.

It's	likely	that	asm.js/transpiled	JS	code	(see	the	Async	&	Performance	title	of	this	series)	is
the	more	likely	consumer	of	many	of	these	utilities	rather	than	direct	developers.

Trigonometry:

	cosh(..)		-	Hyperbolic	cosine
	acosh(..)		-	Hyperbolic	arccosine
	sinh(..)		-	Hyperbolic	sine
	asinh(..)		-	Hyperbolic	arcsine
	tanh(..)		-	Hyperbolic	tangent
	atanh(..)		-	Hyperbolic	arctangent
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	hypot(..)		-	The	squareroot	of	the	sum	of	the	squares	(i.e.,	the	generalized
Pythagorean	theorem)

Arithmetic:

	cbrt(..)		-	Cube	root
	clz32(..)		-	Count	leading	zeros	in	32-bit	binary	representation
	expm1(..)		-	The	same	as		exp(x)	-	1	
	log2(..)		-	Binary	logarithm	(log	base	2)
	log10(..)		-	Log	base	10
	log1p(..)		-	The	same	as		log(x	+	1)	
	imul(..)		-	32-bit	integer	multiplication	of	two	numbers

Meta:

	sign(..)		-	Returns	the	sign	of	the	number
	trunc(..)		-	Returns	only	the	integer	part	of	a	number
	fround(..)		-	Rounds	to	nearest	32-bit	(single	precision)	floating-point	value

	Number	

Importantly,	for	your	program	to	properly	work,	it	must	accurately	handle	numbers.	ES6	adds
some	additional	properties	and	functions	to	assist	with	common	numeric	operations.

Two	additions	to		Number		are	just	references	to	the	preexisting	globals:
	Number.parseInt(..)		and		Number.parseFloat(..)	.

Static	Properties

ES6	adds	some	helpful	numeric	constants	as	static	properties:

	Number.EPSILON		-	The	minimum	value	between	any	two	numbers:		2^-52		(see	Chapter
2	of	the	Types	&	Grammar	title	of	this	series	regarding	using	this	value	as	a	tolerance
for	imprecision	in	floating-point	arithmetic)
	Number.MAX_SAFE_INTEGER		-	The	highest	integer	that	can	"safely"	be	represented
unambiguously	in	a	JS	number	value:		2^53	-	1	
	Number.MIN_SAFE_INTEGER		-	The	lowest	integer	that	can	"safely"	be	represented
unambiguously	in	a	JS	number	value:		-(2^53	-	1)		or		(-2)^53	+	1	.

Note:	See	Chapter	2	of	the	Types	&	Grammar	title	of	this	series	for	more	information	about
"safe"	integers.

	Number.isNaN(..)		Static	Function
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The	standard	global		isNaN(..)		utility	has	been	broken	since	its	inception,	in	that	it	returns
	true		for	things	that	are	not	numbers,	not	just	for	the	actual		NaN		value,	because	it	coerces
the	argument	to	a	number	type	(which	can	falsely	result	in	a	NaN).	ES6	adds	a	fixed	utility
	Number.isNaN(..)		that	works	as	it	should:

var	a	=	NaN,	b	=	"NaN",	c	=	42;

isNaN(	a	);																												//	true

isNaN(	b	);																												//	true	--	oops!

isNaN(	c	);																												//	false

Number.isNaN(	a	);																				//	true

Number.isNaN(	b	);																				//	false	--	fixed!

Number.isNaN(	c	);																				//	false

	Number.isFinite(..)		Static	Function

There's	a	temptation	to	look	at	a	function	name	like		isFinite(..)		and	assume	it's	simply
"not	infinite".	That's	not	quite	correct,	though.	There's	more	nuance	to	this	new	ES6	utility.
Consider:

var	a	=	NaN,	b	=	Infinity,	c	=	42;

Number.isFinite(	a	);																//	false

Number.isFinite(	b	);																//	false

Number.isFinite(	c	);																//	true

The	standard	global		isFinite(..)		coerces	its	argument,	but		Number.isFinite(..)		omits	the
coercive	behavior:

var	a	=	"42";

isFinite(	a	);																								//	true

Number.isFinite(	a	);																//	false

You	may	still	prefer	the	coercion,	in	which	case	using	the	global		isFinite(..)		is	a	valid
choice.	Alternatively,	and	perhaps	more	sensibly,	you	can	use		Number.isFinite(+x)	,	which
explicitly	coerces		x		to	a	number	before	passing	it	in	(see	Chapter	4	of	the	Types	&
Grammar	title	of	this	series).

Integer-Related	Static	Functions
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JavaScript	number	values	are	always	floating	point	(IEEE-754).	So	the	notion	of	determining
if	a	number	is	an	"integer"	is	not	about	checking	its	type,	because	JS	makes	no	such
distinction.

Instead,	you	need	to	check	if	there's	any	non-zero	decimal	portion	of	the	value.	The	easiest
way	to	do	that	has	commonly	been:

x	===	Math.floor(	x	);

ES6	adds	a		Number.isInteger(..)		helper	utility	that	potentially	can	determine	this	quality
slightly	more	efficiently:

Number.isInteger(	4	);																//	true

Number.isInteger(	4.2	);												//	false

Note:	In	JavaScript,	there's	no	difference	between		4	,		4.	,		4.0	,	or		4.0000	.	All	of	these
would	be	considered	an	"integer",	and	would	thus	yield		true		from		Number.isInteger(..)	.

In	addition,		Number.isInteger(..)		filters	out	some	clearly	not-integer	values	that		x	===
Math.floor(x)		could	potentially	mix	up:

Number.isInteger(	NaN	);												//	false

Number.isInteger(	Infinity	);								//	false

Working	with	"integers"	is	sometimes	an	important	bit	of	information,	as	it	can	simplify
certain	kinds	of	algorithms.	JS	code	by	itself	will	not	run	faster	just	from	filtering	for	only
integers,	but	there	are	optimization	techniques	the	engine	can	take	(e.g.,	asm.js)	when	only
integers	are	being	used.

Because	of		Number.isInteger(..)	's	handling	of		NaN		and		Infinity		values,	defining	a
	isFloat(..)		utility	would	not	be	just	as	simple	as		!Number.isInteger(..)	.	You'd	need	to	do
something	like:

function	isFloat(x)	{

				return	Number.isFinite(	x	)	&&	!Number.isInteger(	x	);

}

isFloat(	4.2	);																								//	true

isFloat(	4	);																								//	false

isFloat(	NaN	);																								//	false

isFloat(	Infinity	);																//	false
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Note:	It	may	seem	strange,	but	Infinity	should	neither	be	considered	an	integer	nor	a	float.

ES6	also	defines	a		Number.isSafeInteger(..)		utility,	which	checks	to	make	sure	the	value	is
both	an	integer	and	within	the	range	of		Number.MIN_SAFE_INTEGER	-	Number.MAX_SAFE_INTEGER	
(inclusive).

var	x	=	Math.pow(	2,	53	),

				y	=	Math.pow(	-2,	53	);

Number.isSafeInteger(	x	-	1	);								//	true

Number.isSafeInteger(	y	+	1	);								//	true

Number.isSafeInteger(	x	);												//	false

Number.isSafeInteger(	y	);												//	false

	String	

Strings	already	have	quite	a	few	helpers	prior	to	ES6,	but	even	more	have	been	added	to
the	mix.

Unicode	Functions

"Unicode-Aware	String	Operations"	in	Chapter	2	discusses		String.fromCodePoint(..)	,
	String#codePointAt(..)	,	and		String#normalize(..)		in	detail.	They	have	been	added	to
improve	Unicode	support	in	JS	string	values.

String.fromCodePoint(	0x1d49e	);												//	""

"abd" .codePointAt(	2	).toString(	16	);								//	"1d49e"

The		normalize(..)		string	prototype	method	is	used	to	perform	Unicode	normalizations	that
either	combine	characters	with	adjacent	"combining	marks"	or	decompose	combined
characters.

Generally,	the	normalization	won't	create	a	visible	effect	on	the	contents	of	the	string,	but	will
change	the	contents	of	the	string,	which	can	affect	how	things	like	the		length		property	are
reported,	as	well	as	how	character	access	by	position	behave:
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var	s1	=	"e\u0301";

s1.length;																												//	2

var	s2	=	s1.normalize();

s2.length;																												//	1

s2	===	"\xE9";																								//	true

	normalize(..)		takes	an	optional	argument	that	specifies	the	normalization	form	to	use.	This
argument	must	be	one	of	the	following	four	values:		"NFC"		(default),		"NFD"	,		"NFKC"	,	or
	"NFKD"	.

Note:	Normalization	forms	and	their	effects	on	strings	is	well	beyond	the	scope	of	what	we'll
discuss	here.	See	"Unicode	Normalization	Forms"	(http://www.unicode.org/reports/tr15/)	for
more	information.

	String.raw(..)		Static	Function

The		String.raw(..)		utility	is	provided	as	a	built-in	tag	function	to	use	with	template	string
literals	(see	Chapter	2)	for	obtaining	the	raw	string	value	without	any	processing	of	escape
sequences.

This	function	will	almost	never	be	called	manually,	but	will	be	used	with	tagged	template
literals:

var	str	=	"bc";

String.raw`\ta${str}d\xE9`;

//	"\tabcd\xE9",	not	"				abcdé"

In	the	resultant	string,		\		and		t		are	separate	raw	characters,	not	the	one	escape
sequence	character		\t	.	The	same	is	true	with	the	Unicode	escape	sequence.

	repeat(..)		Prototype	Function

In	languages	like	Python	and	Ruby,	you	can	repeat	a	string	as:

"foo"	*	3;																												//	"foofoofoo"

That	doesn't	work	in	JS,	because		*		multiplication	is	only	defined	for	numbers,	and	thus
	"foo"		coerces	to	the		NaN		number.

However,	ES6	defines	a	string	prototype	method		repeat(..)		to	accomplish	the	task:
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"foo".repeat(	3	);																				//	"foofoofoo"

String	Inspection	Functions

In	addition	to		String#indexOf(..)		and		String#lastIndexOf(..)		from	prior	to	ES6,	three	new
methods	for	searching/inspection	have	been	added:		startsWith(..)	,		endsWith(..)	,	and
	includes(..)	.

var	palindrome	=	"step	on	no	pets";

palindrome.startsWith(	"step	on"	);				//	true

palindrome.startsWith(	"on",	5	);				//	true

palindrome.endsWith(	"no	pets"	);				//	true

palindrome.endsWith(	"no",	10	);				//	true

palindrome.includes(	"on"	);								//	true

palindrome.includes(	"on",	6	);								//	false

For	all	the	string	search/inspection	methods,	if	you	look	for	an	empty	string		""	,	it	will	either
be	found	at	the	beginning	or	the	end	of	the	string.

Warning:	These	methods	will	not	by	default	accept	a	regular	expression	for	the	search
string.	See	"Regular	Expression	Symbols"	in	Chapter	7	for	information	about	disabling	the
	isRegExp		check	that	is	performed	on	this	first	argument.

Review
ES6	adds	many	extra	API	helpers	on	the	various	built-in	native	objects:

	Array		adds		of(..)		and		from(..)		static	functions,	as	well	as	prototype	functions	like
	copyWithin(..)		and		fill(..)	.
	Object		adds	static	functions	like		is(..)		and		assign(..)	.
	Math		adds	static	functions	like		acosh(..)		and		clz32(..)	.
	Number		adds	static	properties	like		Number.EPSILON	,	as	well	as	static	functions	like
	Number.isFinite(..)	.
	String		adds	static	functions	like		String.fromCodePoint(..)		and		String.raw(..)	,	as
well	as	prototype	functions	like		repeat(..)		and		includes(..)	.

Most	of	these	additions	can	be	polyfilled	(see	ES6	Shim),	and	were	inspired	by	utilities	in
common	JS	libraries/frameworks.
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Chapter	7:	Meta	Programming
Meta	programming	is	programming	where	the	operation	targets	the	behavior	of	the	program
itself.	In	other	words,	it's	programming	the	programming	of	your	program.	Yeah,	a	mouthful,
huh?

For	example,	if	you	probe	the	relationship	between	one	object		a		and	another		b		--	are
they		[[Prototype]]		linked?	--	using		a.isPrototypeOf(b)	,	this	is	commonly	referred	to	as
introspection,	a	form	of	meta	programming.	Macros	(which	don't	exist	in	JS,	yet)	--	where	the
code	modifies	itself	at	compile	time	--	are	another	obvious	example	of	meta	programming.
Enumerating	the	keys	of	an	object	with	a		for..in		loop,	or	checking	if	an	object	is	an
instance	of	a	"class	constructor",	are	other	common	meta	programming	tasks.

Meta	programming	focuses	on	one	or	more	of	the	following:	code	inspecting	itself,	code
modifying	itself,	or	code	modifying	default	language	behavior	so	other	code	is	affected.

The	goal	of	meta	programming	is	to	leverage	the	language's	own	intrinsic	capabilities	to
make	the	rest	of	your	code	more	descriptive,	expressive,	and/or	flexible.	Because	of	the
meta	nature	of	meta	programming,	it's	somewhat	difficult	to	put	a	more	precise	definition	on
it	than	that.	The	best	way	to	understand	meta	programming	is	to	see	it	through	examples.

ES6	adds	several	new	forms/features	for	meta	programming	on	top	of	what	JS	already	had.

Function	Names
There	are	cases	where	your	code	may	want	to	introspect	on	itself	and	ask	what	the	name	of
some	function	is.	If	you	ask	what	a	function's	name	is,	the	answer	is	surprisingly	somewhat
ambiguous.	Consider:
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function	daz()	{

				//	..

}

var	obj	=	{

				foo:	function()	{

								//	..

				},

				bar:	function	baz()	{

								//	..

				},

				bam:	daz,

				zim()	{

								//	..

				}

};

In	this	previous	snippet,	"what	is	the	name	of		obj.foo()	"	is	slightly	nuanced.	Is	it		"foo"	,
	""	,	or		undefined	?	And	what	about		obj.bar()		--	is	it	named		"bar"		or		"baz"	?	Is
	obj.bam()		named		"bam"		or		"daz"	?	What	about		obj.zim()	?

Moreover,	what	about	functions	which	are	passed	as	callbacks,	like:

function	foo(cb)	{

				//	what	is	the	name	of	`cb()`	here?

}

foo(	function(){

				//	I'm	anonymous!

}	);

There	are	quite	a	few	ways	that	functions	can	be	expressed	in	programs,	and	it's	not	always
clear	and	unambiguous	what	the	"name"	of	that	function	should	be.

More	importantly,	we	need	to	distinguish	whether	the	"name"	of	a	function	refers	to	its		name	
property	--	yes,	functions	have	a	property	called		name		--	or	whether	it	refers	to	the	lexical
binding	name,	such	as		bar		in		function	bar()	{	..	}	.

The	lexical	binding	name	is	what	you	use	for	things	like	recursion:

function	foo(i)	{

				if	(i	<	10)	return	foo(	i	*	2	);

				return	i;

}
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The		name		property	is	what	you'd	use	for	meta	programming	purposes,	so	that's	what	we'll
focus	on	in	this	discussion.

The	confusion	comes	because	by	default,	the	lexical	name	a	function	has	(if	any)	is	also	set
as	its		name		property.	Actually	there	was	no	official	requirement	for	that	behavior	by	the	ES5
(and	prior)	specifications.	The	setting	of	the		name		property	was	nonstandard	but	still	fairly
reliable.	As	of	ES6,	it	has	been	standardized.

Tip:	If	a	function	has	a		name		value	assigned,	that's	typically	the	name	used	in	stack	traces
in	developer	tools.

Inferences

But	what	happens	to	the		name		property	if	a	function	has	no	lexical	name?

As	of	ES6,	there	are	now	inference	rules	which	can	determine	a	sensible		name		property
value	to	assign	a	function	even	if	that	function	doesn't	have	a	lexical	name	to	use.

Consider:

var	abc	=	function()	{

				//	..

};

abc.name;																//	"abc"

Had	we	given	the	function	a	lexical	name	like		abc	=	function	def()	{	..	}	,	the		name	
property	would	of	course	be		"def"	.	But	in	the	absence	of	the	lexical	name,	intuitively	the
	"abc"		name	seems	appropriate.

Here	are	other	forms	that	will	infer	a	name	(or	not)	in	ES6:
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(function(){	..	});																				//	name:

(function*(){	..	});																//	name:

window.foo	=	function(){	..	};								//	name:

class	Awesome	{

				constructor()	{	..	}												//	name:	Awesome

				funny()	{	..	}																				//	name:	funny

}

var	c	=	class	Awesome	{	..	};								//	name:	Awesome

var	o	=	{

				foo()	{	..	},																				//	name:	foo

				*bar()	{	..	},																				//	name:	bar

				baz:	()	=>	{	..	},																//	name:	baz

				bam:	function(){	..	},												//	name:	bam

				get	qux()	{	..	},																//	name:	get	qux

				set	fuz()	{	..	},																//	name:	set	fuz

				["b"	+	"iz"]:

								function(){	..	},												//	name:	biz

				[Symbol(	"buz"	)]:

								function(){	..	}												//	name:	[buz]

};

var	x	=	o.foo.bind(	o	);												//	name:	bound	foo

(function(){	..	}).bind(	o	);								//	name:	bound

export	default	function()	{	..	}				//	name:	default

var	y	=	new	Function();																//	name:	anonymous

var	GeneratorFunction	=

				function*(){}.__proto__.constructor;

var	z	=	new	GeneratorFunction();				//	name:	anonymous

The		name		property	is	not	writable	by	default,	but	it	is	configurable,	meaning	you	can	use
	Object.defineProperty(..)		to	manually	change	it	if	so	desired.

Meta	Properties
In	the	"	new.target	"	section	of	Chapter	3,	we	introduced	a	concept	new	to	JS	in	ES6:	the
meta	property.	As	the	name	suggests,	meta	properties	are	intended	to	provide	special	meta
information	in	the	form	of	a	property	access	that	would	otherwise	not	have	been	possible.

In	the	case	of		new.target	,	the	keyword		new		serves	as	the	context	for	a	property	access.
Clearly		new		is	itself	not	an	object,	which	makes	this	capability	special.	However,	when
	new.target		is	used	inside	a	constructor	call	(a	function/method	invoked	with		new	),		new	

Meta	Programming

907



becomes	a	virtual	context,	so	that		new.target		can	refer	to	the	target	constructor	that		new	
invoked.

This	is	a	clear	example	of	a	meta	programming	operation,	as	the	intent	is	to	determine	from
inside	a	constructor	call	what	the	original		new		target	was,	generally	for	the	purposes	of
introspection	(examining	typing/structure)	or	static	property	access.

For	example,	you	may	want	to	have	different	behavior	in	a	constructor	depending	on	if	it's
directly	invoked	or	invoked	via	a	child	class:

class	Parent	{

				constructor()	{

								if	(new.target	===	Parent)	{

												console.log(	"Parent	instantiated"	);

								}

								else	{

												console.log(	"A	child	instantiated"	);

								}

				}

}

class	Child	extends	Parent	{}

var	a	=	new	Parent();

//	Parent	instantiated

var	b	=	new	Child();

//	A	child	instantiated

There's	a	slight	nuance	here,	which	is	that	the		constructor()		inside	the		Parent		class
definition	is	actually	given	the	lexical	name	of	the	class	(	Parent	),	even	though	the	syntax
implies	that	the	class	is	a	separate	entity	from	the	constructor.

Warning:	As	with	all	meta	programming	techniques,	be	careful	of	creating	code	that's	too
clever	for	your	future	self	or	others	maintaining	your	code	to	understand.	Use	these	tricks
with	caution.

Well	Known	Symbols
In	the	"Symbols"	section	of	Chapter	2,	we	covered	the	new	ES6	primitive	type		symbol	.	In
addition	to	symbols	you	can	define	in	your	own	program,	JS	predefines	a	number	of	built-in
symbols,	referred	to	as	Well	Known	Symbols	(WKS).

These	symbol	values	are	defined	primarily	to	expose	special	meta	properties	that	are	being
exposed	to	your	JS	programs	to	give	you	more	control	over	JS's	behavior.
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We'll	briefly	introduce	each	and	discuss	their	purpose.

	Symbol.iterator	

In	Chapters	2	and	3,	we	introduced	and	used	the		@@iterator		symbol,	automatically	used	by
	...		spreads	and		for..of		loops.	We	also	saw		@@iterator		as	defined	on	the	new	ES6
collections	as	defined	in	Chapter	5.

	Symbol.iterator		represents	the	special	location	(property)	on	any	object	where	the
language	mechanisms	automatically	look	to	find	a	method	that	will	construct	an	iterator
instance	for	consuming	that	object's	values.	Many	objects	come	with	a	default	one	defined.

However,	we	can	define	our	own	iterator	logic	for	any	object	value	by	setting	the
	Symbol.iterator		property,	even	if	that's	overriding	the	default	iterator.	The	meta
programming	aspect	is	that	we	are	defining	behavior	which	other	parts	of	JS	(namely,
operators	and	looping	constructs)	use	when	processing	an	object	value	we	define.

Consider:

var	arr	=	[4,5,6,7,8,9];

for	(var	v	of	arr)	{

				console.log(	v	);

}

//	4	5	6	7	8	9

//	define	iterator	that	only	produces	values

//	from	odd	indexes

arr[Symbol.iterator]	=	function*()	{

				var	idx	=	1;

				do	{

								yield	this[idx];

				}	while	((idx	+=	2)	<	this.length);

};

for	(var	v	of	arr)	{

				console.log(	v	);

}

//	5	7	9

	Symbol.toStringTag		and		Symbol.hasInstance	

One	of	the	most	common	meta	programming	tasks	is	to	introspect	on	a	value	to	find	out
what	kind	it	is,	usually	to	decide	what	operations	are	appropriate	to	perform	on	it.	With
objects,	the	two	most	common	inspection	techniques	are		toString()		and		instanceof	.
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Consider:

function	Foo()	{}

var	a	=	new	Foo();

a.toString();																//	[object	Object]

a	instanceof	Foo;												//	true

As	of	ES6,	you	can	control	the	behavior	of	these	operations:

function	Foo(greeting)	{

				this.greeting	=	greeting;

}

Foo.prototype[Symbol.toStringTag]	=	"Foo";

Object.defineProperty(	Foo,	Symbol.hasInstance,	{

				value:	function(inst)	{

								return	inst.greeting	==	"hello";

				}

}	);

var	a	=	new	Foo(	"hello"	),

				b	=	new	Foo(	"world"	);

b[Symbol.toStringTag]	=	"cool";

a.toString();																//	[object	Foo]

String(	b	);																//	[object	cool]

a	instanceof	Foo;												//	true

b	instanceof	Foo;												//	false

The		@@toStringTag		symbol	on	the	prototype	(or	instance	itself)	specifies	a	string	value	to
use	in	the		[object	___]		stringification.

The		@@hasInstance		symbol	is	a	method	on	the	constructor	function	which	receives	the
instance	object	value	and	lets	you	decide	by	returning		true		or		false		if	the	value	should
be	considered	an	instance	or	not.

Note:	To	set		@@hasInstance		on	a	function,	you	must	use		Object.defineProperty(..)	,	as	the
default	one	on		Function.prototype		is		writable:	false	.	See	the	this	&	Object	Prototypes
title	of	this	series	for	more	information.

	Symbol.species	
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In	"Classes"	in	Chapter	3,	we	introduced	the		@@species		symbol,	which	controls	which
constructor	is	used	by	built-in	methods	of	a	class	that	needs	to	spawn	new	instances.

The	most	common	example	is	when	subclassing		Array		and	wanting	to	define	which
constructor	(	Array(..)		or	your	subclass)	inherited	methods	like		slice(..)		should	use.	By
default,		slice(..)		called	on	an	instance	of	a	subclass	of		Array		would	produce	a	new
instance	of	that	subclass,	which	is	frankly	what	you'll	likely	often	want.

However,	you	can	meta	program	by	overriding	a	class's	default		@@species		definition:

class	Cool	{

				//	defer	`@@species`	to	derived	constructor

				static	get	[Symbol.species]()	{	return	this;	}

				again()	{

								return	new	this.constructor[Symbol.species]();

				}

}

class	Fun	extends	Cool	{}

class	Awesome	extends	Cool	{

				//	force	`@@species`	to	be	parent	constructor

				static	get	[Symbol.species]()	{	return	Cool;	}

}

var	a	=	new	Fun(),

				b	=	new	Awesome(),

				c	=	a.again(),

				d	=	b.again();

c	instanceof	Fun;												//	true

d	instanceof	Awesome;								//	false

d	instanceof	Cool;												//	true

The		Symbol.species		setting	defaults	on	the	built-in	native	constructors	to	the		return	this	
behavior	as	illustrated	in	the	previous	snippet	in	the		Cool		definition.	It	has	no	default	on
user	classes,	but	as	shown	that	behavior	is	easy	to	emulate.

If	you	need	to	define	methods	that	generate	new	instances,	use	the	meta	programming	of
the		new	this.constructor[Symbol.species](..)		pattern	instead	of	the	hard-wiring	of		new
this.constructor(..)		or		new	XYZ(..)	.	Derived	classes	will	then	be	able	to	customize
	Symbol.species		to	control	which	constructor	vends	those	instances.

	Symbol.toPrimitive	
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In	the	Types	&	Grammar	title	of	this	series,	we	discussed	the		ToPrimitive		abstract	coercion
operation,	which	is	used	when	an	object	must	be	coerced	to	a	primitive	value	for	some
operation	(such	as		==		comparison	or		+		addition).	Prior	to	ES6,	there	was	no	way	to
control	this	behavior.

As	of	ES6,	the		@@toPrimitive		symbol	as	a	property	on	any	object	value	can	customize	that
	ToPrimitive		coercion	by	specifying	a	method.

Consider:

var	arr	=	[1,2,3,4,5];

arr	+	10;																//	1,2,3,4,510

arr[Symbol.toPrimitive]	=	function(hint)	{

				if	(hint	==	"default"	||	hint	==	"number")	{

								//	sum	all	numbers

								return	this.reduce(	function(acc,curr){

												return	acc	+	curr;

								},	0	);

				}

};

arr	+	10;																//	25

The		Symbol.toPrimitive		method	will	be	provided	with	a	hint	of		"string"	,		"number"	,	or
	"default"		(which	should	be	interpreted	as		"number"	),	depending	on	what	type	the
operation	invoking		ToPrimitive		is	expecting.	In	the	previous	snippet,	the	additive		+	
operation	has	no	hint	(	"default"		is	passed).	A	multiplicative		*		operation	would	hint
	"number"		and	a		String(arr)		would	hint		"string"	.

Warning:	The		==		operator	will	invoke	the		ToPrimitive		operation	with	no	hint	--	the
	@@toPrimitive		method,	if	any	is	called	with	hint		"default"		--	on	an	object	if	the	other	value
being	compared	is	not	an	object.	However,	if	both	comparison	values	are	objects,	the
behavior	of		==		is	identical	to		===	,	which	is	that	the	references	themselves	are	directly
compared.	In	this	case,		@@toPrimitive		is	not	invoked	at	all.	See	the	Types	&	Grammar	title
of	this	series	for	more	information	about	coercion	and	the	abstract	operations.

Regular	Expression	Symbols

There	are	four	well	known	symbols	that	can	be	overridden	for	regular	expression	objects,
which	control	how	those	regular	expressions	are	used	by	the	four	corresponding
	String.prototype		functions	of	the	same	name:
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	@@match	:	The		Symbol.match		value	of	a	regular	expression	is	the	method	used	to	match
all	or	part	of	a	string	value	with	the	given	regular	expression.	It's	used	by
	String.prototype.match(..)		if	you	pass	it	a	regular	expression	for	the	pattern	matching.

The	default	algorithm	for	matching	is	laid	out	in	section	21.2.5.6	of	the	ES6	specification
(http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@match).
You	could	override	this	default	algorithm	and	provide	extra	regex	features,	such	as	look-
behind	assertions.

	Symbol.match		is	also	used	by	the		isRegExp		abstract	operation	(see	the	note	in	"String
Inspection	Functions"	in	Chapter	6)	to	determine	if	an	object	is	intended	to	be	used	as	a
regular	expression.	To	force	this	check	to	fail	for	an	object	so	it's	not	treated	as	a	regular
expression,	set	the		Symbol.match		value	to		false		(or	something	falsy).

	@@replace	:	The		Symbol.replace		value	of	a	regular	expression	is	the	method	used	by
	String.prototype.replace(..)		to	replace	within	a	string	one	or	all	occurrences	of
character	sequences	that	match	the	given	regular	expression	pattern.

The	default	algorithm	for	replacing	is	laid	out	in	section	21.2.5.8	of	the	ES6	specification
(http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@replace).

One	cool	use	for	overriding	the	default	algorithm	is	to	provide	additional		replacer	
argument	options,	such	as	supporting		"abaca".replace(/a/g,[1,2,3])		producing
	"1b2c3"		by	consuming	the	iterable	for	successive	replacement	values.

	@@search	:	The		Symbol.search		value	of	a	regular	expression	is	the	method	used	by
	String.prototype.search(..)		to	search	for	a	sub-string	within	another	string	as
matched	by	the	given	regular	expression.

The	default	algorithm	for	searching	is	laid	out	in	section	21.2.5.9	of	the	ES6
specification	(http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-
@@search).

	@@split	:	The		Symbol.split		value	of	a	regular	expression	is	the	method	used	by
	String.prototype.split(..)		to	split	a	string	into	sub-strings	at	the	location(s)	of	the
delimiter	as	matched	by	the	given	regular	expression.

The	default	algorithm	for	splitting	is	laid	out	in	section	21.2.5.11	of	the	ES6	specification
(http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@split).

Overriding	the	built-in	regular	expression	algorithms	is	not	for	the	faint	of	heart!	JS	ships	with
a	highly	optimized	regular	expression	engine,	so	your	own	user	code	will	likely	be	a	lot
slower.	This	kind	of	meta	programming	is	neat	and	powerful,	but	it	should	only	be	used	in
cases	where	it's	really	necessary	or	beneficial.

Meta	Programming

913

http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@match
http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@replace
http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@search
http://www.ecma-international.org/ecma-262/6.0/#sec-regexp.prototype-@@split


	Symbol.isConcatSpreadable	

The		@@isConcatSpreadable		symbol	can	be	defined	as	a	boolean	property
(	Symbol.isConcatSpreadable	)	on	any	object	(like	an	array	or	other	iterable)	to	indicate	if	it
should	be	spread	out	if	passed	to	an	array		concat(..)	.

Consider:

var	a	=	[1,2,3],

				b	=	[4,5,6];

b[Symbol.isConcatSpreadable]	=	false;

[].concat(	a,	b	);								//	[1,2,3,[4,5,6]]

	Symbol.unscopables	

The		@@unscopables		symbol	can	be	defined	as	an	object	property	(	Symbol.unscopables	)	on
any	object	to	indicate	which	properties	can	and	cannot	be	exposed	as	lexical	variables	in	a
	with		statement.

Consider:

var	o	=	{	a:1,	b:2,	c:3	},

				a	=	10,	b	=	20,	c	=	30;

o[Symbol.unscopables]	=	{

				a:	false,

				b:	true,

				c:	false

};

with	(o)	{

				console.log(	a,	b,	c	);								//	1	20	3

}

A		true		in	the		@@unscopables		object	indicates	the	property	should	be	unscopable,	and	thus
filtered	out	from	the	lexical	scope	variables.		false		means	it's	OK	to	be	included	in	the
lexical	scope	variables.

Warning:	The		with		statement	is	disallowed	entirely	in		strict		mode,	and	as	such	should
be	considered	deprecated	from	the	language.	Don't	use	it.	See	the	Scope	&	Closures	title	of
this	series	for	more	information.	Because		with		should	be	avoided,	the		@@unscopables	
symbol	is	also	moot.
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Proxies
One	of	the	most	obviously	meta	programming	features	added	to	ES6	is	the		Proxy		feature.

A	proxy	is	a	special	kind	of	object	you	create	that	"wraps"	--	or	sits	in	front	of	--	another
normal	object.	You	can	register	special	handlers	(aka	traps)	on	the	proxy	object	which	are
called	when	various	operations	are	performed	against	the	proxy.	These	handlers	have	the
opportunity	to	perform	extra	logic	in	addition	to	forwarding	the	operations	on	to	the	original
target/wrapped	object.

One	example	of	the	kind	of	trap	handler	you	can	define	on	a	proxy	is		get		that	intercepts
the		[[Get]]		operation	--	performed	when	you	try	to	access	a	property	on	an	object.
Consider:

var	obj	=	{	a:	1	},

				handlers	=	{

								get(target,key,context)	{

												//	note:	target	===	obj,

												//	context	===	pobj

												console.log(	"accessing:	",	key	);

												return	Reflect.get(

																target,	key,	context

												);

								}

				},

				pobj	=	new	Proxy(	obj,	handlers	);

obj.a;

//	1

pobj.a;

//	accessing:	a

//	1

We	declare	a		get(..)		handler	as	a	named	method	on	the	handler	object	(second	argument
to		Proxy(..)	),	which	receives	a	reference	to	the	target	object	(	obj	),	the	key	property
name	(	"a"	),	and	the		self	/receiver/proxy	(	pobj	).

After	the		console.log(..)		tracing	statement,	we	"forward"	the	operation	onto		obj		via
	Reflect.get(..)	.	We	will	cover	the		Reflect		API	in	the	next	section,	but	note	that	each
available	proxy	trap	has	a	corresponding		Reflect		function	of	the	same	name.

These	mappings	are	symmetric	on	purpose.	The	proxy	handlers	each	intercept	when	a
respective	meta	programming	task	is	performed,	and	the		Reflect		utilities	each	perform	the
respective	meta	programming	task	on	an	object.	Each	proxy	handler	has	a	default	definition
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that	automatically	calls	the	corresponding		Reflect		utility.	You	will	almost	certainly	use	both
	Proxy		and		Reflect		in	tandem.

Here's	a	list	of	handlers	you	can	define	on	a	proxy	for	a	target	object/function,	and
how/when	they	are	triggered:

	get(..)	:	via		[[Get]]	,	a	property	is	accessed	on	the	proxy	(	Reflect.get(..)	,		.	
property	operator,	or		[	..	]		property	operator)
	set(..)	:	via		[[Set]]	,	a	property	value	is	set	on	the	proxy	(	Reflect.set(..)	,	the		=	
assignment	operator,	or	destructuring	assignment	if	it	targets	an	object	property)
	deleteProperty(..)	:	via		[[Delete]]	,	a	property	is	deleted	from	the	proxy
(	Reflect.deleteProperty(..)		or		delete	)
	apply(..)		(if	target	is	a	function):	via		[[Call]]	,	the	proxy	is	invoked	as	a	normal
function/method	(	Reflect.apply(..)	,		call(..)	,		apply(..)	,	or	the		(..)		call
operator)
	construct(..)		(if	target	is	a	constructor	function):	via		[[Construct]]	,	the	proxy	is
invoked	as	a	constructor	function	(	Reflect.construct(..)		or		new	)
	getOwnPropertyDescriptor(..)	:	via		[[GetOwnProperty]]	,	a	property	descriptor	is
retrieved	from	the	proxy	(	Object.getOwnPropertyDescriptor(..)		or
	Reflect.getOwnPropertyDescriptor(..)	)
	defineProperty(..)	:	via		[[DefineOwnProperty]]	,	a	property	descriptor	is	set	on	the
proxy	(	Object.defineProperty(..)		or		Reflect.defineProperty(..)	)
	getPrototypeOf(..)	:	via		[[GetPrototypeOf]]	,	the		[[Prototype]]		of	the	proxy	is
retrieved	(	Object.getPrototypeOf(..)	,		Reflect.getPrototypeOf(..)	,		__proto__	,
	Object#isPrototypeOf(..)	,	or		instanceof	)
	setPrototypeOf(..)	:	via		[[SetPrototypeOf]]	,	the		[[Prototype]]		of	the	proxy	is	set
(	Object.setPrototypeOf(..)	,		Reflect.setPrototypeOf(..)	,	or		__proto__	)
	preventExtensions(..)	:	via		[[PreventExtensions]]	,	the	proxy	is	made	non-extensible
(	Object.preventExtensions(..)		or		Reflect.preventExtensions(..)	)
	isExtensible(..)	:	via		[[IsExtensible]]	,	the	extensibility	of	the	proxy	is	probed
(	Object.isExtensible(..)		or		Reflect.isExtensible(..)	)
	ownKeys(..)	:	via		[[OwnPropertyKeys]]	,	the	set	of	owned	properties	and/or	owned
symbol	properties	of	the	proxy	is	retrieved	(	Object.keys(..)	,
	Object.getOwnPropertyNames(..)	,		Object.getOwnSymbolProperties(..)	,
	Reflect.ownKeys(..)	,	or		JSON.stringify(..)	)
	enumerate(..)	:	via		[[Enumerate]]	,	an	iterator	is	requested	for	the	proxy's	enumerable
owned	and	"inherited"	properties	(	Reflect.enumerate(..)		or		for..in	)
	has(..)	:	via		[[HasProperty]]	,	the	proxy	is	probed	to	see	if	it	has	an	owned	or
"inherited"	property	(	Reflect.has(..)	,		Object#hasOwnProperty(..)	,	or		"prop"	in	obj	)

Tip:	For	more	information	about	each	of	these	meta	programming	tasks,	see	the	"	Reflect	
API"	section	later	in	this	chapter.
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In	addition	to	the	notations	in	the	preceding	list	about	actions	that	will	trigger	the	various
traps,	some	traps	are	triggered	indirectly	by	the	default	actions	of	another	trap.	For	example:

var	handlers	=	{

								getOwnPropertyDescriptor(target,prop)	{

												console.log(

																"getOwnPropertyDescriptor"

												);

												return	Object.getOwnPropertyDescriptor(

																target,	prop

												);

								},

								defineProperty(target,prop,desc){

												console.log(	"defineProperty"	);

												return	Object.defineProperty(

																target,	prop,	desc

												);

								}

				},

				proxy	=	new	Proxy(	{},	handlers	);

proxy.a	=	2;

//	getOwnPropertyDescriptor

//	defineProperty

The		getOwnPropertyDescriptor(..)		and		defineProperty(..)		handlers	are	triggered	by	the
default		set(..)		handler's	steps	when	setting	a	property	value	(whether	newly	adding	or
updating).	If	you	also	define	your	own		set(..)		handler,	you	may	or	may	not	make	the
corresponding	calls	against		context		(not		target	!)	which	would	trigger	these	proxy	traps.

Proxy	Limitations

These	meta	programming	handlers	trap	a	wide	array	of	fundamental	operations	you	can
perform	against	an	object.	However,	there	are	some	operations	which	are	not	(yet,	at	least)
available	to	intercept.

For	example,	none	of	these	operations	are	trapped	and	forwarded	from		pobj		proxy	to		obj	
target:
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var	obj	=	{	a:1,	b:2	},

				handlers	=	{	..	},

				pobj	=	new	Proxy(	obj,	handlers	);

typeof	obj;

String(	obj	);

obj	+	"";

obj	==	pobj;

obj	===	pobj

Perhaps	in	the	future,	more	of	these	underlying	fundamental	operations	in	the	language	will
be	interceptable,	giving	us	even	more	power	to	extend	JavaScript	from	within	itself.

Warning:	There	are	certain	invariants	--	behaviors	which	cannot	be	overridden	--	that	apply
to	the	use	of	proxy	handlers.	For	example,	the	result	from	the		isExtensible(..)		handler	is
always	coerced	to	a		boolean	.	These	invariants	restrict	some	of	your	ability	to	customize
behaviors	with	proxies,	but	they	do	so	only	to	prevent	you	from	creating	strange	and	unusual
(or	inconsistent)	behavior.	The	conditions	for	these	invariants	are	complicated	so	we	won't
fully	go	into	them	here,	but	this	post	(http://www.2ality.com/2014/12/es6-
proxies.html#invariants)	does	a	great	job	of	covering	them.

Revocable	Proxies

A	regular	proxy	always	traps	for	the	target	object,	and	cannot	be	modified	after	creation	--	as
long	as	a	reference	is	kept	to	the	proxy,	proxying	remains	possible.	However,	there	may	be
cases	where	you	want	to	create	a	proxy	that	can	be	disabled	when	you	want	to	stop	allowing
it	to	proxy.	The	solution	is	to	create	a	revocable	proxy:
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var	obj	=	{	a:	1	},

				handlers	=	{

								get(target,key,context)	{

												//	note:	target	===	obj,

												//	context	===	pobj

												console.log(	"accessing:	",	key	);

												return	target[key];

								}

				},

				{	proxy:	pobj,	revoke:	prevoke	}	=

								Proxy.revocable(	obj,	handlers	);

pobj.a;

//	accessing:	a

//	1

//	later:

prevoke();

pobj.a;

//	TypeError

A	revocable	proxy	is	created	with		Proxy.revocable(..)	,	which	is	a	regular	function,	not	a
constructor	like		Proxy(..)	.	Otherwise,	it	takes	the	same	two	arguments:	target	and
handlers.

The	return	value	of		Proxy.revocable(..)		is	not	the	proxy	itself	as	with		new	Proxy(..)	.
Instead,	it's	an	object	with	two	properties:	proxy	and	revoke	--	we	used	object	destructuring
(see	"Destructuring"	in	Chapter	2)	to	assign	these	properties	to		pobj		and		prevoke()	
variables,	respectively.

Once	a	revocable	proxy	is	revoked,	any	attempts	to	access	it	(trigger	any	of	its	traps)	will
throw	a		TypeError	.

An	example	of	using	a	revocable	proxy	might	be	handing	out	a	proxy	to	another	party	in	your
application	that	manages	data	in	your	model,	instead	of	giving	them	a	reference	to	the	real
model	object	itself.	If	your	model	object	changes	or	is	replaced,	you	want	to	invalidate	the
proxy	you	handed	out	so	the	other	party	knows	(via	the	errors!)	to	request	an	updated
reference	to	the	model.

Using	Proxies

The	meta	programming	benefits	of	these	Proxy	handlers	should	be	obvious.	We	can	almost
fully	intercept	(and	thus	override)	the	behavior	of	objects,	meaning	we	can	extend	object
behavior	beyond	core	JS	in	some	very	powerful	ways.	We'll	look	at	a	few	example	patterns
to	explore	the	possibilities.
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Proxy	First,	Proxy	Last

As	we	mentioned	earlier,	you	typically	think	of	a	proxy	as	"wrapping"	the	target	object.	In	that
sense,	the	proxy	becomes	the	primary	object	that	the	code	interfaces	with,	and	the	actual
target	object	remains	hidden/protected.

You	might	do	this	because	you	want	to	pass	the	object	somewhere	that	can't	be	fully
"trusted,"	and	so	you	need	to	enforce	special	rules	around	its	access	rather	than	passing	the
object	itself.

Consider:
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var	messages	=	[],

				handlers	=	{

								get(target,key)	{

												//	string	value?

												if	(typeof	target[key]	==	"string")	{

																//	filter	out	punctuation

																return	target[key]

																				.replace(	/[^\w]/g,	""	);

												}

												//	pass	everything	else	through

												return	target[key];

								},

								set(target,key,val)	{

												//	only	set	unique	strings,	lowercased

												if	(typeof	val	==	"string")	{

																val	=	val.toLowerCase();

																if	(target.indexOf(	val	)	==	-1)	{

																				target.push(val);

																}

												}

												return	true;

								}

				},

				messages_proxy	=

								new	Proxy(	messages,	handlers	);

//	elsewhere:

messages_proxy.push(

				"heLLo...",	42,	"wOrlD!!",	"WoRld!!"

);

messages_proxy.forEach(	function(val){

				console.log(val);

}	);

//	hello	world

messages.forEach(	function(val){

				console.log(val);

}	);

//	hello...	world!!

I	call	this	proxy	first	design,	as	we	interact	first	(primarily,	entirely)	with	the	proxy.

We	enforce	some	special	rules	on	interacting	with		messages_proxy		that	aren't	enforced	for
	messages		itself.	We	only	add	elements	if	the	value	is	a	string	and	is	also	unique;	we	also
lowercase	the	value.	When	retrieving	values	from		messages_proxy	,	we	filter	out	any
punctuation	in	the	strings.
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Alternatively,	we	can	completely	invert	this	pattern,	where	the	target	interacts	with	the	proxy
instead	of	the	proxy	interacting	with	the	target.	Thus,	code	really	only	interacts	with	the	main
object.	The	easiest	way	to	accomplish	this	fallback	is	to	have	the	proxy	object	in	the
	[[Prototype]]		chain	of	the	main	object.

Consider:

var	handlers	=	{

								get(target,key,context)	{

												return	function()	{

																context.speak(key	+	"!");

												};

								}

				},

				catchall	=	new	Proxy(	{},	handlers	),

				greeter	=	{

								speak(who	=	"someone")	{

												console.log(	"hello",	who	);

								}

				};

//	setup	`greeter`	to	fall	back	to	`catchall`

Object.setPrototypeOf(	greeter,	catchall	);

greeter.speak();																//	hello	someone

greeter.speak(	"world"	);								//	hello	world

greeter.everyone();																//	hello	everyone!

We	interact	directly	with		greeter		instead	of		catchall	.	When	we	call		speak(..)	,	it's	found
on		greeter		and	used	directly.	But	when	we	try	to	access	a	method	like		everyone()	,	that
function	doesn't	exist	on		greeter	.

The	default	object	property	behavior	is	to	check	up	the		[[Prototype]]		chain	(see	the	this	&
Object	Prototypes	title	of	this	series),	so		catchall		is	consulted	for	an		everyone		property.
The	proxy		get()		handler	then	kicks	in	and	returns	a	function	that	calls		speak(..)		with	the
name	of	the	property	being	accessed	(	"everyone"	).

I	call	this	pattern	proxy	last,	as	the	proxy	is	used	only	as	a	last	resort.

"No	Such	Property/Method"

A	common	complaint	about	JS	is	that	objects	aren't	by	default	very	defensive	in	the	situation
where	you	try	to	access	or	set	a	property	that	doesn't	already	exist.	You	may	wish	to
predefine	all	the	properties/methods	for	an	object,	and	have	an	error	thrown	if	a	nonexistent
property	name	is	subsequently	used.
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We	can	accomplish	this	with	a	proxy,	either	in	proxy	first	or	proxy	last	design.	Let's	consider
both.

var	obj	=	{

								a:	1,

								foo()	{

												console.log(	"a:",	this.a	);

								}

				},

				handlers	=	{

								get(target,key,context)	{

												if	(Reflect.has(	target,	key	))	{

																return	Reflect.get(

																				target,	key,	context

																);

												}

												else	{

																throw	"No	such	property/method!";

												}

								},

								set(target,key,val,context)	{

												if	(Reflect.has(	target,	key	))	{

																return	Reflect.set(

																				target,	key,	val,	context

																);

												}

												else	{

																throw	"No	such	property/method!";

												}

								}

				},

				pobj	=	new	Proxy(	obj,	handlers	);

pobj.a	=	3;

pobj.foo();												//	a:	3

pobj.b	=	4;												//	Error:	No	such	property/method!

pobj.bar();												//	Error:	No	such	property/method!

For	both		get(..)		and		set(..)	,	we	only	forward	the	operation	if	the	target	object's	property
already	exists;	error	thrown	otherwise.	The	proxy	object	(	pobj	)	is	the	main	object	code
should	interact	with,	as	it	intercepts	these	actions	to	provide	the	protections.

Now,	let's	consider	inverting	with	proxy	last	design:
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var	handlers	=	{

								get()	{

												throw	"No	such	property/method!";

								},

								set()	{

												throw	"No	such	property/method!";

								}

				},

				pobj	=	new	Proxy(	{},	handlers	),

				obj	=	{

								a:	1,

								foo()	{

												console.log(	"a:",	this.a	);

								}

				};

//	setup	`obj`	to	fall	back	to	`pobj`

Object.setPrototypeOf(	obj,	pobj	);

obj.a	=	3;

obj.foo();												//	a:	3

obj.b	=	4;												//	Error:	No	such	property/method!

obj.bar();												//	Error:	No	such	property/method!

The	proxy	last	design	here	is	a	fair	bit	simpler	with	respect	to	how	the	handlers	are	defined.
Instead	of	needing	to	intercept	the		[[Get]]		and		[[Set]]		operations	and	only	forward	them
if	the	target	property	exists,	we	instead	rely	on	the	fact	that	if	either		[[Get]]		or		[[Set]]		get
to	our		pobj		fallback,	the	action	has	already	traversed	the	whole		[[Prototype]]		chain	and
not	found	a	matching	property.	We	are	free	at	that	point	to	unconditionally	throw	the	error.
Cool,	huh?

Proxy	Hacking	the		[[Prototype]]		Chain

The		[[Get]]		operation	is	the	primary	channel	by	which	the		[[Prototype]]		mechanism	is
invoked.	When	a	property	is	not	found	on	the	immediate	object,		[[Get]]		automatically
hands	off	the	operation	to	the		[[Prototype]]		object.

That	means	you	can	use	the		get(..)		trap	of	a	proxy	to	emulate	or	extend	the	notion	of	this
	[[Prototype]]		mechanism.

The	first	hack	we'll	consider	is	creating	two	objects	which	are	circularly	linked	via
	[[Prototype]]		(or,	at	least	it	appears	that	way!).	You	cannot	actually	create	a	real	circular
	[[Prototype]]		chain,	as	the	engine	will	throw	an	error.	But	a	proxy	can	fake	it!

Consider:
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var	handlers	=	{

								get(target,key,context)	{

												if	(Reflect.has(	target,	key	))	{

																return	Reflect.get(

																				target,	key,	context

																);

												}

												//	fake	circular	`[[Prototype]]`

												else	{

																return	Reflect.get(

																				target[

																								Symbol.for(	"[[Prototype]]"	)

																				],

																				key,

																				context

																);

												}

								}

				},

				obj1	=	new	Proxy(

								{

												name:	"obj-1",

												foo()	{

																console.log(	"foo:",	this.name	);

												}

								},

								handlers

				),

				obj2	=	Object.assign(

								Object.create(	obj1	),

								{

												name:	"obj-2",

												bar()	{

																console.log(	"bar:",	this.name	);

																this.foo();

												}

								}

				);

//	fake	circular	`[[Prototype]]`	link

obj1[	Symbol.for(	"[[Prototype]]"	)	]	=	obj2;

obj1.bar();

//	bar:	obj-1	<--	through	proxy	faking	[[Prototype]]

//	foo:	obj-1	<--	`this`	context	still	preserved

obj2.foo();

//	foo:	obj-2	<--	through	[[Prototype]]
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Note:	We	didn't	need	to	proxy/forward		[[Set]]		in	this	example,	so	we	kept	things	simpler.
To	be	fully		[[Prototype]]		emulation	compliant,	you'd	want	to	implement	a		set(..)		handler
that	searches	the		[[Prototype]]		chain	for	a	matching	property	and	respects	its	descriptor
behavior	(e.g.,	set,	writable).	See	the	this	&	Object	Prototypes	title	of	this	series.

In	the	previous	snippet,		obj2		is		[[Prototype]]		linked	to		obj1		by	virtue	of	the
	Object.create(..)		statement.	But	to	create	the	reverse	(circular)	linkage,	we	create
property	on		obj1		at	the	symbol	location		Symbol.for("[[Prototype]]")		(see	"Symbols"	in
Chapter	2).	This	symbol	may	look	sort	of	special/magical,	but	it	isn't.	It	just	allows	me	a
conveniently	named	hook	that	semantically	appears	related	to	the	task	I'm	performing.

Then,	the	proxy's		get(..)		handler	looks	first	to	see	if	a	requested		key		is	on	the	proxy.	If
not,	the	operation	is	manually	handed	off	to	the	object	reference	stored	in	the		Symbol.for("
[[Prototype]]")		location	of		target	.

One	important	advantage	of	this	pattern	is	that	the	definitions	of		obj1		and		obj2		are	mostly
not	intruded	by	the	setting	up	of	this	circular	relationship	between	them.	Although	the
previous	snippet	has	all	the	steps	intertwined	for	brevity's	sake,	if	you	look	closely,	the	proxy
handler	logic	is	entirely	generic	(doesn't	know	about		obj1		or		obj2		specifically).	So,	that
logic	could	be	pulled	out	into	a	simple	helper	that	wires	them	up,	like	a
	setCircularPrototypeOf(..)		for	example.	We'll	leave	that	as	an	exercise	for	the	reader.

Now	that	we've	seen	how	we	can	use		get(..)		to	emulate	a		[[Prototype]]		link,	let's	push
the	hackery	a	bit	further.	Instead	of	a	circular		[[Prototype]]	,	what	about	multiple
	[[Prototype]]		linkages	(aka	"multiple	inheritance")?	This	turns	out	to	be	fairly
straightforward:

var	obj1	=	{

								name:	"obj-1",

								foo()	{

												console.log(	"obj1.foo:",	this.name	);

								},

				},

				obj2	=	{

								name:	"obj-2",

								foo()	{

												console.log(	"obj2.foo:",	this.name	);

								},

								bar()	{

												console.log(	"obj2.bar:",	this.name	);

								}

				},

				handlers	=	{

								get(target,key,context)	{

												if	(Reflect.has(	target,	key	))	{

																return	Reflect.get(

																				target,	key,	context
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																);

												}

												//	fake	multiple	`[[Prototype]]`

												else	{

																for	(var	P	of	target[

																				Symbol.for(	"[[Prototype]]"	)

																])	{

																				if	(Reflect.has(	P,	key	))	{

																								return	Reflect.get(

																												P,	key,	context

																								);

																				}

																}

												}

								}

				},

				obj3	=	new	Proxy(

								{

												name:	"obj-3",

												baz()	{

																this.foo();

																this.bar();

												}

								},

								handlers

				);

//	fake	multiple	`[[Prototype]]`	links

obj3[	Symbol.for(	"[[Prototype]]"	)	]	=	[

				obj1,	obj2

];

obj3.baz();

//	obj1.foo:	obj-3

//	obj2.bar:	obj-3

Note:	As	mentioned	in	the	note	after	the	earlier	circular		[[Prototype]]		example,	we	didn't
implement	the		set(..)		handler,	but	it	would	be	necessary	for	a	complete	solution	that
emulates		[[Set]]		actions	as	normal		[[Prototype]]	s	behave.

	obj3		is	set	up	to	multiple-delegate	to	both		obj1		and		obj2	.	In		obj3.baz()	,	the
	this.foo()		call	ends	up	pulling		foo()		from		obj1		(first-come,	first-served,	even	though
there's	also	a		foo()		on		obj2	).	If	we	reordered	the	linkage	as		obj2,	obj1	,	the
	obj2.foo()		would	have	been	found	and	used.

But	as	is,	the		this.bar()		call	doesn't	find	a		bar()		on		obj1	,	so	it	falls	over	to	check
	obj2	,	where	it	finds	a	match.
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	obj1		and		obj2		represent	two	parallel		[[Prototype]]		chains	of		obj3	.		obj1		and/or
	obj2		could	themselves	have	normal		[[Prototype]]		delegation	to	other	objects,	or	either
could	themself	be	a	proxy	(like		obj3		is)	that	can	multiple-delegate.

Just	as	with	the	circular		[[Prototype]]		example	earlier,	the	definitions	of		obj1	,		obj2	,	and
	obj3		are	almost	entirely	separate	from	the	generic	proxy	logic	that	handles	the	multiple-
delegation.	It	would	be	trivial	to	define	a	utility	like		setPrototypesOf(..)		(notice	the	"s"!)	that
takes	a	main	object	and	a	list	of	objects	to	fake	the	multiple		[[Prototype]]		linkage	to.
Again,	we'll	leave	that	as	an	exercise	for	the	reader.

Hopefully	the	power	of	proxies	is	now	becoming	clearer	after	these	various	examples.	There
are	many	other	powerful	meta	programming	tasks	that	proxies	enable.

	Reflect		API
The		Reflect		object	is	a	plain	object	(like		Math	),	not	a	function/constructor	like	the	other
built-in	natives.

It	holds	static	functions	which	correspond	to	various	meta	programming	tasks	that	you	can
control.	These	functions	correspond	one-to-one	with	the	handler	methods	(traps)	that
Proxies	can	define.

Some	of	the	functions	will	look	familiar	as	functions	of	the	same	names	on		Object	:

	Reflect.getOwnPropertyDescriptor(..)	

	Reflect.defineProperty(..)	

	Reflect.getPrototypeOf(..)	

	Reflect.setPrototypeOf(..)	

	Reflect.preventExtensions(..)	

	Reflect.isExtensible(..)	

These	utilities	in	general	behave	the	same	as	their		Object.*		counterparts.	However,	one
difference	is	that	the		Object.*		counterparts	attempt	to	coerce	their	first	argument	(the
target	object)	to	an	object	if	it's	not	already	one.	The		Reflect.*		methods	simply	throw	an
error	in	that	case.

An	object's	keys	can	be	accessed/inspected	using	these	utilities:

	Reflect.ownKeys(..)	:	Returns	the	list	of	all	owned	keys	(not	"inherited"),	as	returned	by
both		Object.getOwnPropertyNames(..)		and		Object.getOwnPropertySymbols(..)	.	See	the
"Property	Enumeration	Order"	section	for	information	about	the	order	of	keys.
	Reflect.enumerate(..)	:	Returns	an	iterator	that	produces	the	set	of	all	non-symbol	keys
(owned	and	"inherited")	that	are	enumerable	(see	the	this	&	Object	Prototypes	title	of
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this	series).	Essentially,	this	set	of	keys	is	the	same	as	those	processed	by	a		for..in	
loop.	See	the	"Property	Enumeration	Order"	section	for	information	about	the	order	of
keys.
	Reflect.has(..)	:	Essentially	the	same	as	the		in		operator	for	checking	if	a	property	is
on	an	object	or	its		[[Prototype]]		chain.	For	example,		Reflect.has(o,"foo")	
essentially	performs		"foo"	in	o	.

Function	calls	and	constructor	invocations	can	be	performed	manually,	separate	of	the
normal	syntax	(e.g.,		(..)		and		new	)	using	these	utilities:

	Reflect.apply(..)	:	For	example,		Reflect.apply(foo,thisObj,[42,"bar"])		calls	the
	foo(..)		function	with		thisObj		as	its		this	,	and	passes	in	the		42		and		"bar"	
arguments.
	Reflect.construct(..)	:	For	example,		Reflect.construct(foo,[42,"bar"])		essentially
calls		new	foo(42,"bar")	.

Object	property	access,	setting,	and	deletion	can	be	performed	manually	using	these
utilities:

	Reflect.get(..)	:	For	example,		Reflect.get(o,"foo")		retrieves		o.foo	.
	Reflect.set(..)	:	For	example,		Reflect.set(o,"foo",42)		essentially	performs		o.foo	=
42	.
	Reflect.deleteProperty(..)	:	For	example,		Reflect.deleteProperty(o,"foo")	
essentially	performs		delete	o.foo	.

The	meta	programming	capabilities	of		Reflect		give	you	programmatic	equivalents	to
emulate	various	syntactic	features,	exposing	previously	hidden-only	abstract	operations.	For
example,	you	can	use	these	capabilities	to	extend	features	and	APIs	for	domain	specific
languages	(DSLs).

Property	Ordering

Prior	to	ES6,	the	order	used	to	list	an	object's	keys/properties	was	implementation
dependent	and	undefined	by	the	specification.	Generally,	most	engines	have	enumerated
them	in	creation	order,	though	developers	have	been	strongly	encouraged	not	to	ever	rely
on	this	ordering.

As	of	ES6,	the	order	for	listing	owned	properties	is	now	defined	(ES6	specification,	section
9.1.12)	by	the		[[OwnPropertyKeys]]		algorithm,	which	produces	all	owned	properties	(strings
or	symbols),	regardless	of	enumerability.	This	ordering	is	only	guaranteed	for
	Reflect.ownKeys(..)		(and	by	extension,		Object.getOwnPropertyNames(..)		and
	Object.getOwnPropertySymbols(..)	).

The	ordering	is:
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1.	 First,	enumerate	any	owned	properties	that	are	integer	indexes,	in	ascending	numeric
order.

2.	 Next,	enumerate	the	rest	of	the	owned	string	property	names	in	creation	order.
3.	 Finally,	enumerate	owned	symbol	properties	in	creation	order.

Consider:

var	o	=	{};

o[Symbol("c")]	=	"yay";

o[2]	=	true;

o[1]	=	true;

o.b	=	"awesome";

o.a	=	"cool";

Reflect.ownKeys(	o	);																//	[1,2,"b","a",Symbol(c)]

Object.getOwnPropertyNames(	o	);				//	[1,2,"b","a"]

Object.getOwnPropertySymbols(	o	);				//	[Symbol(c)]

On	the	other	hand,	the		[[Enumerate]]		algorithm	(ES6	specification,	section	9.1.11)
produces	only	enumerable	properties,	from	the	target	object	as	well	as	its		[[Prototype]]	
chain.	It	is	used	by	both		Reflect.enumerate(..)		and		for..in	.	The	observable	ordering	is
implementation	dependent	and	not	controlled	by	the	specification.

By	contrast,		Object.keys(..)		invokes	the		[[OwnPropertyKeys]]		algorithm	to	get	a	list	of	all
owned	keys.	However,	it	filters	out	non-enumerable	properties	and	then	reorders	the	list	to
match	legacy	implementation-dependent	behavior,	specifically	with		JSON.stringify(..)		and
	for..in	.	So,	by	extension	the	ordering	also	matches	that	of		Reflect.enumerate(..)	.

In	other	words,	all	four	mechanisms	(	Reflect.enumerate(..)	,		Object.keys(..)	,		for..in	,
and		JSON.stringify(..)	)	will	match	with	the	same	implementation-dependent	ordering,
though	they	technically	get	there	in	different	ways.

Implementations	are	allowed	to	match	these	four	to	the	ordering	of		[[OwnPropertyKeys]]	,
but	are	not	required	to.	Nevertheless,	you	will	likely	observe	the	following	ordering	behavior
from	them:
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var	o	=	{	a:	1,	b:	2	};

var	p	=	Object.create(	o	);

p.c	=	3;

p.d	=	4;

for	(var	prop	of	Reflect.enumerate(	p	))	{

				console.log(	prop	);

}

//	c	d	a	b

for	(var	prop	in	p)	{

				console.log(	prop	);

}

//	c	d	a	b

JSON.stringify(	p	);

//	{"c":3,"d":4}

Object.keys(	p	);

//	["c","d"]

Boiling	this	all	down:	as	of	ES6,		Reflect.ownKeys(..)	,		Object.getOwnPropertyNames(..)	,	and
	Object.getOwnPropertySymbols(..)		all	have	predictable	and	reliable	ordering	guaranteed	by
the	specification.	So	it's	safe	to	build	code	that	relies	on	this	ordering.

	Reflect.enumerate(..)	,		Object.keys(..)	,	and		for..in		(as	well	as		JSON.stringify(..)		by
extension)	continue	to	share	an	observable	ordering	with	each	other,	as	they	always	have.
But	that	ordering	will	not	necessarily	be	the	same	as	that	of		Reflect.ownKeys(..)	.	Care
should	still	be	taken	in	relying	on	their	implementation-dependent	ordering.

Feature	Testing
What	is	a	feature	test?	It's	a	test	that	you	run	to	determine	if	a	feature	is	available	or	not.
Sometimes,	the	test	is	not	just	for	existence,	but	for	conformance	to	specified	behavior	--
features	can	exist	but	be	buggy.

This	is	a	meta	programming	technique,	to	test	the	environment	your	program	runs	in	to	then
determine	how	your	program	should	behave.

The	most	common	use	of	feature	tests	in	JS	is	checking	for	the	existence	of	an	API	and	if
it's	not	present,	defining	a	polyfill	(see	Chapter	1).	For	example:
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if	(!Number.isNaN)	{

				Number.isNaN	=	function(x)	{

								return	x	!==	x;

				};

}

The		if		statement	in	this	snippet	is	meta	programming:	we're	probing	our	program	and	its
runtime	environment	to	determine	if	and	how	we	should	proceed.

But	what	about	testing	for	features	that	involve	new	syntax?

You	might	try	something	like:

try	{

				a	=	()	=>	{};

				ARROW_FUNCS_ENABLED	=	true;

}

catch	(err)	{

				ARROW_FUNCS_ENABLED	=	false;

}

Unfortunately,	this	doesn't	work,	because	our	JS	programs	are	compiled.	Thus,	the	engine
will	choke	on	the		()	=>	{}		syntax	if	it	is	not	already	supporting	ES6	arrow	functions.	Having
a	syntax	error	in	your	program	prevents	it	from	running,	which	prevents	your	program	from
subsequently	responding	differently	if	the	feature	is	supported	or	not.

To	meta	program	with	feature	tests	around	syntax-related	features,	we	need	a	way	to
insulate	the	test	from	the	initial	compile	step	our	program	runs	through.	For	instance,	if	we
could	store	the	code	for	the	test	in	a	string,	then	the	JS	engine	wouldn't	by	default	try	to
compile	the	contents	of	that	string,	until	we	asked	it	to.

Did	your	mind	just	jump	to	using		eval(..)	?

Not	so	fast.	See	the	Scope	&	Closures	title	of	this	series	for	why		eval(..)		is	a	bad	idea.
But	there's	another	option	with	less	downsides:	the		Function(..)		constructor.

Consider:

try	{

				new	Function(	"(	()	=>	{}	)"	);

				ARROW_FUNCS_ENABLED	=	true;

}

catch	(err)	{

				ARROW_FUNCS_ENABLED	=	false;

}
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OK,	so	now	we're	meta	programming	by	determining	if	a	feature	like	arrow	functions	can
compile	in	the	current	engine	or	not.	You	might	then	wonder,	what	would	we	do	with	this
information?

With	existence	checks	for	APIs,	and	defining	fallback	API	polyfills,	there's	a	clear	path	for
what	to	do	with	either	test	success	or	failure.	But	what	can	we	do	with	the	information	that
we	get	from		ARROW_FUNCS_ENABLED		being		true		or		false	?

Because	the	syntax	can't	appear	in	a	file	if	the	engine	doesn't	support	that	feature,	you	can't
just	have	different	functions	defined	in	the	file	with	and	without	the	syntax	in	question.

What	you	can	do	is	use	the	test	to	determine	which	of	a	set	of	JS	files	you	should	load.	For
example,	if	you	had	a	set	of	these	feature	tests	in	a	bootstrapper	for	your	JS	application,	it
could	then	test	the	environment	to	determine	if	your	ES6	code	can	be	loaded	and	run
directly,	or	if	you	need	to	load	a	transpiled	version	of	your	code	(see	Chapter	1).

This	technique	is	called	split	delivery.

It	recognizes	the	reality	that	your	ES6	authored	JS	programs	will	sometimes	be	able	to
entirely	run	"natively"	in	ES6+	browsers,	but	other	times	need	transpilation	to	run	in	pre-ES6
browsers.	If	you	always	load	and	use	the	transpiled	code,	even	in	the	new	ES6-compliant
environments,	you're	running	suboptimal	code	at	least	some	of	the	time.	This	is	not	ideal.

Split	delivery	is	more	complicated	and	sophisticated,	but	it	represents	a	more	mature	and
robust	approach	to	bridging	the	gap	between	the	code	you	write	and	the	feature	support	in
browsers	your	programs	must	run	in.

FeatureTests.io

Defining	feature	tests	for	all	of	the	ES6+	syntax,	as	well	as	the	semantic	behaviors,	is	a
daunting	task	you	probably	don't	want	to	tackle	yourself.	Because	these	tests	require
dynamic	compilation	(	new	Function(..)	),	there's	some	unfortunate	performance	cost.

Moreover,	running	these	tests	every	single	time	your	app	runs	is	probably	wasteful,	as	on
average	a	user's	browser	only	updates	once	in	a	several	week	period	at	most,	and	even
then,	new	features	aren't	necessarily	showing	up	with	every	update.

Finally,	managing	the	list	of	feature	tests	that	apply	to	your	specific	code	base	--	rarely	will
your	programs	use	the	entirety	of	ES6	--	is	unruly	and	error-prone.

The	"https://featuretests.io"	feature-tests-as-a-service	offers	solutions	to	these	frustrations.

You	can	load	the	service's	library	into	your	page,	and	it	loads	the	latest	test	definitions	and
runs	all	the	feature	tests.	It	does	so	using	background	processing	with	Web	Workers,	if
possible,	to	reduce	the	performance	overhead.	It	also	uses	LocalStorage	persistence	to
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cache	the	results	in	a	way	that	can	be	shared	across	all	sites	you	visit	which	use	the	service,
which	drastically	reduces	how	often	the	tests	need	to	run	on	each	browser	instance.

You	get	runtime	feature	tests	in	each	of	your	users'	browsers,	and	you	can	use	those	tests
results	dynamically	to	serve	users	the	most	appropriate	code	(no	more,	no	less)	for	their
environments.

Moreover,	the	service	provides	tools	and	APIs	to	scan	your	files	to	determine	what	features
you	need,	so	you	can	fully	automate	your	split	delivery	build	processes.

FeatureTests.io	makes	it	practical	to	use	feature	tests	for	all	parts	of	ES6	and	beyond	to
make	sure	that	only	the	best	code	is	ever	loaded	and	run	for	any	given	environment.

Tail	Call	Optimization	(TCO)
Normally,	when	a	function	call	is	made	from	inside	another	function,	a	second	stack	frame	is
allocated	to	separately	manage	the	variables/state	of	that	other	function	invocation.	Not	only
does	this	allocation	cost	some	processing	time,	but	it	also	takes	up	some	extra	memory.

A	call	stack	chain	typically	has	at	most	10-15	jumps	from	one	function	to	another	and
another.	In	those	scenarios,	the	memory	usage	is	not	likely	any	kind	of	practical	problem.

However,	when	you	consider	recursive	programming	(a	function	calling	itself	repeatedly)	--
or	mutual	recursion	with	two	or	more	functions	calling	each	other	--	the	call	stack	could
easily	be	hundreds,	thousands,	or	more	levels	deep.	You	can	probably	see	the	problems
that	could	cause,	if	memory	usage	grows	unbounded.

JavaScript	engines	have	to	set	an	arbitrary	limit	to	prevent	such	programming	techniques
from	crashing	by	running	the	browser	and	device	out	of	memory.	That's	why	we	get	the
frustrating	"RangeError:	Maximum	call	stack	size	exceeded"	thrown	if	the	limit	is	hit.

Warning:	The	limit	of	call	stack	depth	is	not	controlled	by	the	specification.	It's
implementation	dependent,	and	will	vary	between	browsers	and	devices.	You	should	never
code	with	strong	assumptions	of	exact	observable	limits,	as	they	may	very	well	change	from
release	to	release.

Certain	patterns	of	function	calls,	called	tail	calls,	can	be	optimized	in	a	way	to	avoid	the
extra	allocation	of	stack	frames.	If	the	extra	allocation	can	be	avoided,	there's	no	reason	to
arbitrarily	limit	the	call	stack	depth,	so	the	engines	can	let	them	run	unbounded.

A	tail	call	is	a		return		statement	with	a	function	call,	where	nothing	has	to	happen	after	the
call	except	returning	its	value.
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This	optimization	can	only	be	applied	in		strict		mode.	Yet	another	reason	to	always	be
writing	all	your	code	as		strict	!

Here's	a	function	call	that	is	not	in	tail	position:

"use	strict";

function	foo(x)	{

				return	x	*	2;

}

function	bar(x)	{

				//	not	a	tail	call

				return	1	+	foo(	x	);

}

bar(	10	);																//	21

	1	+	..		has	to	be	performed	after	the		foo(x)		call	completes,	so	the	state	of	that		bar(..)	
invocation	needs	to	be	preserved.

But	the	following	snippet	demonstrates	calls	to		foo(..)		and		bar(..)		where	both	are	in	tail
position,	as	they're	the	last	thing	to	happen	in	their	code	path	(other	than	the		return	):

"use	strict";

function	foo(x)	{

				return	x	*	2;

}

function	bar(x)	{

				x	=	x	+	1;

				if	(x	>	10)	{

								return	foo(	x	);

				}

				else	{

								return	bar(	x	+	1	);

				}

}

bar(	5	);																//	24

bar(	15	);																//	32

In	this	program,		bar(..)		is	clearly	recursive,	but		foo(..)		is	just	a	regular	function	call.	In
both	cases,	the	function	calls	are	in	proper	tail	position.	The		x	+	1		is	evaluated	before	the
	bar(..)		call,	and	whenever	that	call	finishes,	all	that	happens	is	the		return	.
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Proper	Tail	Calls	(PTC)	of	these	forms	can	be	optimized	--	called	tail	call	optimization	(TCO)
--	so	that	the	extra	stack	frame	allocation	is	unnecessary.	Instead	of	creating	a	new	stack
frame	for	the	next	function	call,	the	engine	just	reuses	the	existing	stack	frame.	That	works
because	a	function	doesn't	need	to	preserve	any	of	the	current	state,	as	nothing	happens
with	that	state	after	the	PTC.

TCO	means	there's	practically	no	limit	to	how	deep	the	call	stack	can	be.	That	trick	slightly
improves	regular	function	calls	in	normal	programs,	but	more	importantly	opens	the	door	to
using	recursion	for	program	expression	even	if	the	call	stack	could	be	tens	of	thousands	of
calls	deep.

We're	no	longer	relegated	to	simply	theorizing	about	recursion	for	problem	solving,	but	can
actually	use	it	in	real	JavaScript	programs!

As	of	ES6,	all	PTC	should	be	optimizable	in	this	way,	recursion	or	not.

Tail	Call	Rewrite

The	hitch,	however,	is	that	only	PTC	can	be	optimized;	non-PTC	will	still	work	of	course,	but
will	cause	stack	frame	allocation	as	they	always	did.	You'll	have	to	be	careful	about
structuring	your	functions	with	PTC	if	you	expect	the	optimizations	to	kick	in.

If	you	have	a	function	that's	not	written	with	PTC,	you	may	find	the	need	to	manually
rearrange	your	code	to	be	eligible	for	TCO.

Consider:

"use	strict";

function	foo(x)	{

				if	(x	<=	1)	return	1;

				return	(x	/	2)	+	foo(	x	-	1	);

}

foo(	123456	);												//	RangeError

The	call	to		foo(x-1)		isn't	a	PTC	because	its	result	has	to	be	added	to		(x	/	2)		before
	return	ing.

However,	to	make	this	code	eligible	for	TCO	in	an	ES6	engine,	we	can	rewrite	it	as	follows:
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"use	strict";

var	foo	=	(function(){

				function	_foo(acc,x)	{

								if	(x	<=	1)	return	acc;

								return	_foo(	(x	/	2)	+	acc,	x	-	1	);

				}

				return	function(x)	{

								return	_foo(	1,	x	);

				};

})();

foo(	123456	);												//	3810376848.5

If	you	run	the	previous	snippet	in	an	ES6	engine	that	implements	TCO,	you'll	get	the
	3810376848.5		answer	as	shown.	However,	it'll	still	fail	with	a		RangeError		in	non-TCO
engines.

Non-TCO	Optimizations

There	are	other	techniques	to	rewrite	the	code	so	that	the	call	stack	isn't	growing	with	each
call.

One	such	technique	is	called	trampolining,	which	amounts	to	having	each	partial	result
represented	as	a	function	that	either	returns	another	partial	result	function	or	the	final	result.
Then	you	can	simply	loop	until	you	stop	getting	a	function,	and	you'll	have	the	result.
Consider:
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"use	strict";

function	trampoline(	res	)	{

				while	(typeof	res	==	"function")	{

								res	=	res();

				}

				return	res;

}

var	foo	=	(function(){

				function	_foo(acc,x)	{

								if	(x	<=	1)	return	acc;

								return	function	partial(){

												return	_foo(	(x	/	2)	+	acc,	x	-	1	);

								};

				}

				return	function(x)	{

								return	trampoline(	_foo(	1,	x	)	);

				};

})();

foo(	123456	);												//	3810376848.5

This	reworking	required	minimal	changes	to	factor	out	the	recursion	into	the	loop	in
	trampoline(..)	:

1.	 First,	we	wrapped	the		return	_foo	..		line	in	the		return	partial()	{	..		function
expression.

2.	 Then	we	wrapped	the		_foo(1,x)		call	in	the		trampoline(..)		call.

The	reason	this	technique	doesn't	suffer	the	call	stack	limitation	is	that	each	of	those	inner
	partial(..)		functions	is	just	returned	back	to	the		while		loop	in		trampoline(..)	,	which
runs	it	and	then	loop	iterates	again.	In	other	words,		partial(..)		doesn't	recursively	call
itself,	it	just	returns	another	function.	The	stack	depth	remains	constant,	so	it	can	run	as	long
as	it	needs	to.

Trampolining	expressed	in	this	way	uses	the	closure	that	the	inner		partial()		function	has
over	the		x		and		acc		variables	to	keep	the	state	from	iteration	to	iteration.	The	advantage	is
that	the	looping	logic	is	pulled	out	into	a	reusable		trampoline(..)		utility	function,	which
many	libraries	provide	versions	of.	You	can	reuse		trampoline(..)		multiple	times	in	your
program	with	different	trampolined	algorithms.

Of	course,	if	you	really	wanted	to	deeply	optimize	(and	the	reusability	wasn't	a	concern),	you
could	discard	the	closure	state	and	inline	the	state	tracking	of		acc		into	just	one	function's
scope	along	with	a	loop.	This	technique	is	generally	called	recursion	unrolling:
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"use	strict";

function	foo(x)	{

				var	acc	=	1;

				while	(x	>	1)	{

								acc	=	(x	/	2)	+	acc;

								x	=	x	-	1;

				}

				return	acc;

}

foo(	123456	);												//	3810376848.5

This	expression	of	the	algorithm	is	simpler	to	read,	and	will	likely	perform	the	best	(strictly
speaking)	of	the	various	forms	we've	explored.	That	may	seem	like	a	clear	winner,	and	you
may	wonder	why	you	would	ever	try	the	other	approaches.

There	are	some	reasons	why	you	might	not	want	to	always	manually	unroll	your	recursions:

Instead	of	factoring	out	the	trampolining	(loop)	logic	for	reusability,	we've	inlined	it.	This
works	great	when	there's	only	one	example	to	consider,	but	as	soon	as	you	have	a	half
dozen	or	more	of	these	in	your	program,	there's	a	good	chance	you'll	want	some
reusability	to	keep	things	shorter	and	more	manageable.
The	example	here	is	deliberately	simple	enough	to	illustrate	the	different	forms.	In
practice,	there	are	many	more	complications	in	recursion	algorithms,	such	as	mutual
recursion	(more	than	just	one	function	calling	itself).

The	farther	you	go	down	this	rabbit	hole,	the	more	manual	and	intricate	the	unrolling
optimizations	are.	You'll	quickly	lose	all	the	perceived	value	of	readability.	The	primary
advantage	of	recursion,	even	in	the	PTC	form,	is	that	it	preserves	the	algorithm
readability,	and	offloads	the	performance	optimization	to	the	engine.

If	you	write	your	algorithms	with	PTC,	the	ES6	engine	will	apply	TCO	to	let	your	code	run	in
constant	stack	depth	(by	reusing	stack	frames).	You	get	the	readability	of	recursion	with
most	of	the	performance	benefits	and	no	limitations	of	run	length.

Meta?

What	does	TCO	have	to	do	with	meta	programming?

As	we	covered	in	the	"Feature	Testing"	section	earlier,	you	can	determine	at	runtime	what
features	an	engine	supports.	This	includes	TCO,	though	determining	it	is	quite	brute	force.
Consider:

Meta	Programming

939



"use	strict";

try	{

				(function	foo(x){

								if	(x	<	5E5)	return	foo(	x	+	1	);

				})(	1	);

				TCO_ENABLED	=	true;

}

catch	(err)	{

				TCO_ENABLED	=	false;

}

In	a	non-TCO	engine,	the	recursive	loop	will	fail	out	eventually,	throwing	an	exception	caught
by	the		try..catch	.	Otherwise,	the	loop	completes	easily	thanks	to	TCO.

Yuck,	right?

But	how	could	meta	programming	around	the	TCO	feature	(or	rather,	the	lack	thereof)
benefit	our	code?	The	simple	answer	is	that	you	could	use	such	a	feature	test	to	decide	to
load	a	version	of	your	application's	code	that	uses	recursion,	or	an	alternative	one	that's
been	converted/transpiled	to	not	need	recursion.

Self-Adjusting	Code

But	here's	another	way	of	looking	at	the	problem:
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"use	strict";

function	foo(x)	{

				function	_foo()	{

								if	(x	>	1)	{

												acc	=	acc	+	(x	/	2);

												x	=	x	-	1;

												return	_foo();

								}

				}

				var	acc	=	1;

				while	(x	>	1)	{

								try	{

												_foo();

								}

								catch	(err)	{	}

				}

				return	acc;

}

foo(	123456	);												//	3810376848.5

This	algorithm	works	by	attempting	to	do	as	much	of	the	work	with	recursion	as	possible,	but
keeping	track	of	the	progress	via	scoped	variables		x		and		acc	.	If	the	entire	problem	can
be	solved	with	recursion	without	an	error,	great.	If	the	engine	kills	the	recursion	at	some
point,	we	simply	catch	that	with	the		try..catch		and	then	try	again,	picking	up	where	we	left
off.

I	consider	this	a	form	of	meta	programming	in	that	you	are	probing	during	runtime	the	ability
of	the	engine	to	fully	(recursively)	finish	the	task,	and	working	around	any	(non-TCO)	engine
limitations	that	may	restrict	you.

At	first	(or	even	second!)	glance,	my	bet	is	this	code	seems	much	uglier	to	you	compared	to
some	of	the	earlier	versions.	It	also	runs	a	fair	bit	slower	(on	larger	runs	in	a	non-TCO
environment).

The	primary	advantage,	other	than	it	being	able	to	complete	any	size	task	even	in	non-TCO
engines,	is	that	this	"solution"	to	the	recursion	stack	limitation	is	much	more	flexible	than	the
trampolining	or	manual	unrolling	techniques	shown	previously.

Essentially,		_foo()		in	this	case	is	a	sort	of	stand-in	for	practically	any	recursive	task,	even
mutual	recursion.	The	rest	is	the	boilerplate	that	should	work	for	just	about	any	algorithm.
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The	only	"catch"	is	that	to	be	able	to	resume	in	the	event	of	a	recursion	limit	being	hit,	the
state	of	the	recursion	must	be	in	scoped	variables	that	exist	outside	the	recursive
function(s).	We	did	that	by	leaving		x		and		acc		outside	of	the		_foo()		function,	instead	of
passing	them	as	arguments	to		_foo()		as	earlier.

Almost	any	recursive	algorithm	can	be	adapted	to	work	this	way.	That	means	it's	the	most
widely	applicable	way	of	leveraging	TCO	with	recursion	in	your	programs,	with	minimal
rewriting.

This	approach	still	uses	a	PTC,	meaning	that	this	code	will	progressively	enhance	from
running	using	the	loop	many	times	(recursion	batches)	in	an	older	browser	to	fully	leveraging
TCO'd	recursion	in	an	ES6+	environment.	I	think	that's	pretty	cool!

Review
Meta	programming	is	when	you	turn	the	logic	of	your	program	to	focus	on	itself	(or	its
runtime	environment),	either	to	inspect	its	own	structure	or	to	modify	it.	The	primary	value	of
meta	programming	is	to	extend	the	normal	mechanisms	of	the	language	to	provide
additional	capabilities.

Prior	to	ES6,	JavaScript	already	had	quite	a	bit	of	meta	programming	capability,	but	ES6
significantly	ramps	that	up	with	several	new	features.

From	function	name	inferences	for	anonymous	functions	to	meta	properties	that	give	you
information	about	things	like	how	a	constructor	was	invoked,	you	can	inspect	the	program
structure	while	it	runs	more	than	ever	before.	Well	Known	Symbols	let	you	override	intrinsic
behaviors,	such	as	coercion	of	an	object	to	a	primitive	value.	Proxies	can	intercept	and
customize	various	low-level	operations	on	objects,	and		Reflect		provides	utilities	to	emulate
them.

Feature	testing,	even	for	subtle	semantic	behaviors	like	Tail	Call	Optimization,	shifts	the
meta	programming	focus	from	your	program	to	the	JS	engine	capabilities	itself.	By	knowing
more	about	what	the	environment	can	do,	your	programs	can	adjust	themselves	to	the	best
fit	as	they	run.

Should	you	meta	program?	My	advice	is:	first	focus	on	learning	how	the	core	mechanics	of
the	language	really	work.	But	once	you	fully	know	what	JS	itself	can	do,	it's	time	to	start
leveraging	these	powerful	meta	programming	capabilities	to	push	the	language	further!
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Chapter	8:	Beyond	ES6
At	the	time	of	this	writing,	the	final	draft	of	ES6	(ECMAScript	2015)	is	shortly	headed	toward
its	final	official	vote	of	approval	by	ECMA.	But	even	as	ES6	is	being	finalized,	the	TC39
committee	is	already	hard	at	work	on	features	for	ES7/2016	and	beyond.

As	we	discussed	in	Chapter	1,	it's	expected	that	the	cadence	of	progress	for	JS	is	going	to
accelerate	from	updating	once	every	several	years	to	having	an	official	version	update	once
per	year	(hence	the	year-based	naming).	That	alone	is	going	to	radically	change	how	JS
developers	learn	about	and	keep	up	with	the	language.

But	even	more	importantly,	the	committee	is	actually	going	to	work	feature	by	feature.	As
soon	as	a	feature	is	spec-complete	and	has	its	kinks	worked	out	through	implementation
experiments	in	a	few	browsers,	that	feature	will	be	considered	stable	enough	to	start	using.
We're	all	strongly	encouraged	to	adopt	features	once	they're	ready	instead	of	waiting	for
some	official	standards	vote.	If	you	haven't	already	learned	ES6,	the	time	is	past	due	to	get
on	board!

As	the	time	of	this	writing,	a	list	of	future	proposals	and	their	status	can	be	seen	here
(https://github.com/tc39/ecma262#current-proposals).

Transpilers	and	polyfills	are	how	we'll	bridge	to	these	new	features	even	before	all	browsers
we	support	have	implemented	them.	Babel,	Traceur,	and	several	other	major	transpilers
already	have	support	for	some	of	the	post-ES6	features	that	are	most	likely	to	stabilize.

With	that	in	mind,	it's	already	time	for	us	to	look	at	some	of	them.	Let's	jump	in!

Warning:	These	features	are	all	in	various	stages	of	development.	While	they're	likely	to
land,	and	probably	will	look	similar,	take	the	contents	of	this	chapter	with	more	than	a	few
grains	of	salt.	This	chapter	will	evolve	in	future	editions	of	this	title	as	these	(and	other!)
features	finalize.

	async	function	s
In	"Generators	+	Promises"	in	Chapter	4,	we	mentioned	that	there's	a	proposal	for	direct
syntactic	support	for	the	pattern	of	generators		yield	ing	promises	to	a	runner-like	utility	that
will	resume	it	on	promise	completion.	Let's	take	a	brief	look	at	that	proposed	feature,	called
	async	function	.

Recall	this	generator	example	from	Chapter	4:
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run(	function	*main()	{

				var	ret	=	yield	step1();

				try	{

								ret	=	yield	step2(	ret	);

				}

				catch	(err)	{

								ret	=	yield	step2Failed(	err	);

				}

				ret	=	yield	Promise.all([

								step3a(	ret	),

								step3b(	ret	),

								step3c(	ret	)

				]);

				yield	step4(	ret	);

}	)

.then(

				function	fulfilled(){

								//	`*main()`	completed	successfully

				},

				function	rejected(reason){

								//	Oops,	something	went	wrong

				}

);

The	proposed		async	function		syntax	can	express	this	same	flow	control	logic	without
needing	the		run(..)		utility,	because	JS	will	automatically	know	how	to	look	for	promises	to
wait	and	resume.	Consider:
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async	function	main()	{

				var	ret	=	await	step1();

				try	{

								ret	=	await	step2(	ret	);

				}

				catch	(err)	{

								ret	=	await	step2Failed(	err	);

				}

				ret	=	await	Promise.all(	[

								step3a(	ret	),

								step3b(	ret	),

								step3c(	ret	)

				]	);

				await	step4(	ret	);

}

main()

.then(

				function	fulfilled(){

								//	`main()`	completed	successfully

				},

				function	rejected(reason){

								//	Oops,	something	went	wrong

				}

);

Instead	of	the		function	*main()	{	..		declaration,	we	declare	with	the		async	function
main()	{	..		form.	And	instead	of		yield	ing	a	promise,	we		await		the	promise.	The	call	to
run	the	function		main()		actually	returns	a	promise	that	we	can	directly	observe.	That's	the
equivalent	to	the	promise	that	we	get	back	from	a		run(main)		call.

Do	you	see	the	symmetry?		async	function		is	essentially	syntactic	sugar	for	the	generators
+	promises	+		run(..)		pattern;	under	the	covers,	it	operates	the	same!

If	you're	a	C#	developer	and	this		async	/	await		looks	familiar,	it's	because	this	feature	is
directly	inspired	by	C#'s	feature.	It's	nice	to	see	language	precedence	informing
convergence!

Babel,	Traceur	and	other	transpilers	already	have	early	support	for	the	current	status	of
	async	function	s,	so	you	can	start	using	them	already.	However,	in	the	next	section
"Caveats",	we'll	see	why	you	perhaps	shouldn't	jump	on	that	ship	quite	yet.

Note:	There's	also	a	proposal	for		async	function*	,	which	would	be	called	an	"async
generator."	You	can	both		yield		and		await		in	the	same	code,	and	even	combine	those
operations	in	the	same	statement:		x	=	await	yield	y	.	The	"async	generator"	proposal
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seems	to	be	more	in	flux	--	namely,	its	return	value	is	not	fully	worked	out	yet.	Some	feel	it
should	be	an	observable,	which	is	kind	of	like	the	combination	of	an	iterator	and	a	promise.
For	now,	we	won't	go	further	into	that	topic,	but	stay	tuned	as	it	evolves.

Caveats

One	unresolved	point	of	contention	with		async	function		is	that	because	it	only	returns	a
promise,	there's	no	way	from	the	outside	to	cancel	an		async	function		instance	that's
currently	running.	This	can	be	a	problem	if	the	async	operation	is	resource	intensive,	and
you	want	to	free	up	the	resources	as	soon	as	you're	sure	the	result	won't	be	needed.

For	example:

async	function	request(url)	{

				var	resp	=	await	(

								new	Promise(	function(resolve,reject){

												var	xhr	=	new	XMLHttpRequest();

												xhr.open(	"GET",	url	);

												xhr.onreadystatechange	=	function(){

																if	(xhr.readyState	==	4)	{

																				if	(xhr.status	==	200)	{

																								resolve(	xhr	);

																				}

																				else	{

																								reject(	xhr.statusText	);

																				}

																}

												};

												xhr.send();

								}	)

				);

				return	resp.responseText;

}

var	pr	=	request(	"http://some.url.1"	);

pr.then(

				function	fulfilled(responseText){

								//	ajax	success

				},

				function	rejected(reason){

								//	Oops,	something	went	wrong

				}

);
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This		request(..)		that	I've	conceived	is	somewhat	like	the		fetch(..)		utility	that's	recently
been	proposed	for	inclusion	into	the	web	platform.	So	the	concern	is,	what	happens	if	you
want	to	use	the		pr		value	to	somehow	indicate	that	you	want	to	cancel	a	long-running	Ajax
request,	for	example?

Promises	are	not	cancelable	(at	the	time	of	writing,	anyway).	In	my	opinion,	as	well	as	many
others,	they	never	should	be	(see	the	Async	&	Performance	title	of	this	series).	And	even	if	a
promise	did	have	a		cancel()		method	on	it,	does	that	necessarily	mean	that	calling
	pr.cancel()		should	actually	propagate	a	cancelation	signal	all	the	way	back	up	the	promise
chain	to	the		async	function	?

Several	possible	resolutions	to	this	debate	have	surfaced:

	async	function	s	won't	be	cancelable	at	all	(status	quo)
A	"cancel	token"	can	be	passed	to	an	async	function	at	call	time
Return	value	changes	to	a	cancelable-promise	type	that's	added
Return	value	changes	to	something	else	non-promise	(e.g.,	observable,	or	control	token
with	promise	and	cancel	capabilities)

At	the	time	of	this	writing,		async	function	s	return	regular	promises,	so	it's	less	likely	that
the	return	value	will	entirely	change.	But	it's	too	early	to	tell	where	things	will	land.	Keep	an
eye	on	this	discussion.

	Object.observe(..)	

One	of	the	holy	grails	of	front-end	web	development	is	data	binding	--	listening	for	updates	to
a	data	object	and	syncing	the	DOM	representation	of	that	data.	Most	JS	frameworks	provide
some	mechanism	for	these	sorts	of	operations.

It	appears	likely	that	post	ES6,	we'll	see	support	added	directly	to	the	language,	via	a	utility
called		Object.observe(..)	.	Essentially,	the	idea	is	that	you	can	set	up	a	listener	to	observe
an	object's	changes,	and	have	a	callback	called	any	time	a	change	occurs.	You	can	then
update	the	DOM	accordingly,	for	instance.

There	are	six	types	of	changes	that	you	can	observe:

add
update
delete
reconfigure
setPrototype
preventExtensions
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By	default,	you'll	be	notified	of	all	these	change	types,	but	you	can	filter	down	to	only	the
ones	you	care	about.

Consider:

var	obj	=	{	a:	1,	b:	2	};

Object.observe(

				obj,

				function(changes){

								for	(var	change	of	changes)	{

												console.log(	change	);

								}

				},

				[	"add",	"update",	"delete"	]

);

obj.c	=	3;

//	{	name:	"c",	object:	obj,	type:	"add"	}

obj.a	=	42;

//	{	name:	"a",	object:	obj,	type:	"update",	oldValue:	1	}

delete	obj.b;

//	{	name:	"b",	object:	obj,	type:	"delete",	oldValue:	2	}

In	addition	to	the	main		"add"	,		"update"	,	and		"delete"		change	types:

The		"reconfigure"		change	event	is	fired	if	one	of	the	object's	properties	is	reconfigured
with		Object.defineProperty(..)	,	such	as	changing	its		writable		attribute.	See	the	this
&	Object	Prototypes	title	of	this	series	for	more	information.
The		"preventExtensions"		change	event	is	fired	if	the	object	is	made	non-extensible	via
	Object.preventExtensions(..)	.

Because	both		Object.seal(..)		and		Object.freeze(..)		also	imply
	Object.preventExtensions(..)	,	they'll	also	fire	its	corresponding	change	event.	In
addition,		"reconfigure"		change	events	will	also	be	fired	for	each	property	on	the
object.

The		"setPrototype"		change	event	is	fired	if	the		[[Prototype]]		of	an	object	is
changed,	either	by	setting	it	with	the		__proto__		setter,	or	using
	Object.setPrototypeOf(..)	.

Notice	that	these	change	events	are	notified	immediately	after	said	change.	Don't	confuse
this	with	proxies	(see	Chapter	7)	where	you	can	intercept	the	actions	before	they	occur.
Object	observation	lets	you	respond	after	a	change	(or	set	of	changes)	occurs.

Beyond	ES6

948



Custom	Change	Events

In	addition	to	the	six	built-in	change	event	types,	you	can	also	listen	for	and	fire	custom
change	events.

Consider:

function	observer(changes){

				for	(var	change	of	changes)	{

								if	(change.type	==	"recalc")	{

												change.object.c	=

																change.object.oldValue	+

																change.object.a	+

																change.object.b;

								}

				}

}

function	changeObj(a,b)	{

				var	notifier	=	Object.getNotifier(	obj	);

				obj.a	=	a	*	2;

				obj.b	=	b	*	3;

				//	queue	up	change	events	into	a	set

				notifier.notify(	{

								type:	"recalc",

								name:	"c",

								oldValue:	obj.c

				}	);

}

var	obj	=	{	a:	1,	b:	2,	c:	3	};

Object.observe(

				obj,

				observer,

				["recalc"]

);

changeObj(	3,	11	);

obj.a;												//	12

obj.b;												//	30

obj.c;												//	3

The	change	set	(	"recalc"		custom	event)	has	been	queued	for	delivery	to	the	observer,	but
not	delivered	yet,	which	is	why		obj.c		is	still		3	.
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The	changes	are	by	default	delivered	at	the	end	of	the	current	event	loop	(see	the	Async	&
Performance	title	of	this	series).	If	you	want	to	deliver	them	immediately,	use
	Object.deliverChangeRecords(observer)	.	Once	the	change	events	are	delivered,	you	can
observe		obj.c		updated	as	expected:

obj.c;												//	42

In	the	previous	example,	we	called		notifier.notify(..)		with	the	complete	change	event
record.	An	alternative	form	for	queuing	change	records	is	to	use		performChange(..)	,	which
separates	specifying	the	type	of	the	event	from	the	rest	of	event	record's	properties	(via	a
function	callback).	Consider:

notifier.performChange(	"recalc",	function(){

				return	{

								name:	"c",

								//	`this`	is	the	object	under	observation

								oldValue:	this.c

				};

}	);

In	certain	circumstances,	this	separation	of	concerns	may	map	more	cleanly	to	your	usage
pattern.

Ending	Observation

Just	like	with	normal	event	listeners,	you	may	wish	to	stop	observing	an	object's	change
events.	For	that,	you	use		Object.unobserve(..)	.

For	example:

var	obj	=	{	a:	1,	b:	2	};

Object.observe(	obj,	function	observer(changes)	{

				for	(var	change	of	changes)	{

								if	(change.type	==	"setPrototype")	{

												Object.unobserve(

																change.object,	observer

												);

												break;

								}

				}

}	);
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In	this	trivial	example,	we	listen	for	change	events	until	we	see	the		"setPrototype"		event
come	through,	at	which	time	we	stop	observing	any	more	change	events.

Exponentiation	Operator
An	operator	has	been	proposed	for	JavaScript	to	perform	exponentiation	in	the	same	way
that		Math.pow(..)		does.	Consider:

var	a	=	2;

a	**	4;												//	Math.pow(	a,	4	)	==	16

a	**=	3;								//	a	=	Math.pow(	a,	3	)

a;																//	8

Note:		**		is	essentially	the	same	as	it	appears	in	Python,	Ruby,	Perl,	and	others.

Objects	Properties	and		...	
As	we	saw	in	the	"Too	Many,	Too	Few,	Just	Enough"	section	of	Chapter	2,	the		...		operator
is	pretty	obvious	in	how	it	relates	to	spreading	or	gathering	arrays.	But	what	about	objects?

Such	a	feature	was	considered	for	ES6,	but	was	deferred	to	be	considered	after	ES6	(aka
"ES7"	or	"ES2016"	or	...).	Here's	how	it	might	work	in	that	"beyond	ES6"	timeframe:

var	o1	=	{	a:	1,	b:	2	},

				o2	=	{	c:	3	},

				o3	=	{	...o1,	...o2,	d:	4	};

console.log(	o3.a,	o3.b,	o3.c,	o3.d	);

//	1	2	3	4

The		...		operator	might	also	be	used	to	gather	an	object's	destructured	properties	back
into	an	object:

var	o1	=	{	b:	2,	c:	3,	d:	4	};

var	{	b,	...o2	}	=	o1;

console.log(	b,	o2.c,	o2.d	);								//	2	3	4

Here,	the		...o2		re-gathers	the	destructured		c		and		d		properties	back	into	an		o2		object
(	o2		does	not	have	a		b		property	like		o1		does).
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Again,	these	are	just	proposals	under	consideration	beyond	ES6.	But	it'll	be	cool	if	they	do
land.

	Array#includes(..)	

One	extremely	common	task	JS	developers	need	to	perform	is	searching	for	a	value	inside
an	array	of	values.	The	way	this	has	always	been	done	is:

var	vals	=	[	"foo",	"bar",	42,	"baz"	];

if	(vals.indexOf(	42	)	>=	0)	{

				//	found	it!

}

The	reason	for	the		>=	0		check	is	because		indexOf(..)		returns	a	numeric	value	of		0		or
greater	if	found,	or		-1		if	not	found.	In	other	words,	we're	using	an	index-returning	function
in	a	boolean	context.	But	because		-1		is	truthy	instead	of	falsy,	we	have	to	be	more	manual
with	our	checks.

In	the	Types	&	Grammar	title	of	this	series,	I	explored	another	pattern	that	I	slightly	prefer:

var	vals	=	[	"foo",	"bar",	42,	"baz"	];

if	(~vals.indexOf(	42	))	{

				//	found	it!

}

The		~		operator	here	conforms	the	return	value	of		indexOf(..)		to	a	value	range	that	is
suitably	boolean	coercible.	That	is,		-1		produces		0		(falsy),	and	anything	else	produces	a
non-zero	(truthy)	value,	which	is	what	we	for	deciding	if	we	found	the	value	or	not.

While	I	think	that's	an	improvement,	others	strongly	disagree.	However,	no	one	can	argue
that		indexOf(..)	's	searching	logic	is	perfect.	It	fails	to	find		NaN		values	in	the	array,	for
example.

So	a	proposal	has	surfaced	and	gained	a	lot	of	support	for	adding	a	real	boolean-returning
array	search	method,	called		includes(..)	:

var	vals	=	[	"foo",	"bar",	42,	"baz"	];

if	(vals.includes(	42	))	{

				//	found	it!

}
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Note:		Array#includes(..)		uses	matching	logic	that	will	find		NaN		values,	but	will	not
distinguish	between		-0		and		0		(see	the	Types	&	Grammar	title	of	this	series).	If	you	don't
care	about		-0		values	in	your	programs,	this	will	likely	be	exactly	what	you're	hoping	for.	If
you	do	care	about		-0	,	you'll	need	to	do	your	own	searching	logic,	likely	using	the
	Object.is(..)		utility	(see	Chapter	6).

SIMD
We	cover	Single	Instruction,	Multiple	Data	(SIMD)	in	more	detail	in	the	Async	&	Performance
title	of	this	series,	but	it	bears	a	brief	mention	here,	as	it's	one	of	the	next	likely	features	to
land	in	a	future	JS.

The	SIMD	API	exposes	various	low-level	(CPU)	instructions	that	can	operate	on	more	than	a
single	number	value	at	a	time.	For	example,	you'll	be	able	to	specify	two	vectors	of	4	or	8
numbers	each,	and	multiply	the	respective	elements	all	at	once	(data	parallelism!).

Consider:

var	v1	=	SIMD.float32x4(	3.14159,	21.0,	32.3,	55.55	);

var	v2	=	SIMD.float32x4(	2.1,	3.2,	4.3,	5.4	);

SIMD.float32x4.mul(	v1,	v2	);

//	[	6.597339,	67.2,	138.89,	299.97	]

SIMD	will	include	several	other	operations	besides		mul(..)		(multiplication),	such	as
	sub()	,		div()	,		abs()	,		neg()	,		sqrt()	,	and	many	more.

Parallel	math	operations	are	critical	for	the	next	generations	of	high	performance	JS
applications.

WebAssembly	(WASM)
Brendan	Eich	made	a	late	breaking	announcement	near	the	completion	of	the	first	edition	of
this	title	that	has	the	potential	to	significantly	impact	the	future	path	of	JavaScript:
WebAssembly	(WASM).	We	will	not	be	able	to	cover	WASM	in	detail	here,	as	it's	extremely
early	at	the	time	of	this	writing.	But	this	title	would	be	incomplete	without	at	least	a	brief
mention	of	it.

One	of	the	strongest	pressures	on	the	recent	(and	near	future)	design	changes	of	the	JS
language	has	been	the	desire	that	it	become	a	more	suitable	target	for	transpilation/cross-
compilation	from	other	languages	(like	C/C++,	ClojureScript,	etc.).	Obviously,	performance
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of	code	running	as	JavaScript	has	been	a	primary	concern.

As	discussed	in	the	Async	&	Performance	title	of	this	series,	a	few	years	ago	a	group	of
developers	at	Mozilla	introduced	an	idea	to	JavaScript	called	ASM.js.	ASM.js	is	a	subset	of
valid	JS	that	most	significantly	restricts	certain	actions	that	make	code	hard	for	the	JS
engine	to	optimize.	The	result	is	that	ASM.js	compatible	code	running	in	an	ASM-aware
engine	can	run	remarkably	faster,	nearly	on	par	with	native	optimized	C	equivalents.	Many
viewed	ASM.js	as	the	most	likely	backbone	on	which	performance-hungry	applications
would	ride	in	JavaScript.

In	other	words,	all	roads	to	running	code	in	the	browser	lead	through	JavaScript.

That	is,	until	the	WASM	announcement.	WASM	provides	an	alternate	path	for	other
languages	to	target	the	browser's	runtime	environment	without	having	to	first	pass	through
JavaScript.	Essentially,	if	WASM	takes	off,	JS	engines	will	grow	an	extra	capability	to
execute	a	binary	format	of	code	that	can	be	seen	as	somewhat	similar	to	a	bytecode	(like
that	which	runs	on	the	JVM).

WASM	proposes	a	format	for	a	binary	representation	of	a	highly	compressed	AST	(syntax
tree)	of	code,	which	can	then	give	instructions	directly	to	the	JS	engine	and	its
underpinnings,	without	having	to	be	parsed	by	JS,	or	even	behave	by	the	rules	of	JS.
Languages	like	C	or	C++	can	be	compiled	directly	to	the	WASM	format	instead	of	ASM.js,
and	gain	an	extra	speed	advantage	by	skipping	the	JS	parsing.

The	near	term	for	WASM	is	to	have	parity	with	ASM.js	and	indeed	JS.	But	eventually,	it's
expected	that	WASM	would	grow	new	capabilities	that	surpass	anything	JS	could	do.	For
example,	the	pressure	for	JS	to	evolve	radical	features	like	threads	--	a	change	that	would
certainly	send	major	shockwaves	through	the	JS	ecosystem	--	has	a	more	hopeful	future	as
a	future	WASM	extension,	relieving	the	pressure	to	change	JS.

In	fact,	this	new	roadmap	opens	up	many	new	roads	for	many	languages	to	target	the	web
runtime.	That's	an	exciting	new	future	path	for	the	web	platform!

What	does	it	mean	for	JS?	Will	JS	become	irrelevant	or	"die"?	Absolutely	not.	ASM.js	will
likely	not	see	much	of	a	future	beyond	the	next	couple	of	years,	but	the	majority	of	JS	is
quite	safely	anchored	in	the	web	platform	story.

Proponents	of	WASM	suggest	its	success	will	mean	that	the	design	of	JS	will	be	protected
from	pressures	that	would	have	eventually	stretched	it	beyond	assumed	breaking	points	of
reasonability.	It	is	projected	that	WASM	will	become	the	preferred	target	for	high-
performance	parts	of	applications,	as	authored	in	any	of	a	myriad	of	different	languages.
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Interestingly,	JavaScript	is	one	of	the	lesser	likely	languages	to	target	WASM	in	the	future.
There	may	be	future	changes	that	carve	out	subsets	of	JS	that	might	be	tenable	for	such
targeting,	but	that	path	doesn't	seem	high	on	the	priority	list.

While	JS	likely	won't	be	much	of	a	WASM	funnel,	JS	code	and	WASM	code	will	be	able	to
interoperate	in	the	most	significant	ways,	just	as	naturally	as	current	module	interactions.
You	can	imagine	calling	a	JS	function	like		foo()		and	having	that	actually	invoke	a	WASM
function	of	that	name	with	the	power	to	run	well	outside	the	constraints	of	the	rest	of	your	JS.

Things	which	are	currently	written	in	JS	will	probably	continue	to	always	be	written	in	JS,	at
least	for	the	foreseeable	future.	Things	which	are	transpiled	to	JS	will	probably	eventually	at
least	consider	targeting	WASM	instead.	For	things	which	need	the	utmost	in	performance
with	minimal	tolerance	for	layers	of	abstraction,	the	likely	choice	will	be	to	find	a	suitable
non-JS	language	to	author	in,	then	targeting	WASM.

There's	a	good	chance	this	shift	will	be	slow,	and	will	be	years	in	the	making.	WASM	landing
in	all	the	major	browser	platforms	is	probably	a	few	years	out	at	best.	In	the	meantime,	the
WASM	project	(https://github.com/WebAssembly)	has	an	early	polyfill	to	demonstrate	proof-
of-concept	for	its	basic	tenets.

But	as	time	goes	on,	and	as	WASM	learns	new	non-JS	tricks,	it's	not	too	much	a	stretch	of
imagination	to	see	some	currently-JS	things	being	refactored	to	a	WASM-targetable
language.	For	example,	the	performance	sensitive	parts	of	frameworks,	game	engines,	and
other	heavily	used	tools	might	very	well	benefit	from	such	a	shift.	Developers	using	these
tools	in	their	web	applications	likely	won't	notice	much	difference	in	usage	or	integration,	but
will	just	automatically	take	advantage	of	the	performance	and	capabilities.

What's	certain	is	that	the	more	real	WASM	becomes	over	time,	the	more	it	means	to	the
trajectory	and	design	of	JavaScript.	It's	perhaps	one	of	the	most	important	"beyond	ES6"
topics	developers	should	keep	an	eye	on.

Review
If	all	the	other	books	in	this	series	essentially	propose	this	challenge,	"you	(may)	not	know
JS	(as	much	as	you	thought),"	this	book	has	instead	suggested,	"you	don't	know	JS
anymore."	The	book	has	covered	a	ton	of	new	stuff	added	to	the	language	in	ES6.	It's	an
exciting	collection	of	new	language	features	and	paradigms	that	will	forever	improve	our	JS
programs.

But	JS	is	not	done	with	ES6!	Not	even	close.	There's	already	quite	a	few	features	in	various
stages	of	development	for	the	"beyond	ES6"	timeframe.	In	this	chapter,	we	briefly	looked	at
some	of	the	most	likely	candidates	to	land	in	JS	very	soon.
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	async	function	s	are	powerful	syntactic	sugar	on	top	of	the	generators	+	promises	pattern
(see	Chapter	4).		Object.observe(..)		adds	direct	native	support	for	observing	object	change
events,	which	is	critical	for	implementing	data	binding.	The		**		exponentiation	operator,
	...		for	object	properties,	and		Array#includes(..)		are	all	simple	but	helpful	improvements
to	existing	mechanisms.	Finally,	SIMD	ushers	in	a	new	era	in	the	evolution	of	high
performance	JS.

Cliché	as	it	sounds,	the	future	of	JS	is	really	bright!	The	challenge	of	this	series,	and	indeed
of	this	book,	is	incumbent	on	every	reader	now.	What	are	you	waiting	for?	It's	time	to	get
learning	and	exploring!
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