
1

× 2. JavaScript Fundamentals ς Part 1Ą 5. Values and Variables
Using camelCase to declare variables
Here are rules JavaScript has for naming variables:

¶ Variable names cannot contain spaces.
¶ Variable names must begin with a letter, an underscore (_) or a dollar sign ($).
¶ Variable names can only contain letters, numbers, underscores, or dollar signs.
¶ Variable names are case-sensitive.
¶ 5ƻƴΩǘ ǳǎŜ ƴŀƳŜǎ ǘƘŀǘ ŀǊŜ ǘƻƻ ǎƘƻǊǘΦ Simple one-letter names or names ǘƘŀǘ ŘƻƴΩǘ

make sense are not a good option when naming variables.

¶ Use more than one word to name your variable. This will ensure your variable

name is precise.

¶ When using more than one word in your variable names, always put the

adjective to the left. For example, this is correct: var greenGrass.

¶ Pick a style for names with more than one word, and stick to it. The two most

common ways to join words to create a name are camelCase and using an

underscore (_). JavaScript is flexible τ either method works.

JavaScript Reserved Words

abstract arguments await* boolean

break byte case catch
char class* const continue

debugger default delete do
double else enum* eval

export* extends* false final

finally float for function
goto if implements import*

in instanceof int interface
let* long native new

null package private protected
public return short static

super* switch synchronized this

throw throws transient true
try typeof var void

volatile while with yield

2

× 2. JavaScript Fundamentals ς Part 1Ą 7. Data Types

Primitive data types Υ

3

× 2. JavaScript Fundamentals ς Part 1Ą 8. let, const and var
sn Var let Const

01. We have before ES6 and
now also

It becomes in ES6
(ES2015)

It becomes in ES6
(ES2015)

02. It can be redecleared It can't be redecleared It can't be
redecleared

03. It has Global Scope and
function Scope or local
Scope, so it can be
accesse inside the
function if it is defined
inside the function. And it
can be accessible outside
of a functin and inside of
a function also, if it is
defined outside of a
function

It has Block Scope, so
only accessible inside
that block where it is
defined

It has Block Scope, so
only accessible inside
that block where it is
defined

Basic Operators

¶ += *= ** -- ҌҌ ΧΧΦ

¶ Operator Precedence
Operator Operation Order of Precedence Order of Evaluation
++ Increment 1 R -> L
τ Decrement 1 R -> L
τ Negation 1 R -> L
! NOT 1 R -> L
*, /, % Multiplication,

division, modulus
2 L -> R

+, τ Addition, subtraction 3 L -> R
+ Concatenation 3 L -> R
<, <= Less than, less than,

or equal
4 L -> R

>, >= Greater than, greater
than, or equal

4 L -> R

== Equal 5 L -> R
!= Not equal 5 L -> R
=== Identity 5 L -> R
!== Non-identity 5 L -> R
&& AND 6 L -> R
|| OR 6 L -> R
?: Ternary 7 R -> L
= Assignment 8 R -> L
+=, -=, and so on. Arithmetic

assignment
8 R -> L

 var let const

Redeclarable

Reassignable

Global

property

Block scope

Hoisted

https://nikitahl.com/var-vs-let-vs-const#var
https://nikitahl.com/var-vs-let-vs-const#let
https://nikitahl.com/var-vs-let-vs-const#const

4

× 2. JavaScript Fundamentals ς Part 1Ą 12.Strings and Template Literals
// Strings and Template Literals
const firstName = 'Jonas';
const job = 'teacher';
const birthYear = 1991;
const year = 2037;

const jonas = "I'm " + firstName + ', a ' + (year - birthYear) + ' year old ' + job + '!';
console.log(jonas);

const jonasNew = ̀ I'm ${firstName}, a ${year - birthYear} year old ${job}!`;
console.log(jonasNew);

console.log(`Just a regular string...)̀;
console.log('String with \n\
multiple \n\
lines');

console.log(`String
multiple
lines̀);

× 2. JavaScript Fundamentals ς Part 1Ą 13. Taking Decisions if else Statements
× 2. JavaScript Fundamentals ς Part 1Ą 15. Type Conversion and Coercion
In JavaScript:

¶ type conversion : when we manually convert from one type to another

¶ type coercion : coercion is when JavaScript automatically converts types behind the
scenes for us that's necessary in some situation, but it happens implicitly, completely
hidden from us.

// t ype conversion
const inputYear = '1991';
console.log(Number(inputYear), inputYear); //1991 '1991'
console.log(Number(inputYear) + 18); //2009

console.log(Number('Jonas'));// NaN (not a number actually means invalid number.)
console.log(typeof NaN); //number (It's still a number of somehow, but it's an invalid one.)

console.log(String(23), 23); // 23 23 (first one is string type, second is number)

5

So we have different types here, right? We have a string, a number and another string. it
works this way because of type of coercion.
// type coercion
console.log('I am ' + 23 + ' years old'); //I am 23 years old
console.log('23' - '10' - 3); //10
console.log('23' + '10' + 3); //23103
console.log('23' / '2');//11.5
console.log('23' > '18');//true

let n = '1' + 1; // '11' ("+" operator convert number to string)
n = n - 1; //(" -" convert string to number)
console.log(n);//10

× 2. JavaScript Fundamentals ς Part 1Ą 16.Truthy and Falsy Values
falsy values are values that are not exactly false, but will become false when we try to
convert them into a Boolean.
// 5 falsy values: 0, '', undefined, null, NaN

// 5 falsy values: 0, '', undefined, null, NaN
console.log(Boolean(0));//false
console.log(Boolean(undefined));//false
console.log(Boolean('Jonas'));//true
console.log(Boolean({}));//true
console.log(Boolean(''));//false
** the Boolean() function used for test, never did this in your life

so the conversion to boolean is always implicit, not explicit, or in other words is always
typed coercion that JavaScript does automatically behind the scenes and it happens in two
scenarios:

¶ First, when using logical operators,

¶ and second in a logical context, like for example, in the condition of an if else
statement.

× 2. JavaScript Fundamentals ς Part 1Ą Equality Operators: == vs. ===
the difference is that this one here with the three equalsis called the strict equality
operator.
// Equality Operators: == vs. ===
const age = '18';
if (age === 18) console.log('You just became an adult :D (strict)');

if (age == 18) console.log('You just became an adult :D (loose)');
const favourite = Number(prompt("What's your favourite number?"));

6

console.log(favourite);
console.log(typeof favourite);

if (favourite === 23) { // 22 === 23 -> FALSE
 console.log('Cool! 23 is an amzaing number!')
} else if (favourite === 7) {
 console.log('7 is also a cool number')
} else if (favourite === 9) {
 console.log('9 is also a cool number')
} else {
 console.log('Number is not 23 or 7 or 9')
}

if (favourite !== 23) console.log('Why not 23?');

× 2. JavaScript Fundamentals ς Part 1Ą 19. Logical Operators
&& || !

× JavaScript Fundamentals ς Part 1Ą 21. The switch Statement
switch statement which is an alternative way of writing a complicated if/else statement
const day = 'friday';

switch (day) {
 case 'tuesday':
 console.log('Prepare theory videos');
 break;
 case 'wednesday':
 case 'thursday':
 console.log('Write code examples');
 break;
 case 'friday':
 console.log('Record videos');
 break;
 case 'saturday':

prompt

 var person = prompt("Please enter your name", "Harry Potter");

 if (person != null) {

 document.getElementById("demo").innerHTML =

 "Hello " + person + "! How are you today?";

 }

7

 case 'sunday':
 console.log('Enjoy the weekend :D');
 break;
 default:
 console.log('Not a valid day!');
 }

× 2. JavaScript Fundamentals ς Part 1Ą 22. Statements and Expressions
V An expression is a piece of code that produces a value.
 3 + 4
 1991
 true && false && !false

V And the statement is like a bigger piece of code that is executed and which does not

produce a value on itself. For example if else is a statement
if (23 > 10) {
 const str = '23 is bigger';
}
const me = 'Jonas';
console.log(Ì'm ${2037 - 1991} years old ${me})̀;

JavaScript expects statements and expressions in different places. For example, in a
template literal, we can only insert expressions, but not statements.

× 2. JavaScript Fundamentals ς Part 1Ą 23. The Conditional (Ternary) Operator
conditional operator allows us to write something similar to an if/else statement but all in
one line.
// The Conditional (Ternary) Operator
const age = 23;

const drink = age >= 18 ? 'wine ' : 'water ';
console.log(drink);
ternary operator is an expression, so we can use it in a template literal. (unlike a normal
if/else statement)

8

2. JavaScript Fundamentals ς Part 1Ą 25. JavaScript Releases ES5, ES6+ and ESNext

how can we use modern JavaScript today? Because browsers that users are using might be
old and there's no forwards compatibility. Right? So to answer the question, how we can
use modern JavaScript today, we need to consider two distinct scenarios, development and
production.

9

¶ So the development phase is simply when you're building the site or application on
your computer. To ensure you can use the latest JavaScript features in this face. All
you have to do is to use the most Up ToDate version of the Google Chrome browser.

¶ The second scenario is production, which is when your web application is finished.
You deploy it on the internet and it's then running in your users' browsers. And this is
where problems might appear, because this is the part that we actually can't control.
We cannot control which browser the user uses. And we also can't assume that all our
users always use the latest browsers, right. Now, the solution to this problem is to
basically convert these modern JavaScript versions back to ES5 using a process called
transpiling. and also polyfilling. We will use a tool called Babel later in the course to
transpile or code.

because you're using the most Up ToDate browser during development, transpiling back to
ES5 is only necessary after your app is developed and you want to ship it to your users
How different JavaScript releases can be used today:

¶ So first off ES5 is of course fully supported in all browsers today, all the way down to
internet Explorer nine from 2011. So we can assume that ES5 is safe to be used at
this point, which is the reason why we use it as a target for transpiling.

 Now about the newer releases, ES6, ES7 and all the way to ES2020, as of mid-2020, they
are actually quite well supported already in all modern browsers. And we usually call all the
current versions together,
ES6 plus. So right now that's from ES6 to ES2020, and basically all together, they are the
modern JavaScript. Now it's in this modern JavaScript. So in this ES6 plus where transpiling
comes in,
as I mentioned earlier.
if you want to stay up to date with what features are currently supported in which browser
you can check out the ES6 compatibility table.
Next, there are also the future releases of the language like ES2021, ES2022 and so on. And
these future releases together are many times called ESNext. Now, why is this even
relevant? Well, because most browsers actually start implementing new features even
before they enter the official ECMAScript specification. That's possible because as new
features are proposed, they have to go through four stages, starting with stage one, where
they are first admitted all the way to stage four, at which point they enter the language
officially. But when a feature is at stage three, browsers can be pretty sure it will eventually
pass to stage four. And so they're gonna start implementing that feature while still in stage
three. And there is a lot more to be said about this.
You can find tons of information about us online. If you want to learn more. And a great
place to start is actually once more, this compatibility table, that's up here on the slide.
ES6 compatibility table: https://kangax.github.io/compat-table/es6/

https://kangax.github.io/compat-table/es6/

10

× 3. JavaScript Fundamentals ς Part 2Ą 2. Activating Strict Mode
strict mode is a special mode that we can activate in JavaScript, which makes it easier for us
to write a secure JavaScript code.
V Write in first line of JS file
V Just comments before this are allowed
V We actually can also activate strict mode, only for a specific function or a specific

block. But I don't really see the point in doing that

strict mode makes it easier for us developers to avoid accidental errors. So basically, it helps
us introduce the bugs into our code and that's because of 2 reasons.

¶ First, strict mode forbids us to do certain things

¶ Second, it will actually create visible errors for us in certain situations in which
without strict mode JavaScript will simply fail silently without letting us know that we
did a mistake.

EX:
'use strict'
let hasDriversLicense = false;
const passTheE = true;
if (passTheE) hasDriverLicense = true; κκƳƛǎǎ ǘƘŜ ΨǎΩ (in strict mode we get error but in other
ǿŀǘ ǿŜ ŘƛŘƴΩǘ ǎŜŜ ŀƴȅ ŜǊǊƻǊ
if (hasDriversLicense) console.log('you can drive')

¶ another thing that strict mode does is to introduce a short list of variable names that
are reserved for features that might be added to the language a bit later.

11

'use strict'
let interface = 'Audio'; // we get an error (interface is a reseved word)

× 3. JavaScript Fundamentals ς Part 2 Ą 3. Functions

Well in the most simple form a function is simply a piece of code that we can reuse
over and over again in our code.

 3. JavaScript Fundamentals ς Part 2 Ą 7. Reviewing Functions

in fact in JavaScript, functions are actually just values.(fact an expression and expressions
produce values.)

Parameters: Function names (param1,param2){----}
Arguments: names(arg1,arg2)

main practical difference is that we can actually call function declarations before they are
defined in the code (because hoisting).

Personally, I prefer to use function expressions because this then forces me into a nice
structure where I have to define all the functions first at the top of the code and only then I
can call them.

× 3. JavaScript Fundamentals ς Part 2 Ą 9. Introduction to Arrays
1. Arrays: only primitive values, are immutable. But an Array is not a primitive value.

So, we can mutate(change) the array even though they were declared with const.
but cannot change whole array

12

const friends = ['Michael', 'Steven', 'Peter']; // (using [] called the literal syntax)
console.log(friends); //'Michael', 'Steven', 'Peter'

friends[2] = 'Jay';
console.log(friends); //'Michael', 'Steven', 'Jay'

3. JavaScript Fundamentals ς Part 2 Ą Basic Array Operations (Methods):
 JS has some built in functions that can apply directly on arrays and these are called
methods

.includes() // true/false

.indexOf() // index of searched item / -1 if not find

.push() // adds one or more elements to the end of an array and returns the new length
of the array.
.pop() //remove last element (returned the element)
.shift() //remove elements from the beginning of the array (shift method also returns
removed elements)
.unShift() //adds elements to the beginning of the array (unshift method also returns
the length of the new array)

// Basic Array Operations (Methods)
const friends = ['Michael', 'Steven', 'Peter'];
// Add elements
const newLength = friends.push('Jay'); // friends array will be changed
console.log(friends); // 'Michael', 'Steven', 'Peter','Jay'
console.log(newLength); // 4

friends.unshift('John');
console.log(friends); //'John', 'Michael', 'Steven', 'Peter', 'Jay'

// Remove elements
friends.pop(); // Last
const popped = friends.pop();
console.log(popped);//'Peter'
console.log(friends); //'John', 'Michael', 'Steven'

friends.shift(); // First
console.log(friends);//'Michael', 'Steven'

console.log(friends.indexOf('Steven')); //1
console.log(friends.indexOf('Bob')); // -1

friends.push(23);
console.log(friends.includes('Steven')); //true

13

console.log(friends.includes('Bob')); // false
console.log(friends.includes(23)); // true

if (friends.includes('Steven')) {
 console.log('You have a friend called Steven'); //You have a friend called Steven
}
× 3. JavaScript Fundamentals ς Part 2 Ą 12. Introduction to Objects

2. Objects:in arrays, there is no way of giving these elements a name. And so we
can't reference them by name, but only by their order number to solve that
problem, we have another data structure in JavaScript, which is objects.

const jonasArray = [
 'Jonas',
 'Schmedtmann',
 2037 - 1991,
 'teacher',
 ['Michael', 'Peter', 'Steven']
];

const jonas = {
 firstName: 'Jonas',
 lastName: 'Schmedtmann',
 age: 2037 - 1991,
 job: 'teacher',
 friends: ['Michael', 'Peter', 'Steven']
};
** The big difference between objects and arrays, is that in objects, the order of these
values does not matter at all when we want to retrieve them.

× 3. JavaScript Fundamentals ς Part 2 Ą 13. Dot vs. Bracket Notation
const jonas = {
 firstName: 'Jonas',
 lastName: 'Schmedtmann',
 age: 2037 - 1991,
 job: 'teacher',
 friends: ['Michael', 'Peter', 'Steven']
};
console.log(jonas);

console.log(jonas.lastName);
console.log(jonas['lastName']);

const nameKey = 'Name';
console.log(jonas['first' + nameKey]);

14

console.log(jonas['last' + nameKey]);

console.log(jonas.'last' + nameKey) // error 'last' here is an unspected string, the reason
why we need the brackets notation and dot notation

dot and [] operator precedence is: left to right

× 3. JavaScript Fundamentals ς Part 2 Ą 14. Object Methods
Objects can hold arrays, objects function is just a value then that means that we can create
a key value pair in which the value is a function.
any function that is attached to an object is called a method.
const jonas = {
 firstName: 'Jonas',
 lastName: 'Schmedtmann',
 birthYear: 1991,
 job: 'teacher',
 friends: ['Michael', 'Peter', 'Steven'],
 hasDriversLicense: true,

 calcAge1: function (birthYear) {
 return 2037 - birthYear;
 },

 calcAge2: function () { //using this keyword
 // console.log(this);
 return 2037 - this.birthYear;
 },
 //instead of using "jonas.calcage()"multiple time,just calculate the age once, then store it
in the object, and then when we need it at a later point,we can then just retrieve the age as
a property from the object.
 calcAge: function () { // using this to store value in the object
 this.age = 2037 - this.birthYear;
 return this.age;
 },

 getSummary: function () {
 return ̀ ${this.firstName} is a ${this.calcAge()}-year old ${jonas.job}, and he has
${this.hasDriversLicense ? 'a' : 'no'} driver's license.̀
 }
};

console.log(jonas.calcAge());

15

άThisέ variable is basically equal to the object on which the method is called, or in other
words, it is equal to the object calling the method.

× 3. JavaScript Fundamentals ς Part 2 Ą 16. Iteration The for Loop
for (let rep = 1; rep <= 30; rep++) {

 console.log(`Lifting weights repetition ${rep} `);
}

× 3. JavaScript Fundamentals ς Part 2 Ą 17. Looping Arrays, Breaking and Continuing

** Parts of a for: for(Counter ; condition ; updating the counter)

¶ ǿƛǘƘ άcontinueέ ǿŜ Ŏŀƴ ŜȄƛǘ ǘƘŜ current iteration of the loop.

¶ άbreakέ ŎƻƳǇƭŜǘŜƭȅ ǘŜǊƳƛƴŀǘŜ ǘƘŜ ǿƘƻƭŜ ƭƻƻǇ όƴƻǘ ǘƘŜ ŎǳǊǊŜƴǘ ƛǘŜǊŀǘƛƻƴύ
// Looping Arrays, Breaking and Continuing
const jonas = [
 'Jonas',
 'Schmedtmann',
 2037 - 1991,
 'teacher',
 ['Michael', 'Peter', 'Steven'],
 true
];
const types = [];

// console.log(jonas[0])
// console.log(jonas[1])
// ...
// console.log(jonas[4])
// jonas[5] does NOT exist

for (let i = 0; i < jonas.length; i++) {
 // Reading from jonas array
 console.log(jonas[i], typeof jonas[i]);

 // Filling types array
 // types[i] = typeof jonas[i];
 types.push(typeof jonas[i]);
}

console.log(types);

const years = [1991, 2007, 1969, 2020];

16

const ages = [];

for (let i = 0; i < years.length; i++) {
 ages.push(2037 - years[i]);
}
console.log(ages);

// continue and break
console.log('--- ONLY STRINGS ---')
for (let i = 0; i < jonas.length; i++) {
 if (typeof jonas[i] !== 'string') continue;

 console.log(jonas[i], typeof jonas[i]);
}

console.log('--- BREAK WITH NUMBER ---')
for (let i = 0; i < jonas.length; i++) {
 if (typeof jonas[i] === 'number') break;

 console.log(jonas[i], typeof jonas[i]);
}

× 3. JavaScript Fundamentals ς Part 2 Ą 18. Looping Backwards and Loops in Loops
First, we will loop over an array backwards, and then second, we will also create a loop
for (let i = jonas.length - 1; i >= 0; i--) {
 console.log(i, jonas[i]);
}

for (let exercise = 1; exercise < 4; exercise++) {
 console.log(`-------- Starting exercise ${exercise})̀;

 for (let rep = 1; rep < 6; rep++) {

 console.log(`Exercise ${exercise}: Lifting weight repetition ${rep})̀;
 }
}

× 3. JavaScript Fundamentals ς Part 2 Ą 19. The while Loop
// The while Loop
for (let rep = 1; rep <= 10; rep++) {

 console.log(`Lifting weights repetition ${rep} `);
}

17

let rep = 1;
while (rep <= 10) {

 console.log(`WHILE: Lifting weights repetition ${rep})̀;
 rep++;
}

let dice = Math.trunc(Math.random() * 6) + 1;

while (dice !== 6) {
 console.log(`You rolled a ${dice})̀;
 dice = Math.trunc(Math.random() * 6) + 1;
 if (dice === 6) console.log('Loop is about to end...');
}

× 5. Developer Skills & Editor Setup Ą 3. Setting up Prettier and VS Code

Prettier configs:
1. Install prettier
2. CƛƭŜκtǊŜŦŜǊŜƴŎŜǎκ{ŜǘǘƛƴƎǎ ҐҔ ǎŜǘ άŘŜŦŀǳƭǘ ŦƻǊƳŀǘǘŜǊέ ǘƻ ǇǊŜǘǘƛŜǊ
3. CƛƭŜκtǊŜŦŜǊŜƴŎŜǎκ{ŜǘǘƛƴƎǎ ҐҔ ŎƘŜŎƪ ǘƘŜ άŦƻǊƳŀǘƻƴǎŀǾŜέ
4. /ǊŜŀǘŜ άΦǇǊŜǘǘƛŜǊǊŎέ ŦƛƭŜ

Use prettier docs for config commands
{
 "singleQuote": true,
 "arrowParens": "avoid"
}

 *** using this to ignore Prettier for a line
// prettier -ignore

 VS code user snipets:

1. File/Preferences/User snipets/New Global snipets file
Uncomment the last part and set it to :

 "Print to console": {
 "scope": "javascript,typescript",
 "prefix": "cl",
 "body": [
 "console.log();",
],
 "description": "Log output to console"
 }
× 5.Developer Skills & Editor Setup Ą 4. Installing Node.js and Setting Up a Dev

Environment
Live reload:

18

1. Using VScode live server extension
2. Using node.js

a. Install node.js
b. Use terminal -Ҕ ŎƘŜŎƪ άƴƻŘŜ -Ǿέ όƛŦ ȅƻǳ ǎŜŜ ŀƴȅ ǾŜǊ ƴǳƳōŜǊ ƴƻŘŜ

installed)
c. npm install liver-server -g
d. live-server

if Execution Policy on your computer is Restricted :
(get error:ps1 cannot be loaded because running scripts is disabled on this system)

¦ open PowerShell as admin

¦ Set-ExecutionPolicy Unrestricted

× 5.Developer Skills & Editor Setup Ą 9. Debugging with the Console and
Breakpoints

console.log('log');//
console.warn('warn');// warn
console.error('error');// error
console.table('sampleObject'); // log sample object in a table style

× 7. JavaScript in the Browser DOM and Events Fundamentals Ą 4. What's the DOM

and DOM Manipulation

× 7. JavaScript in the Browser DOM and Events Fundamentals Ą 6. Handling Click

Events
document.querySelector('tag').addEventListener('click', function () {

19

// do something
})

× 7. JavaScript in the Browser DOM and Events Fundamentals Ą 8. Manipulating CSS

Styles
document.querySelector('body').style.backgroundColor = 'red';

¶ Use ά.style.attributeέ to Manipulate the CSS of the element

¶ Use camelCase to write multi-word CSS attributes

¶ The value always is string

× 7. JavaScript in the Browser DOM and Events Fundamentals Ą 14. Handling an Esc
Keypress Event

document.addEventListener('keydown', function (e) {
 // console.log(e.key);

 if (e.key === 'Escape' && !modal.classList.contains('hidden')) {
 closeModal();
 }
});

× 8. How JavaScript Works Behind the ScenesĄ 3. An High-Level Overview of

JavaScript

JS is garbage-collection, which is basically an algorithm inside the JavaScript engine, which
automatically removes old, unused objects from the computer memoryin order not to clog

20

it up with unnecessary stuff. So it's a little bit like JavaScript has a cleaning guy who cleans
our memory from time to time so that we don't have to do it manually in our code.

The computer's processor only understands zeros and ones, that's right. Ultimately, every
single program needs to be written in 0 and 1, which is also called machine code.
We simply write human-readable JavaScript code, but this code eventually needs to be
translated to machine code. And that step can be either compiling or interpreting.

21

In programming, a paradigm is an approach and an overall mindset of structuring our code,
which will ultimately direct the coding style and technique in a project that uses a certain
paradigm. three popular paradigms are;

¶ Procedural

¶ object-oriented

¶ functional programming
we can classify paradigms as imperative or as declarative
many languages are only procedural or only object-oriented or only functional, but
JavaScript does all of it.

about the object-oriented nature of JavaScript, it is a prototype-based, object-oriented
approach. what does that mean? first, almost everything in JavaScript is an object, except
for primitive values such as numbers, strings, et cetera. But arrays, for example, are just
object.
Now, have you ever wondered why we can create an array and then use the push method
on it, for example? Well, it's because of prototypal inheritance. Basically, we create arrays
from an array blueprint, which is like a template and this is called the prototype. This
prototype contains all the array methods and the arrays that we create in our code then
inherit the methods from the blueprint so that we can use them on the arrays.

22

