x 2. JavaScript FundamentatsPart 1A 5. Values and Variables
Using camelCase to declare variables
Here are rules JavaScript has for naming variables:

=A =4 -4 -4 -4

Variablenames cannot contain spaces.

Variablenames must begin with a letter, an underscore (_) or a dollar sign ($).
Variablenames can only contain letters, numbers, underscores, or dollar signs.
Variablenames are cassensitive.

52y QG dzaS vy I YS & Simfelotdetiert&Enesio? amel K2 NI R 2
make sense are not a good option when naming variables.

Use more than one word to hame your variabl€his will ensure your variable
name is precise.

When using more than one word in your variable names, always put the
adjective to the left.Fa example, this is correct: var greenGrass.

Pick a style for names with more than one word, and stick tolihe two most
common ways to join words to create a name are camelCase and using an
underscore (). JavaScript is flexibleeither method works.

JavaScript Reserved Words

abstract arguments await* boolean
break byte case catch
char class* const continue
debugger default delete do
double else enum* eval
export* extends* false final
finally float for function
goto if implements import*
in instanceof int interface
let* long native new
null package private protected
public return short static
super* switch synchronizec this
throw throws transient true
try typeof var void

volatile while with yield

x 2. JavaScripFundamentals; Part 1A 7. Data Types

OBJECTS AND PRIMITIVES

VALUE

/ YERYTHING ELSE

OR PRIMITIVE

firstName Jonas
age

1. Number: Floating point numbers <~ Used for decimals and integers

2. String: Sequence of characters @ Used for text

3. Boolean: Logical type that can only be true or false @ Used for taking decisions

4. Undefined: Value taken by a variable that is not yet defined (‘empty value’)
5. Null: Also means ‘empty value'
6. Symbol (ES2015): Value that is unique and cannot be changed [Not useful for now]

7. Bigint (ES2020): Larger integers than the Number type can hold

& JavaScript has dynamic typing: We do not have to manually define the data type of
the value stored in a variable. Instead, data types are determined automatically.

x 2.JavaScript FundamentatsPart 1A 8. let, const and var

sn Var let Const var let const
01. We have before ES6 anc It becomes in ES6 It becomes in ES6
now also (ES2015) (ES2015) Redeclarable
02. It can be redecleared It cant be redecleared It can't be
redecleared Reassignabl

03. It has Global Scope and It hasBlock Scope, so It has Block Scope, s

function Scope or local = only accessible inside only accessible inside Global
Scope, so it can be that block where it is = that block where it is property
accesse _in_si_de thg defined defined Block scope
function if it is defined
inside the function. And if Hoisted
can be accessible outsid
of a functin and inside of
a function also, if it is
defined outside of a
function
Basic Operators
1 +=*=**-bb XXOI
1 Operator Precedence
Operator Operation Order of Precedence Order ofEvaluation
sl Increment 1 R->L
T Decrement 1 R->L
T Negation 1 R->L
! NOT 1 R->L
* 1, % Multiplication, 2 L->R
division, modulus
+,T Addition, subtraction 3 L->R
+ Concatenation 3 L->R
<, <= Less than, less than, 4 L>R
or equal
>, >= Greater than, greater 4 L->R
than, or equal
== Equal 5 L->R
I= Not equal 5 L->R
=== Identity 5 L->R
== Nonridentity 5 L->R
&& AND 6 L>R
| OR 6 L>R
?: Ternary 7 R->L
= Assignment 8 R->L
+=,-=, and so on. Arithmetic 8 R->L
assignment

https://nikitahl.com/var-vs-let-vs-const#var
https://nikitahl.com/var-vs-let-vs-const#let
https://nikitahl.com/var-vs-let-vs-const#const

x 2. JavaScript FundamentatsPart 1A 12.Strings and Template Literals

constfirstName="'Jona§
constjob ='teachet;
constbirthYear=1991;
constyear=2037,

constjonas="I'm" +firstName+', a' + (year- birthYea) +' year old' +job +'!";
consolelog(jonas;

constjonasNew= I'm ${firstNameg, a${year- birthYeak year old${job} ;
consolelog(jonasNew;

consolelog('Just a regular stringy);
consolelog('String with\n\
multiple \n\

lines);

consolelog('String
multiple
lines);

x 2. JavaScript FundamentatsPart 1A 13. Taking Decisions if else Statements
x 2. JavaScript FundamentatsPart 1A 15.Type Conversion and Coercion
In JavaScript
1 type conversion: when we manually convert from one type to another
1 type coercion: coercion is when JavaScript automatically converts types behind the
scenes for us that's necessary in some situation, but it happens implicitly, completely
hidden from us.

constinputYear="'1997;
consolelog(Number(inputYea), inputYeay;
consolelog(Number(inputYea) + 18);

consolelog(Number('Jonay);
consolelog(typeof NaN);

consolelog(String(23), 23);

Sowe have different types here, right? We have a string, a number and another string. it
works this way because of type of coercion.

consolelog('l am' +23+" years old);
consolelog('23 -'10 - 3);
consolelog('23 +'10 + 3);
consolelog('23 / '2Y);
consolelog('23 >'18),

letn="1"+1,;
n=n-1;
consolelog(n);

x 2. JavaScripEFundamentals; Part 1A 16.Truthy and Falsy Values

falsyvalues are values that are not exactly false, but will become false when we try to
convert them into eéBoolean

/I'5 falsy values: 0, ", undefined, null, NaN

consolelog(Boolearn(0));

consolelog(Boolear{undefined);
consolelog(Boolear('Jonay);

consolelog(Boolear({}));

consolelog(Boolear("));

** the Boolean() function used for test, never did this ur Yite

sothe conversion to booleais always implicit, not explicit, or in other words is always
typed coercion that JavaScript does automatically behind the scenes and it happens in twc
scenarios:
1 First, when using logical operators,
1 and second in a logical context, like for examplehecondition of an if else
statement.

x 2. JavaScript FundamentatsPart 1A Equality Operators: == vs. ===
the difference is that this one here with the three equalsis calledsthiet equality
operator.

constage='18;
if (age===18) consolelog('You just became an adult :D (stri}t)

if (age==18) consolelog('You just became an adult :D (lod%g)
constfavourite = Numberprompt(*What's your favourite numbet?y);

5

consolelog(favourite);
consolelog(typeof favourite);

If (favourite===23) {
consolelog('Cool! 23 is an amzaing numb@r!
} elseif (favourite ===7) {
consolelog('7 is also a cool numbgr
} elseif (favourite===9) {
consolelog('9 is also a coalumber)
} else{
consolelog('Number is not 23 or 7 or'@

}

if (favourite!==23) consolelog('Why not 239,

prompt
var person = prompt("Please enter your name"”, "Harry Potter");
if (person = null) {
document.getElementByld("demo”).innerHTML =

"Hello " + person + " How are you today?";

}

x 2. JavaScript FundamentaisPart 1A 19.LogicalOperators
&& | !

x JavaScript FundamentatsPart 1A 21.The switch Statement
switch statementvhich is an alternative way of writing a complicated if/else statement
constday="friday;

switch(day) {

case'tuesday:.
consolelog('Prepare theory videoky
break

case'wednesday

case'thursday:
consolelog('Write codeexampley;
break

case'friday:
consolelog('Record videds,
break

case'saturday.

case'sunday.
consolelog('Enjoy the weekend ‘D
break

default
consolelog('Not a valid day);

}

x 2. JavaScripFundamentals; Part 1A 22. Statements and Expressions
V An expression is a piece of cotlat produces a value.
3+4
1991
true && false&& !false

V And the statement is like a bigger piece of code that is executed and which does not
produce a value on itself. For example if else is a statement
if (23>10){
conststr ='23 is biggéer
}
constme ='Jona$§
consolelog('l'm ${2037- 1991} years oldb{me});

JavaScript expects statements and expressions in different places. For example, in a
template literal, we can only insert expressions, but not statements.

x 2. JavaScript FundamentatsPart 1A 23.The Conditional (Ternary) Operator
conditional operator allows us to write something similar to an if/else statement but all in
one line.

constage=23;
constdrink=age>=187?'wine ':‘'water
consolelog(drink);

ternary operator is an expressiosp we can use ih a template literal(unlike a normal
if/else statemeny

2. JavaScript FundamentatsPart 1A 25. JavaScript Releases ES5, ES6+ and ESNext

A BRIEF HISTORY OF JAVASCRIPT
Kl
However, JavaScript has almost nothing to do with Java «

Microsoft launches IE, copying JavaScript from Netscape and calling it JScript; M&

1995) < Brendan Eich creates the very first version of JavaScript in just 10 days. It was called

Mocha, but already had many fundamental features of modern JavaScript!

1996) < Mocha changes to LiveScript and then to JavaScript, in order to attract Java developers

1997 {J) < Withaneed to standardize the language, ECMA releases ECMAScript 1 (ES1), the first official .ecma
M standard for JavaScript (ECMAScript is the standard, JavaScript the language in practice);
-

2009 < ES5 (ECMAScript 5) is released with lots of great new features;

2015 ES6/ES2015 (ECMAScript 2015) was released: the biggest update to the language ever!

ECMAScript changes to an annual release cycle in order to ship less features per update A,

2016 - o0 (, < Release of ES2016 / ES2017 / ES2018 / ES2019 / ES2020 / ES2021 / ... / ES2089 &@

BACKWARDS COMPATIBILITY: DON'T BREAK THE WEB!

add.arguments < MOdem J?VGSCTipt
Engine
BACKWARDS
1997 COMPATIBLE 2020

Old features are never removed;

DNT BREAK THE WEB' < Not really new versions, just
g : incremental updates (releases)

Websites keep working forever!

N
Modern JavaScript \ : >
Engine c int add n int n
NOT FORWARDS

2020

2089

how can we use modern JavaScript todBggause browsers that users are using might be
old and there's no forwards compatibility. Rigl$® to answer the questiohpw we can

use modernJavaScript todayye need to consider two distinct scenariagvelopmentand
production.

1 Sothe development phases simply when you're buildinipe site or application on
your computer.To ensure you can use the latest JavaScript featurdss face. A
you have to das to use the most Up ToDate versiointhe Google Chrome browser.

1 The second scenariopsoduction, which is when your web application is finished.
You deploy it on the internednd it's then running in your users' browsefsd this is
where problems might appeabecause this is the part that we actually can't control.
We cannot control which browser the user usAad we also can't assume that all our
usersalways use the latest browsers, rightow, the solution to this problens to
basically convert these modern JavaScript versi@tk to ES5 using a process called
transpiling. and alsgpolyfilling. We will use a tool called Babel later in the couise
transpile or code.

because you're using the most Up ToDate brovwkeing devéopment, transpiling back to
ESSs only necessary after your app is developed you want to ship it to your users
How different JavaScript releases can be used today

9 So first off ES5 is of course fully supporitedll browsers today, all the walpownto

internet Explorer nine from 20150 we can assume that ES5 is safe to be used at
this point,which is the reason whye use it as a target for transpiling.

Now about the newer releaseES6, ES7 and all the way to ES2020, as e202d,they
areactually quite well supported alreadiy all modern browsersAnd we usually call all the
current versions together,
ES6 plus. So right now that's from ES6 to ES202Dbasically all together, they are the
modern JavaScripNow it's in this modern Jagzript.So in this ES6 plus where transpiling
comes in,
as | mentioned earlier.
If you want to stay up to date with what featurase currently supported in which browser
you can check out the ES6 compatibility table
Next, there are also the futuneeleaseof the language like ES2021, ES2022 and sAran.
these future releases togethare many times calleESNextNow, why is this even
relevant?Well, because most browsers actually start implementieg features even
before they entetthe official ECMAScript specificatiorhat's possible because as new
features are proposedhey have to go through four stagestarting with stage oneyhere
they are first admitted all the way to stage foat,which point they enter the language
officially. But when a feature is at stage thrda@owsers can be pretty suiiewill eventually
pass to stage fouAnd so they're gonna start implementing that featwrhile still in stage
three. And there is a lot more to be said about this.
You can find tonsfanformation about us onlindf you want to learn moreAnd a great
place to start is actually once morthjs compatibility table, that's up here on the slide
ES6 compatibility tablétttps://kangax.qgithub.io/compaittable/es6/

https://kangax.github.io/compat-table/es6/

HOW TO USE MODERN JAVASCRIPT TODAY

£ During development: Simply use the latest Google Chrome!

% During production: Use Babel to transpile and polyfill your code (converting

back to ES5 to ensure browser compatibility for all users).

Fully supported in all browsers (down to IE 9 from 2011);

ES5 D 2 f7

Ready to b d today <)
eady to be used today ;r//—/‘/f;/r_’__/
ES6/ES2015 ES6+: Well supported in all modern browsers;
1 No support in older browsers;
ES2020 Can use most features in production with transpiling and polyfilling &

ESNext: Future versions of the language (new feature proposals that reach Stage 4);
ES2021 - o0

e some

k Will add new videos

x 3. JavaScript FundamentatsPart2A 2. Activating Strict Mode
strict mode is a special modleat we can activate in JavaScript, which makes it easier for us
to write a secure JavaScript code.
V Write in firstline of JSile
V Just comments before this are allowed
V We actually can also activate strict mode, only for a specific function or a specific
block. But | don't really see the point in doing that

strict mode makes it easier for us developers to awamdidental errorsSobasicallyjt helps
us introduce the bugs into our code and that's because of 2 reasons.
9 First, strict mode forbids us to do certain things
1 Second, it will actually create visible errors for us in certain situations in which
without strict mode JavaScript will simply fail silently without letting us know that we
did a mistake.
EX:
‘use strict
let hasDrivesLicense=false
constpassTheEtrue;
if (passThehasDriverLicensetrue;

if (hasDriversLicen$eonsolelog('you can drivg

1 another thing that strict mode does is to introduce a short list of variable names that
are reserved for features that might laelded to the language a bit later.

10

‘use strict
let interface="Audio;

x 3. JavaScript FundamentatsPart 2A 3. Functions
Well in the most simpléorm a function is simply a piece of code that we can reuse
over and over again in our code.

3. JavaScript FundamentatsPart 2A 7. Reviewing Functions
FUNCTIONS REVIEW: 3 DIFFERENT FUNCTION TYPES

< Function declaration g ,
\ function calcAge(birthYear) {
Function that can be

YAOKY) i :
used before it's declared } bicthyear

< Function expression const calcAge function (birthYear) A
\>

Essentially a function
value stored in a variable }

/ const calcAge birt ear PAOKY, birthYear
< Arrow function

Great for a quick one-line

functions. Has no this h i f axition . .
keyword (more later...) & T. r?e different wlays of writing functions, but they all work in a
similar way: receive input data, transform data, and then output data.

birthYear

in fact in JavaScript, functions are actually just valdast(an expression and expressions
produce values.)

ParametersFunctionnames(paraml,param2}--}

Arguments: namegargl,arg?2)

main practical difference is that we can actually call functiealarations before they are
defined in the code (because hoisting).

Personally, | prefer to use function expressions because this then forces me into a nice
structure where | have to define all the functions first at the top of the code and only then |
can call them.

x 3. JavaScript FundamentatsPart 2A 9. Introduction to Arrays
1. Arrays:only primitive values, are immutable. But an Arragias a primitive value.
So,we can mutate(change) the array even though they were declared with const.
but cannotchange whole array

11

constfriends=['Michael, 'Steven, 'Peter];
consolelog(friends);

friendq2] ='Jay;,
consolelog(friends);

3. JavaScript FundamentatsPart 2A Basic Array Operations (Methods):
JS has some built in functions that can apply directly on arrays and these are called
methods
includes()/ true/false
indexOf()/ index of searched item {1 if not find
.push()// adds one or more elements to thlend of an array and returns the nelength
of the array.
.pop()//remove lastelement (returned the element)
.shift()//remove elements from thebeginningof the array (shift method also returns
removed elements)
.unShift()//adds elements to theébeginningof the array (unshift method also returns
the length of the new array)

constfriends=['Michael, 'Steven, 'Peter];

constnewlLength=friendspush('Jay);
consolelog(friends);
consolelog(newLength;

friendsunshift('John);
consolelog(friends);

friendspop();
constpopped=friendspop();
consolelog(poppe;
consolelog(friends);

friendsshift();
consolelog(friends);

consolelog(friendsindexOf' Steven));
consolelog(friendsindexOf'Bob));

friendspush(23);
consolelog(friendsincluded’ Steven));

12

consolelog(friendsincludeg'Bob));
consolelog(friendsincludeq23));

if (friendsincludedq'Steven)) {
consolelog('You have a friend called Steven
}
x 3. JavaScript FundamentatsPart 2A 12. Introduction to Objects
2. Objectsin arrays, there is no way of giving these elements a name. Ane so

can't reference them by name, but only by their order number to solve that
problem, we have another data structure in JavaScript, which is objects.

constjonasArray=[

‘Jonas

‘Schmedtmanh

2037-1991,

‘teachet,

['Michael, 'Peter, 'Stever]

I;

constjonas={
firstName 'Jona§
lastName 'Schmedtmanh
age 2037- 1991,
job: 'teachet,
friends ['Michael, 'Peter, 'Steven
¥
** The big difference between objects and arrays, is that in objects, the order of these
values does not matter at all when we want to retrieve them.

x 3. JavaScript FundamentatsPart 2A 13. Dot vs. Bracket Notation
constjonas={

firstName 'Jona$

lastName 'Schmedtmanh

age 2037- 1991,

job: 'teachet,

friends ['Michael, 'Peter, 'Steven
%

consolelog(jonay;

consolelog(jonaslastName;
consolelog(jonad'lastName]);

constnameKey="'"Namée,;
consolelog(jonad'first' + nameKey);

13

consolelog(jonad'last + nameKe}y);

consolelog(jonas'last + nameKey

dot and [] operator precedence is: left to right

x 3. JavaScript FundamentafsPart 2A 14. Object Methods
Objects can hold arrays, objects function is just a value then that means that we can creatc
a key value pair in which the value is a function.
anyfunction that is attached to an object is called a method.
constjonas={

firstName 'Jona§

lastName 'Schmedtmanh

birthYear 1991,

job: 'teachet,

friends ['Michael, 'Peter, 'Stever],

hasDriversLicenséue,

calcAgelfunction (birthYeal {
return 2037- birthYear

b

calcAge2function () {

return 2037- this.birthYear
}

calcAgefunction () {
this.age=2037- this.birthYear
return this.age

2

getSummaryfunction () {
return “$fthis.firstName is a${this.calcAg€)}-year old${jonasjob}, and he has
${this.hasDriversLicensg'a : 'no'} driver's license.

}
|3

consolelog(jonascalcAg€));

14

GThisé variable is basically equal e object on which the method is calledr in other

words, it is equal to the object calling the method.
x 3. JavaScript FundamentatsPart 2A 16. Iteration The for Loop
for (letrep=1,; rep<=30; rep++) {

consolelog(Lifting weights repetitiorb{rep});
}

x 3. JavaScript FundamentatsPart 2A 17. Looping Arrays, Breaking and Continuing
** Parts of a for: for(Countercondition; updating the counter)

T 6 A (céntiniet 6 S O durréhtdrationipfHe loop.

 dreaké O2YLIX SiSte& GSNXYAYIFIGS (KS K2t S

constjonas=|
‘Jona§
‘Schmedtmanh
2037- 1991,
'teachet,
['Michael, 'Peter, 'Steven,
true

I

consttypes={[];

for (leti =0; i <jonaslength; i++) {

consolelog(jonadi], typeofjonadi]);

typespush(typeofjonaqdi]);
}

consolelog(types);

constyears=[1991, 2007, 1969, 2020Q;
15

constages=|];

for (leti =0; i <yearslength; i+ {
agespush(2037- yeargi));
}

consolelog(agey;

consolelog('---ONLY STRINGS)
for (leti =0; i <jonaslength; i++) {
if (typeofjonadi] '=="string) continue

consolelog(jonadi], typeofjonadi]);

}

consolelog('---BREAK WITH NUMBER
for (leti=0; i <jonaslength; i+ {
if (typeofjonadi] ==='number) break

consolelog(jonadi], typeofjonagi]);

}

x 3. JavaScript FundamentatsPart 2A 18. Looping Backwards and Loops in Loops
First, we will loop over an array backwardad thensecondwe will also create a loop
for (leti =jonaslength- 1;i>=0; i--) {

consolelog(i, jonadi]);

}

for (let exercise=1; exercise<4; exercise+) {
consolelog(-------- Starting exercis&{exerciseé);

for (let rep=1; rep<6; rep++) {
consolelog(Exerciseb{exercisé: Lifting weight repetitior{rep});

}
}

x 3. JavaScript FundamentatsPart 2A 19. The while Loop

for (let rep=1; rep<=10; rep++ {
consolelog(Lifting weights repetitiors{rep} °);
}

16

let rep=1;
while (rep <=10) {
consolelog(WHILE: Lifting weights repetitickfrep});
rept++;

}

let dice=Math.trunc(Math.random() * 6) + 1,

while (dice!==6) {
consolelog("You rolled &{dice});
dice=Math.trunc(Math.random() * 6) +1;
if (dice===6) consolelog('Loop is about to end:);

}

x 5. Developer Skills & Editor SetWp 3. Setting up Prettier and VS Code
Prettier configs:
1. Install prettier

2.CAf Skt NEFSNByOSak{SliuAay3aa rp asSi a
3.CAf Skt NEBFSNByOSak{ShidAay3aa rp OKSO]
4./ NBFGS GPLINBGIASNNDE FAES

Use prettier docs for config commands
{
"singleQuoté: true,
"arrowParens "avoid'

}

*** ysing this to ignore Prettier for a line

VS code user snipets:
1. File/Preferences/User snipets/New Global snipets file
Uncomment the last part and set it to :
"Print to consol& {
"scopé€: "javascript,typescript
“prefix’: "cl',
"body": [
"console.log();

1,

“descriptioni: "Log output to console

}
x 5.Developer Skills & Editor Setufy 4. Installing Node.js and Setting Up a Dev

Environment
Live reload:

17

0«

1. Using VScode live server extension
2. Using node.js
a. Install node.js
b. Useterminath OKSOPeéaYWARS @82dz aSS | ye@
installed)
c. npm install liverserver-g
d. live-server

If Execution Policy on your computer is Restricted :

(get error:psl cannot be loaded because running scripts is disabled on this system)
/ open PowerShell as admin

/ SetExecutionPolicy Unrestricted

x 5.Developer Skills & Editor Setup 9. Debugging with the Console and
Breakpoints

consolelog('log);

consolewarn('warn’);// warn

consoleerror(‘error');// error

consoletable('sampleObjec};

x 7. JavaScript in the Browser DOM and Events Fundamei#{ald. What's the DOM
and DOM Manipulation

WHAT IS THE DOM?

Tree structure, generated

by browser on HTML load \

‘

DOM

DOCUMENT OBJECT MODEL: STRUCTURED s
REPRESENTATION OF HTML DOCUMENTS. ALLOWS e
JAVASCRIPT TO ACCESS HTML ELEMENTS AND
STYLES TO MANIPULATE THEM. .

=

\ Change text, HTML attributes,

and even CSS styles

e b

i i

x 7. JavaScript in the Browser DOM and Events Fundamemal6. Handling Click
Events
documentquerySelectoftag).addEventListengfclick, function () {
18

)

x 7. JavaScript in the Browser DOM and Events Fundameal8. Manipulating CSS
Styles
documentquerySelectofbody).stylebackgroundColos 'red’;
1 Usedstyleattribute € to Manipulate theCS®f the element
1 Use cami&Case to write multword CS&ittributes
1 The value always is string

x 7. JavaScript in the Browser DOM and Events Fundamem§alis4. Handling an Esc
Keypress Event
documentaddEventListendgtkeydown, function (e) {

if (e.key==="Escape&& !'modalclassListontaing'hidden)) {
closeModal);

D

x 8. How JavaScript Works Behind the Scef§e3. An HighLevel Overview of
JavaScript

DECONSTRUCTING THE MONSTER DEFINITION

High-level Any computer program needs resources:

-

s @

Garbage-collected

Interpreted or just-in-time compiled

Multi-paradigm

Prototype-based object-oriented

First-class functions

C

Dynamic
LOW-LEVEL HIGH-LEVEL
Single-threaded
Developer has to manage Developer does NOT have
resources manually to worry, everything
Non-blocking event loop happens automatically

JS is garbagenllection,which is basically an algorithm inside the JavaScript engine, which
automatically removes old, unused objects from the computer memoryin order not to clog
19

it up with unnecessary stufgo it's a little bit like JavaScript has a cleaning guy who cleans
our memory from time to time so that we don't have to do it manually in our code.

TRUCTING THE MONSTER DEFINITION

High-level

Garbage-collected

Interpreted or just-in-time compiled
Multi-paradigm /

% 4
. Cleaning the memory

Prototype-based object-oriented so we don't have to

First-class functions

Dynamic

Single-threaded

Non-blocking event loop

The computer's processor only understands zeros and ones, that's right. Ultimately, every
single program needs to be written in 0 and 1, which is also called machine code.

We simply write huma#eadable JavaScript code, but this code eventually needs to be
translated to machine code. And that step can be either compiling or interpreting.

DECONSTRUCTING THE MONSTER DEFINITION

High-level

\. Abstraction over

Osand1s

Garbage-collected

Interpreted or just-in-time compiled
. . CONVERT TO MACHINE CODE = COMPILING
Multi-paradigm

Prototype-based object-oriented

First-class functions

Dynamic

SO tireaded More about this Later in this Section

Non-blocking event loop

20

In programming, a paradigm is an approach and an overall mindsgétuaturing our code,
which will ultimately direct the coding style and technique in a project that uses a certain
paradigmthree popular paradigms are;

1 Procedural

1 object-oriented

9 functional programming
we can classify paradigms as imperative or as daitle
many languages are only procedural or only obmoénted or only functional, but
JavaScript does all of it.

TRUCTING THE MONSTER DEFINITION

High-level < Paradigm: An approach and mindset of structuring code, which will
direct your coding style and technique
Garbage-collected

The one we've been

Interpreted or just-in-time compiled /— using so far

1 Procedural programming
Multi-paradigm .
.)) « Imperative vs.
2 Object-oriented programming (OOP)

Prototype-based object-oriented / Declarative
3 Functional programming (FP)
First-class functions

Dynamic
Siereaued More about this later in Multiple Sections -

Non-blocking event loop

about the objectoriented nature of JavaScript,is a prototypebased, objecbriented
approach. what does that mean? first, almoseexthing in JavaScript is an objegxcept

for primitive values such as numbers, strings, et cetBrd.arrays, for example, are just
object.

Now, have you ever wondered why we can create an array and then use the push method
on it, for example? Wellt's because of prototypal inheritance. Basically, we create arrays
from an array blueprint, which is like a template and this is called the protofipie.

prototype contains all the array methods and the arrays that we create in our code then
inherit the methods from the blueprint so that we can use them on the arrays.

21

DECONSTRUCTING THE MONSTER DEFINITION

High-level Prototype

Array

Array.prototype.push
Array.prototype.indexOf

Garbage-collected

(Oversimplification!)

Interpreted or just-in-time compiled

Multi-paradigm

Our array
inherits methods

Prototype-based object-oriented from prototype

Built from prototype

First-class functions
Dynamic
Gl i More about this in Section Object Oriented Programming -

Non-blocking event loop

22

